新型取代基酞菁与酞菁晶体的合成及光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要是对新型取代基酞菁和酞菁晶体的合成和光学性质进行了研究。因为酞菁在信息、医疗、化工等众多领域有很广泛的应用,所以近百年来一直是科学家研究的热点课题。酞菁经过近百年的研究,科学家已经合成了上万种酞菁衍生物,但是,随着科技的不断进步,人类社会不断发展的需求,具有新特性的新型酞菁的获得仍是相关科技工作者孜孜以求的目标。为此,在本论文中,我们改进了合成方法,合成了几种新型酞菁,还制备了其电致发光器件。
     我们首次合成了九个新型不对称酞菁。它们分别是2(3)-(对叔丁基苯氧基)酞菁、2(3)-(对叔丁基苯氧基)酞菁铜、2(3)-(对叔丁基苯氧基)酞菁锌、2(3),16(17)-二-(对叔丁基苯氧基)酞菁、2(3),16(17)-二-(对叔丁基苯氧基)酞菁铜、2(3),16(17)-二-(对叔丁基苯氧基)酞菁锌、2(3),9(10),16(17)-三-(对叔丁基苯氧基)酞菁、2(3),9(10),16(17)-三-(对叔丁基苯氧基)酞菁铜和2(3),9(10),16(17)-三-(对叔丁基苯氧基)酞菁锌。不对称酞菁是以4-(对叔丁基苯氧基)邻苯二腈(A)、1,3-二亚胺基异吲哚啉(B)和金属盐(二水乙酸合铜和二水乙酸合镍)为起始原料合成的。合成方法简述如下:原料在不同的有机溶剂(正戊醇,喹啉,N,N-二甲基甲酰胺)中加热搅拌,加入适量的催化剂1,8-二氮杂-双环(5,4,0)十一碳烯-7(DBU),在氮气保护下进行反应。反应完毕后,在减压下除去溶剂,首先产物用甲醇在索氏提取器中索提24 h,然后产物用柱层析分离两次后,最后得到目标化合物。不对称酞菁经过元素分析、红外、紫外可见光谱和质谱的表征证明其结构,从而证实产物就是目标化合物。
     我们首次用喹啉为溶剂的溶剂热合成法直接合成了酞菁铜晶体。我们使用三种原料合成酞菁铜晶体:一是邻苯二腈、钼酸铵和二水乙酸合铜为起始原料;二是1,3-二亚胺基异吲哚啉和二水乙酸合铜为起始原料;三是邻苯二腈、氧化铜和钼酸铵为起始原料。在实验中我们得到了2 mm~10.5 mm长的酞菁铜晶体,适合四元衍射测量。通过四元衍射和XRD的测量证明,晶体是四环非氮杂酞菁铜。酞菁铜分子式是CuN_8C_(32)H_(16),单晶空间群是P 2(1)/n,参量是:a=14.668(3),b=4.8109(10),c=19.515(7),α=90,β=121.04(2),γ=90,单元体积是1179.91(?)~3,根据XRD图与标准的图卡,比较峰的强度与位置,证实该晶体是β型晶体。在实验中得到的最长针状酞菁铜单晶尺寸是10.5 mm。我们还讨论了酞菁铜晶体产率与反应温度、反应时间和反应时所用溶剂体积的关系(原料质量固定时)。以1,3-二亚胺基异吲哚啉和二水乙酸合铜为起始原料时,发现合成酞菁铜晶体的产率最高,为52.3%;最佳的反应条件是:反应温度为270℃,反应溶剂为10 ml,反应时间为8 h。
     本文还首次以喹啉为溶剂的溶剂热合成法直接合成了酞菁镍晶体。我们使用两种原料合成酞菁镍晶体:一是邻苯二腈和二水乙酸合镍为起始原料:二是1,3-二亚胺基异吲哚啉、钼酸铵和二水乙酸合镍为起始原料。在合成中得到酞菁镍晶体尺寸也在2 mm~10.5 mm,适合四元衍射测量。通过四元衍射和XRD的测试证明,晶体是四环非氮杂酞菁镍。酞菁镍分子式是CuN_8C_(32)H_(16),单晶空间群是P 2(1)/n,参量是:a=14.784(3),b=4.7104(9),c=17.398(4),β=90,β=104.38(2),γ=90,单元体积是1173.6 (?)~3,根据XRD图与标准的图卡,比较峰的强度与位置,证实该晶体也是β型晶体。然后我们研究了酞菁镍晶体产率与反应温度、反应时间和反应时所用溶剂体积的关系。我们又研究发现,以1,3-二亚胺基异吲哚啉、钼酸铵和二水乙酸合镍为起始原料合成酞菁镍晶体时的产率最高,为56.84%,最佳的反应条件是:在270℃下,溶剂为14 ml,时间是8 h。
     用上述方法合成酞菁,其优点是可以直接合成酞菁铜(镍)晶体,十分方便。我们相信,在不久的将来,该方法可以推广到酞菁铜晶体的工业化生产中。
     我们以三种新型不对称酞菁铜为发光层制作了电致发光器件。三种新型不对称酞菁铜为:一是2(3)-(对叔丁基苯氧基)酞菁铜;二是2(3),9(10),16(17)-三-(对叔丁基苯氧基)酞菁铜;三是以2(3),16(17)-二-(对叔丁基苯氧基)酞菁铜。
     一种是以2(3)-(对叔丁基苯氧基)酞菁铜和2(3),9(10),16(17)-三-(对叔丁基苯氧基)酞菁铜为发光层的器件结构为:ITO/NPB(40 nm)/Pc(30 nm)/AlQ(43.8 nm)/LiF(0.5nm)/Al(120 nm)。ITO为阳极;NPB为空穴传输层;Pc为发光层;Alq_3为电子传输层;LiF为修饰电极:Al为阴极。器件的制备工艺大体为:在5.0~9.0×10~(-4)Pa,采用热蒸镀的方法,把各个有机材料依次蒸镀到清洗过的ITO玻璃衬底上,其中NPB生长速度为20 (?)/min;Pc[2(3)-(对叔丁基苯氧基)酞菁铜]生长速度为3(?)/min,Pc[2(3),9(10),16(17)-三-(对叔丁基苯氧基)酞菁铜]生长速度为1(?)/min;AlQ生长速度为20(?)/min;最后,蒸镀LiF和Al,制作OLED。ITO在测试波段的透过率大于80%。
     另一种是以2(3),16(17)-二-(对叔丁基苯氧基)酞菁铜为发光层的器件结构为:ITO/NPB(30 nm)/Pc(30 nm)/BCP(20 nm)/AlQ(30 nm)/LiF(0.5 nm)/Al(120 nm)。ITO为阳极;NPB为空穴传输层;Pc为发光层:BCP为空穴阻挡层:Alq_3为电子传输层:LiF为修饰电极;Al为阴极。器件的制备工艺大体为:在5.0~9.0×10~(-4)Pa,采用热蒸镀的方法,把有机材料依次蒸镀到清洗过的ITO玻璃衬底上,其中NPB生长速度为20 (?)/min;Pc[2(3),16(17)-二-(对叔丁基苯氧基)酞菁铜]生长速度为2 (?)/min;BCP生长速度为15(?)/min;AIQ生长速度为20(?)/min;最后,蒸镀LiF和Al,制作OLED。
     器件特性:以2(3)-(对叔丁基苯氧基)酞菁铜为发光层与Q带相关联的发射波长分别出现在869 nm和1062 nm;以2(3),16(17)-二-(对叔丁基苯氧基)酞菁铜为发光层与Q带相关联的发射波长分别出现在1050nm和1110 nm;以2(3),9(10),16(17)-三-(对叔丁基苯氧基)酞菁铜为发光层与Q带相关联的发射波长分别出现在1095 nm和1204nm。上述发射波长的不同是因为取代基的数目和真空镀膜的分子聚集态不同造成的,所以三种不对称酞菁铜的发射峰值和半峰宽差别较大,而且由此也引起斯托克司位移的不同。
     我们首次合成了亚酞菁铜。合成方法简述如下:把1,3-二亚胺基异吲哚啉、钼酸铵和二水乙酸合铜在喹啉里加热,加入催化剂量的DBU进行反应。反应完毕后,通过索氏提取,然后用柱层分析分离,得到灰褐色产物。通过质谱分析和元素分析数据证实,灰褐色产物就是目标化合物亚酞菁铜。根据亚酞菁铜分子裂解质谱图,我们还初次分析了亚酞菁铜分子的裂解过程,首次给出亚酞菁铜合成的反应机理。
In this dissertation, we study the synthesis and optical character of new substituted Phthalocyanines (Pcs) and phthalocynine (Pc) Crystal. Due to the widely application of Pcs in the fields, such as the communication, medical treatment, chemical industry and so on, therefore, they have been a hot topic over several decades by scientists. Nowadays, scientists have prepared thousands of Pcs and their derivatives. However, along with the human society development and the progress in science and technology, the new phthalocyanine with novle characteristics are still the goal of the scientists. In this dissertion, the synthetic methods of the phthlocyanines are improved. Several novle phthalocyanines are prepared. In addition, the electroluminescent devices are fabricated based on these new materials.
     The synthesis and characterization of new unsymmetry substituted phthalocyanines: 2(3)-(p-tert-butylphenoxy) Phthalocyanine,2(3)-( p-tert-butylphenoxy) copper Phthalocyanine, 2(3)-(p-tert-Butylphenoxy) Zinc Phthalocyanine, 2(3),16(17)-di(p-tert-butylphenoxy) Phthalo -cyanine, 2(3),16(17)-di(p-tert-Butylphenoxy) copper Phthalocyanine, 2(3), 16 (17)-di(p -tert-butylphenoxy) Zinc Phthalocyanine, 2(3),9(10), 16(17)-tri(p-tert-butyl-phenoxy) Phtha -locyanine, 2(3),9(10), 16(17)-tri(p-tert -butylphenoxy) copper Phthalocyanine and 2(3), 9(10),16(17)-tri(p-tert -butylphenoxy) Zinc Phthalocyanine are described. The treatment of 4-( p-tert-Butylphenoxy)phthalonitrile (A) , 1,3-diiminoisoindoline (B) and metallic salts [Cu(AcO)_2.2H_2O or Zn(AcO)_2.2H_2O] was added to organic solvent [1-pentanol, quinlonine and N,N-Dimethyl -formamide (DMF)] under stirring. Then, a catalytic amount of 1,8-Diazabicyclo [5,4,0]undec-7-ene (DBU) was added, and the mixture was heated under N2 for over 24 h. After cooling under N_2, anhydrous methanol was added into the reaction mixture to precipitate the solid and solvent was removed under reduced pressure. The collected solid powder were extracted with anhydrous methanol in a soxhlet extractor for 24 h and further purified twice by chromatography. The obtained unsymmetry substituted phthalocyanines were characterized by Mass spectrum (MS), ultraviolet-visible (UV/Vis) spectrum, Infrared Spectroscopy (IR) and elemental analysis. The results are agreement with the proposed structures.
     A novel solvothermal synthesis method for direct preparing of crystals of copper (nickel) phthalocyanine is presented in this article. Using quinoline as solvent, crystals were prepared after cooling the reaction mixture to room temperature in autoclave. The three kind of starting materials which is using phthalonitrile, Cu(AcO)_2.2H_2O and NH_4MoO_4; 1, 3-diiminoisoindoline and Cu(AcO)_2.2H_2O; phthalonitrile, NH_4MoO_4 and CuO as starting materials, were preparing CuPc single crystals. The length of CuPc single crystals were 2 mm - 10.5 mm. These high quality crystals were suitable for X-ray poly crystalline diffraction (XRD) characterization. The molecular formula of CuPc is CuN_8C_(32)H_(16), belong to monoclinic system, space group is P 2(l)/n, Unit cell parameters: a =14.668(3), b= 4.8109(10), c=19.515(7),α=90,β= 121.04(2),γ=90, cell volume is 1179.91 (?)~3, According to the X-ray poly crystalline diffraction (XRD) spectrum, we can find that the position and the intensity of the diffraction peak were in conformity with the standard card, which proves that the crystals belong toβ-form crystalline. The influences of the different temperatures, reaction time and solvent volumes on the crystal yield were also discussed. We found that the highest CuPc crystal yield which using 1, 3-diiminoisoindoline and Cu(AcO)_2.2H_2O as starting materials was 52.3% under 270℃for 8 h in 10 ml quinoline.
     We for the first time using two kind of starting materials to synthesize single crystals of NiPc employed quinoline as solvent. The two kind of starting materials which is using phthalonitrile, Ni(AcO)_2.2H_2O and NH_4MoO_4; 1, 3-diiminoisbindoline, NH_4MoO_4 and Ni(AcO)_2.2H_2O as starting materials, were preparing single crystals of NiPc. The length of NiPc single crystals were also 2 mm-10.5 mm.These crystals were also suitable for XRD characterization. The molecular formula of ZnPc is ZnN_8C_(32)H_(16), belong to monoclinic system, space group is P 2(1)/n, Unit cell parameters: a =14.668(3), b= 4.8109(10), c=19.515(7),α=90,β=121.04(2),γ=90, cell volume is 1173.6 (?)~3, According to the X-ray poly crystalline diffraction (XRD) spectrum, we can find that the position and the intensity of the diffraction peak were in conformity with the standard card, which proves that the crystals belong toβ-form crystalline. To search for the optimum reaction for the highest crystal yield, and the highest NiPc crystal yield which using NH_4MoO_4; 1, 3-diiminoisoindoline and Ni(AcO)_2.2H_2O as starting materials was 56.84% under 270℃for 8 h in 14 ml quinoline.
     Moreover, this method may be easily applied in the crystal growth for other organic materials, and acts as an important method in scientific experiment. CuPc crystals, which are directly obtained using solvothermal synthesis, will be wildly used and produced in large quantities in industry in the near future.
     We fabricated OLEDs employing 2(3)-( p-tert-butylphenoxy) copper Phthalocyanine, 2(3),16(17)-di(p-tert-butyl-phenoxy) copper Phthalocyanine and 2(3), 9(10), 16(17)-tri (p-tert-butylphenoxy) copper Phthalocyanine as light emitting layer.
     The final structures of three-layer OLEDs based on 2(3)-( p-tert-butylphenoxy) copper Phthalocyanine and 2(3),9(10), 16(17)-tri (p-tert-butylphenoxy) copper Phthalocyanine were ITO/NPB(40 nm)/Pc(30 nm)/AlQ(43.5 nm)/LiF (0.5 nm)/Al(120 nm) . Organic layers were deposited by vacuum (5.0-9.0×10~(-4) Pa) thermal evaporation onto a clean glass substrate precoated with an indium tin oxide (ITO) layer with a sheet resistance of 100Ω/□and a transmittance of -80% in the measurement range. A 40-nm-thick film of N,N'-di-1-naphthyl-N,N'-diphenyl benzidine (NPB) was deposited as the hole-transport layer (HTL) at a deposition rate of 20 ?/min. Next, a 30-nm-thick Pc film was deposited as light emitting light emitting layer (LEL) at a deposition rate of 3 (?)/min(1 (?)/min). Then, a 43.8-nm-thick layer of tris- (8-hydroxyquinoline) aluminum (Alq_3) was deposited as electron-transport layer and electron-inject layer at a deposition rate of 20 (?)/min. A 0.5-nm-thick LiF film was deposited as contact modification layer. Finally a shadow mask with 2×2 mm~2 openings was used to define the 120-nm-thick Al cathode. ITO, NPB, Alq_3 and A1 were used as anode, hole-transport layer, electron-transport layer and cathode respectively.
     The structure of three-layer OLED based on 2(3),16(17)-di(p-tert-butyl-phenoxy copper Phthalocyanine was ITO/NPB(30 nm)/Pc(30 nm) /BCP(20 nm)/AlQ(30 nm)/LiF (0.5 nm)/Al(120 nm). Organic layers were deposited by vacuum (5.0-9.0×10~(-4) Pa) thermal evaporation onto a clean glass substrate precoated with an indium tin oxide (ITO) layer with a sheet resistance of 100Ω/□and a transmittance of -80% in the measurement range. A 30-nm-thick film of N,N'-di-1-naphthyl-N,N'-diphenyl benzidine (NPB) was deposited as the hole-transport layer (HTL) at a deposition rate of 20 (?)/min. Next, a 30-nm-thick Pc film was deposited as light emitting light emitting layer (LEL) at a deposition rate of 2 (?)/min. A 20-nm-thick 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was deposited as hole-blocking layer at a deposition rate of 15 (?)/min. Then, a 20-nm-thick layer of tris-(8-hydroxyquinoline) aluminum (Alq_3) was deposited as electron-transport layer and electron-inject layer at a deposition rate of 20 (?)/min. A 0.5-nm-thick LiF film was deposited as contact modification layer. Finally a shadow mask with 2×2 mm~2 openings was used to define the 120-nm-thick Al cathode. ITO, NPB, BCP, Alq_3 and Al were used as anode, hole-transport layer, hole-blocking layer, electron-transport layer and cathode respectively.
     Room-temperature electroluminescence was observed at about 869,1062; 1050,1110 and 1095,1204 nm for 2(3)-( p-tert-butylphenoxy) copper Phthalocyanine , 2(3), 16( 17)- di(p-tert -butylphenoxy copper Phthalocyanine and 2(3),9(10), 16(17)-tri (p-tert-butylphenoxy) copper Phthalocyanine. The emission wavelengths and the half bandwidths were quite different for the phthalocyanine, which may be due to the differences of the number of substituted and the molecular aggregations in yacuum sublimed films. The difference of Stokes shift relaxation was also induced by the molecular aggregations.
     The synthesis and characterizations of Sub-Phthalocyanine copper are reported in this paper firstly. The mixture of 1,3-diiminoisoindoline and Cu(AcO)_2-2H_2O was added to quinoline under stirring. Then, a catalytic amount of DBU was added. The collected solid powder were extracted with anhydrous methanol in a soxhlet extractor and further purified by chromatography. Sub-Phthalocyanine copper is characterized by MS and elemental analysis. The results are agreement with the proposed structures. The Sub-phthalocyanine copper molecular was broken by laser which was shown in Mass Spectrum. We have analyzed this material decomposition process, and proposed the reaction mechanism through the broken of Sub- phthalocyanine copper molecular.
引文
[1] Von Braun A, J. chem Ber. 1907, 40:2709-2712.
    
    [2] de Diesbach H, Schmidt V, Decker E. Helv. Chim. Acta., 1923,6:548-551.
    
    [3] Robertson J M. An X-ray study of the structure of the phthalocyanines, Part I. The Metal-free, Nickel, Copper, and Platinum Compounds. J. Chem. Soc., 1935,615-628.
    
    [4] Kondratenko N V, Nemykin V N, Luk' yanets E A. The synthesis and properties of some polyfluoroalkoxy substituted phthalocyanines. J. Porphyrins Phthalocyanines, 1997, 1:341-346.
    
    [5] Mikhalenko S A, Barknova S V, Luk' yanets E A. Synthesis and electronic absorption. spectra of tetra-butylphthalocyanines. Zh. Obshch Khim.,1971, 41: 2735-2740.
    
    [6] Kovshev E L, Soloveva L I, Mikhalenko S A, et al. Zh. Vsesoy. Obshch. Khim., 1976, 21:465-470.
    
    [7] Hanack M, Metz J. Pawlowski Dotierte. und. substituierte polymere phthalocyaninato -metalloxane. Chem. Ber., 1982,115:2836-2841.
    
    [8] Hanack M, Schmid G, Somerauer M. Chromatographic Separation of the Four Possible Structural Isomers of a Tetrasubstituted Phthalocyanine: Tetrakis(2-ethyl-hexyloxy) phthalocyanine to nickel (II)Angew. Chem. Int. Ed. Engl., 1993, 32:1422-1424.
    
    [9] Somerauer M, Rager C, Hanack M. Separation of 2(3), 9(10), 16(17), 23(24) - tetra -substituted phthalocyanines with newly developed HPLC phases. J. Am. Chem. Soc., 1996,118:10085-10092.
    
    [10] Rager C, Schmid G, Hanack M. Influence of substituents, reaction conditions and central metals on the isomer distributions of 1 (4)-tetrasubstituted phthalocyanines. J. Chem. Eur., 1999,5:280-286.
    
    [11] Brewis M, Clarkson G J, McKeown N B. The synthesis of some phthalocyanines and napthalocyanines derived from sterically hindered phenols. J. Chem. Eur., 1998, 4:1633-1638.
    [12] Leznoff C C, Hu M, Nolan K J M. The synthesis of phthalocyanines at room temperature. Chem. Commun., 1996,1245-1246.
    
    [13] Rihter B D, Kenney M E, Ford W T, et al. Synthesis and photoproperties of diamagnetic octabutoxyphthalocyanines with deep red optical absorbance. J. Am. Chem. Soc, 1990, 112:8064-8070.
    
    [14] Gurek A G, Bekaroglu O. J. Chem. Soc. Dalton Trans., 1994,1419-1423.
    
    [15] Engelkamp H, Middelbeek S, Nolte R J M. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science., 1999,284:785-788.
    
    [16] Cornelus F. van N . Self-assembled wires and channels. Adv. Mater., 1996,8 (12): 1027-1030.
    [17] Percec V, Johansson G, Heck J, et al. Novel 10. beta.-Aziridinyl Steroids; Inhibitors of Aromatase. J. Chem. Soc. Perkin Trans., 1993, 1:1411-1420.
    
    [18] Sielcken O E, van Tilborg M M, et al. Synthesis and aggregation behavior of hosts containing phthalocyanine and crown ether subunits. J. Am. Chem. Soc., 1987, 109:4261-4265.
    
    [19] Golovin M N, Seymour P, Lever A B P. Perchlorinated phthalocyanines: spectroscopic properties and surface electrochemistr. Inorg. Chem., 1990,29:1719-1726.
    
    [20] Eberhardt W, Hanack M. Synthesis of Hexadecaalkoxy-substituted nickel and iron phthalocyanines. Syn., 1997, 95-98.
    
    [21] Brewis M, Clarkson G J, Goddard V, et al. Silicon phthalocyanines with axial dentritic substituents. Angew. Chem. Int. Ed., 1998, 37(8):1092-1094.
    
    [22] LawK Y. Organic photoconductive materials: recent trends and developments. Chem. Rev., 1993,93:449-486.
    
    [23] Winter G, Heckmann H, Haisch P, et al. Study of substituent effects on the photoconductivity of soluble 2, (3)-and 1, (4)-substituted phthalocyanina to and naphthalocyaninatotitanium(IV) Oxides. J. Am. Chem. Soc., 1998,120:11663-11673.
    
    [24] Hanack M, Schneider T, Barthel M, et al. Indium phthalocyanines and naphthalocyanines for optical limiting. Coord. Chem. Rev., 2001,219:235-258.
    
    [25] Dini D, Barthel M, Hanack M. Phthalocyanines as active materials for optical limiting. Eur. J. Org. Chem. ,2001, 3759-3769.
    
    [26] Nalwa H S, Shirk J S. Phthalocyanines, properties and applications. Vol.4. New York: VCH,Chapter 3, 79, 1996.
    
    [27] Kobayashi N, Muranaka A, Ishii K. Symmetry-lowering of the phthalocyanine chromophore by a C_2 type axial ligand. Inorg.Chem., 2000,39:2256-2257.
    
    [28] Markus B, Danilo D, et al. An Easy Route for the Synthesis of New Axially Substituted Titanium(IV) Phthalocyanines. Eur. J. Org. Chem., 2002,3756-3762.
    
    [29] Maya E M, Garcfa-Frutos E M, Va'zquez P, et al. Novel push-pull phthalocyanines as targets for second-order nonlinear applications. J Phys Chem A., 2003,107:2110-2117.
    
    [30] TORRES T. J Porphyr Phthalocya., 2000,4:3251
    
    [31] McKeown N B, Chambrier I .Cook M J . J Chem Soc., Perkin Trans, 1990,11691
    
    [32] 袁吉志,程功臻,季振平. 一种新的非对称酞菁化合物的制备与表征. 武汉大学学报, 1999, 45(6):817
    
    [33] Tian M Q , Wada T , Sasabe H. Syntheses of novel unsymmetrically tetrasubstituted phthalocyaninato vanadyl and zinc complexes with a nitro or amino group. Dyes and Pigments ., 2002, 52 (1):1-8
    
    [34] Leznoff C C, Snirskaya P, Khouw B, Cerny R L, et al. Syntheses of monometalated and unsymmetrically substituted binuclear phthalocyanines and a pentanuclear phthalocyanine by solution and polymer support methods. J. Org. Chem., 1991, 56(1):82-90
    [35] Torre G, Claessens C G, Torres T. Eur, Phthalocyanines: The Need for Selective Synthetic Approaches. J. Org. Chem., 2000,2821-2830
    
    [36] Kobayashi N , Kondo R, Nakajima S, et al . New route to unsymmetrical phthalocyanine analogues by the use of structurally distorted subphthalocyanines. J. Am. Chem. Soc., 1990, 112: 9640-1
    
    [37] Young J G, Onyebuagu W. Synthesis and characterization of di-disubstituted phthalocyanines. J. Org. Chem., 1990,55:2155-2159
    
    [38] Nolan K J M, Hu M, Leznoff C C. Lipid peroxidation is involved in the activation of NF-kappaB by tumor necrosis factor but. Syn. Lett., 1997,593:25941-25950
    
    [39] Sly J, Kasa'k P, Gomarnadal E, et al. Chiral molecular tapes from novel tetra- (thiafulvalene-crownether)-substituted phthalocyanine building blocks. Chem. Commun., 2005,12.55-1257.
    
    [40] Victoria M M, Fender N S, Rodr(?)guez-Morgade M S, et al. A supramolecular approach for the formation of fullerene-phthalocyanine dyads. J. Mater. Chem., 2002, 12:2095-2099.
    
    [41] Gonzalez A, Purificacion V, et al, Synthesis and characterization of homo-dimetallic ferrocendiynyl-bridged bis(ethenylphthalocyaninato complexes). Tetrohedron Lett., 1999, 4:3263-3266.
    
    [42] Kawo P, Yan Y, Xiyou L, et al. Synthesis and electrochemistry of ferrocenyl -phthalocyanines. Organometallics., 1999,18:3528-3533.
    
    [43] Zhao Z X, Kenneth I O, David M M, et al. Synthesis and electrochemical studies of a covalently linked cobalt (II) phthalocyanine cobalt (II) porphyrin conjugate. Dalton Trans., 2005,1241-1248.
    
    [44] Zhao Z X, Nyokong T, David M M. Synthesis and photochemical characterization of a zinc phthalocyanine - zinc porphyrin heterotrimer and heterononamer. Dalton Transactions, DOI: 10.1039/b508478d.
    
    [45] Angela S, Andreas G, Purificaci6n V, et al. Phthalocyanine-Azacrown-Fullerene Multicomponent System: Synthesis, Photoinduced Processes, and Electrochemistry. Org. Lett., 1999,1(11):1807-1810.
    
    [46] Claudia L, Chunyang J, Shixia L, et al. Synthesis and electrochemical and photophysical studies of tetrathiafulvalene-annulated phthalocyanines. J. Org. Chem., 2005,70:4988-4992.
    
    [47] Mark A B, Martin R B, Wayne D. Synthesis and aggregation of a phthalocyanine symmetrically-functionalized with eight tetrathiafulvalene units. Adv. Mater., 1996, 8(1): 63-65.
    
    [48] Eva M M, James S S, Arthur W S, et al. Peripherally-substituted polydimethylsiloxane phthalocyanines: a novel class of liquid materials. Chem. Commun., 2001,615-616.
    
    [49] Meller A, Ossko A. Phthalocyaninartige bor-komplexe. Monatsh. Chem., 1972, 103:150-155.
    
    
    [50] Kietaibl H. Monatsh. Chem., 1974,105405-418.
    
    [51] Christian G C, Tomás T. Synthesis, separation, and characterization of the topoisomersof fused bicyclicsubphthalocyanine dimers. Angew. Chem. Int. Ed., 2002, 41(14):2561-2565.
    
    [52] Fukuda T, Kobayashi N. Cis and trans forms of a binuclear subphthalocyanine. Angew.Chem. Int. Ed., 2002, 41 (14):2561 -2565.
    
    [53] Bloor J E, Schalabitz J, Walden C C, Demerdache A. Organic complexes of uranium.Can. J. Chem., 1964, 42:2201-2208.
    
    [54] Victor W D, Tobin J M, William A W. Large metal ion-centered template reactions. Auranyl complex of cyclopentakis(2-iminoisoindoline). J.Am.Chem. Soc., 1975, 97:4519-4526.
    
    [55] Tobin J M, Djordje R S. Large metal ion-centered template reactions. Chemical andspectral studies of the "superphthalocyanine" dioxocyclopentakis (1-iminoisoindo-linato)uranium(VI) and its derivatives. J. Am. Chem. Soc., 1978,100: 1695-1703.
    
    [56] Daniel S, Vincent L, Jonathan L S. Cyclo[8]pyrrole: A simple-to-make expanded porphyrinwith no meso bridges. Angew. Chem. Int. Ed., 2002,41(8):1422-1425.
    
    [57] Tavarekere K, Chandrashekar S V. Core-modified expanded porphyrins: new generationorganic materials. Acc. Chem. Res., 2003, 36:676-691.
    
    [58] Morgade M S R, Cabez6n B, et al. Expanded phthalocyanine analogues :synthesis andcharacterization of new triazole-derived annulenes containing six heterocyclic subunits.J.Chem.Eur., 2001,11:2407-2413.
    
    [59] Islyaikin M K, Danilova E A, Yagodarova L D, et al. Thiadiazole-derived expandedheteroazaporphy rinoids. Org. Lett., 2001,3:2153-2156.
    
    [60] Kobayashi N, Inagaki S, Nemykin V N et al. A novel hemiporphyrazine compriaing threeisoindoledii mine and three thiadiazole units. Angew, Chem. Int. Ed., 2001,40:2710-2712.
    
    [61] N. B. McKeown. Phthalocyanine Materials:Wynthesis, Structure and Function (CambridgeUniversity Press, New York, 1998).
    
    [62]干福熹.信息材料.天津:天津大学出版社,2000.
    
    [63] Gan F X. New organic materials for optics:optical storage and nonlinear optics. Proc. Pakistan Academy Sciences.,1996,33:29-36.
    
    [64]沈永嘉.氧钒酞菁在激光光盘系统中的应用研究.[J].化学研究与应用;1995,7(2):222-225
    
    [65]唐福龙,沈淑引.旋涂法制备可溶性酞菁薄膜的光存储性能研究.[J].中国激光,1995,11:853-856
    
    [66]施国跃,陆华.电化学聚合四氨基钻酞菁修饰一氧化氮超微传感器的研究.[J].云南大学学报;2000,22(6):449-452
    
    [67]金尚德,关景文.新型可溶性酞菁(Ⅱ)衍生物的合成、结构及其成膜性.[J].应用化学:1992,9(3):20-25
    
    [68] Tang C W, VanSlyke S A. Organic electrolumimascent diodes. [J]. Appl. Phys. Lett., 1987, 51(12):913.
    [69] Van Slyke S A, Chen C H, Tang C W. Organic electroluminescent devices with improved stability. Appl. Phys. Lett., 1996, 15, 2160-2161.
    
    [70] Zhang Z, Jiang X, Xu S, et al. Stability enhancement of organic electroluminescent devices with aluminum alloy cathode. [J].Syn. Met., 1997,91:131.
    
    [71] Tanka S, Adachi C, Koyama T, et al. Organic light Emitting Diodes using triphenylene Derivatives as a hole Transport Matereal. [J]. Chem. Lett., 1998,10:975.
    
    [72] Vestweber H, Rieb W. Highly efficient and stable organic light-emittingdiodes. [J]. Synth. Met., 1997,91:181.
    
    [73] Parthasarathy G, Burrows P E, Khalfin K, et al. Ametal-free cathode for organic semiconductor devices. [J]. Appl. Phys. Lett., 1998, 72(17):2138.
    
    [74] Hung L S. Efficient and characterization of high performance electro luminescence materials for light-emitting diodes. [J].Thin Solid Films., 2000,363:47.
    
    [75] Wainwright M. Local treatment of viral diseaseusing photo-dynamic therapy. [J].Intenational of Antimicrobial Agents., 2003,2196:510-520.
    
    [76] Suzuki S, Bansho Y, Janabe Y, Kogyo Kagakhh Zasshi., 1969, 72(3):720
    
    [77] Sekiguchi T, BsnshO Y, kaneko O. Kogyo Kagakhh Zasshi., 1967, 70(4):499
    
    [78] Jaffe E E. US 3770765,1973 US 3834922,1973
    
    [79] Brand B. P. US 3150150,1964
    [80] Knudesen B I, Rolskow H. S. US 3160635,1964
    [81] Honigmann B, KIAM J. DE 1411880,1973
    [82] Miyataka M, Tamure S, Ishizuka S, JP-Kokai. 76925,1973
    [83] Branch P J, Lardon M. A. US3708293,1972
    [84] Branch P J, Six H A, M. A.US3708292,1972
    [85] Branch P J, Six H. A, M. A. US3927026,1975
    [86] Byrne J F, Karz P F. US 3357989,1967
    [87] Griffths C H, Walkes M S. US3903107,1974
    [88] Griffths C H, Keezer R C. DE1280843,1970
    
    [89] Suzuki H, Yokoo A, Notomi M. Organic emissive materials and devices for photonic communication. Polym. Adv. Technol., 2004,15(1-2):75-80.
    
    [90] Kido J. Electroluminescence of rare earth complexes in organic matrices. Proc. of 8th Inter. workshop on Inorg. Organic EL, Berlin., 1996,13-125
    
    [91] Miyamoto Y, Uekawa M, Ikeda H, et al. EL properties of a Eu-complex doped in phosphorescent materials. J. Lumin., 1999, 81:159-164.
    
    [92] Chistopher C P, Capecchi S, Salata O V, et al. Organic electroluminescence from a divalent europium complex. Adv. Mater., 1999,11:533-535.
    
    
    [93] McKeown N B. Phthalocyanine materials: synthesis, structure and function. New York:Cambridge University Press., 1998,102-123
    
    [94] Iwamuro M, Adachi T, Wada Y, et al. Remarkable photosensitized luminescence of Nd (Ⅲ)complexes with halogenated 8-quinolinol derivatives. Chem. Lett., 1999,539-542.
    
    [95] Iwamuro M, HasegawaY, Wada Y, et al. Luminescence of Nd~(3+) complexes with some asymmetricligands in organic solution. J. Lumin., 1998, 79:19-33.
    
    [96]洪自若,梁春军,赵丹等.铒配合物的红外有机电致发光.发光学报,2000,21(3):269-272.
    
    [97] Gillin W P, Curry R J. Erbium (Ⅲ) tris(8-hydroxyquinoline) (ErQ): A potential material for silicon compatible 1.5 μm emitters. Appl. Phys. Lett., 1999, 74(6): 798-799.
    
    [98] Curry R J, Gillin W P. 1.5 μm electrominescence from erbium (Ⅲ) tris(8 -hydroxy-quinoline) (ErQ)-based organic light-emitting diodes. Appl. Phys. Lett., 1999, 75 (10):1380-1382.
    
    [99] Sun R G, Wang Y Z, Zheng Q B, et al. 1. 54 μm infrared photoluminescence and electro -luminescence from an erbium organic compound. Appl. Phys. Lett., 2000, 87(10): 7589-7591.
    
    [100]王怀善,钱国栋,王民权等.铒有机配合物的合成、表征与近红外发光性能研究.光谱学与光谱分析,2005,1125(13):387-390
    
    [101] Kuriki K, Nishihara S , Nishizawa Y, et al. Limitations to and solutions for optical , oss in optical backplanes, Electron. Lett., 2001,37:415.
    
    [102]宋峰,王虹,张潮波等.Er玻璃近红外区上转换发光的研究.[J]发光学报,2001,1:48-50
    
    [103] Hong Z R, Liang C J, Li R G, et al. Infrared and visible emission from organic electroluminescent devices based on praseodymium complex. Appl. Phys. Lett., 2001,79(13): 1942-1944.
    
    [104] Kawamura Y, Wada Y, Hasegawa Y, et al. Observation of neodymium electro luminescence. Appl. Phys. Lett., 1999, 74(22):3245-3247.
    
    [105] Harrison B S, Foley T J, Bouguettaya M, et al. Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends. Appl. Phys. Lett., 2001, 79(23):3770-3772.
    
    [106] Kang T S, Harrison B S, Foley T J, et al. Near-infrared electroluminescence from lanthanide tetraphenylporphyrin: polystyrene blends. Adv. Mater., 2003,15(13):1093-1097.
    
    [107] Zang F X., Hong Z R., Li W L, Li M T. 1. 4 μm band electroluminescence from organic light-emitting diodes based on thulium complexes. Appl. Phys. Lett., 2004, 84(14): 2679-2681
    
    [108] Jeong H, Oh K, Han S R., et al. Characterization of Broad band Amplified Spontaneous Emission from an Er3+-Tm3+ co-doped Silica Fiber. Chem. Phys. Lett. 2003,367507-511
    
    [109] Kang T S, Harrison B S, Foley T J, et al. Near-Infrared Electroluminescence from Lanthanide Tetraphenylporphyrin:Polystyrene Blends. Adv. Mater. 2003,15:1093-1095
    
    [110] Crosby G A, Whan R E, Alire R M. The vapor pressure of some stannanes. J. Phys. Chem., 1961,34:743-746.
    
    [111] Slooff L H, van Blaaderen A, Polman A, et al. Rare-earth doped polymers for planar optical amplifiers. J. Appl. Phys., 2002,91:3955-3958.
    
    [112] Hiroyuki S, Yasuaki H, Toshikazu I, et al. Organic infrared optical materials and devices based on an organic rare earth complex. Thin Solid Films., 2003, 438-439.
    
    [113] Suzuki H. Infrared electroluminescence from an organic ionic dye containing no rare-earth ions. Appl. Phys. Lett., 2002, 80(18):3256-3258.
    
    [114] Ishigure T, Koike Y, Fleming J W. Optimum index profile of the perfluorinated polymer-based GI polymer optical fiber and its dispersion properties. J. Lightwave Technol., 2000,18:178-184.
    
    [115] Hikita M, Tomaru S, Enbutsu K, et al. Polymeric optical waveguide films for short-distance optical interconnects. IEEE J. Selected Topics Quantum Electron., 1999, 5: 1237-1242.
    
    [116] Hou Q , Xu Y S , Yang W, et al. Novel red-emitting fluorene-based copolymers. J.MaterChem., 2002,12:2887-2892
    
    [117] Yang R Q, Tian R Y, Yan J A , et al. Deep-red electroluminescent polymers: Synthesisand chracterization of new low- band-gap conjugated for light-emitting diodes and photo-voltaic devices. Macro -molecules., 2005,38:244-253
    
    [118] Chen M, Perzon E , Andersson M R, et al. micron wavelength photo- and electr-luminscence from a conjugated polymer. Appl. Phys. Lett ., 2004,84:3570-3572
    
    [119] Zhou Q M, Hou Q , Zheng L P, et al. Fluorene-based low band-gap copolymers for highperformance photovoltaic devices. Appl. Phys. Lett. , 2004,84:1653-1655
    
    [120]夏养君,邓先宇,王藜等.一类近红外电致发光芴基共聚物的合成和性能研究.高分子学报, 2006.5:697-701
    
    [121] Holzer W, Mauerer M, et al. Photostability and thermalstability of indocyanine green. [J ] . Photochem Photobiology, B :Biology ., 1998,47:155
    
    [122]孙成才,霍冀川,雷永林,吴瑞荣.近红外吸收功能菁染料的研究进展.材料导报,2006,20(8): 48-51
    
    [123] Burroughes J H, Bradley D D C , Brown A R , et al. Holmes A B. Light-emitting diodes based on conjugated polymers. Nature., 1993,347:539-541
    
    [124] Tessler N, Medvedev V, Kazes M, et al. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science., 2002,295:1506-1508.
    
    [125]近红外塑料发光二极管.[J]光机电信息,2002,3:52
    
    [126] Tang C, Weidner C, Comfort D, et al. USA, Patent. 5409783 A 950425.
    
    [127] Fujimori Y, Yoshikawa H, Toshiba. Japan, Patent. 03028291 A2 910206.
    
    [128] Youichi S, aghu N B, Toshiyuki M, et al. Photoluminescence properties of magnesium,chloroaluminum, bromoaluminum, and metal-free phthalocyanine solid films. J. Phys. Chem.B., 2001,105:547-1553.
    
    [129] ChuanHui C, ZhaoQi F, ShuKun Y, et al. 1. 1μm near-infrared electrophosphorescence fromorganic light-emitting diodes based on copper phthalocyanine. Appl. Phys. Lett ., 2006,88: 213505
    
    [130] Gustafsson G, Cao Y, Treacy G M. Flexible light-emitting diodes made from solubleconducting polymers. J . Nature ., 1992,357:477-479
    
    [131] Heeger A J. Light Emission from Semiconducting Polymers: Light-emitting Diodes,Light-emitting Electrochemical Cells, Lasers and White Light for the Future. Solid StateCommun., 1998,107:673 - 679
    
    [132]营文平,单桂晔,贾若琨,庄家骐,白玉白.高发光强度上转换材料Y_2O_3:Er,Yb纳米晶的制备.吉林大学学报(理学版),2006(44),445-448
    
    [133]高佳,丁军桥,游汉等.电磷光材料掺杂稀土配合物的有机发光二极管.吉林大学学报(理学版),2005(43),638-641
    
    [134]张克从,张乐漶.晶体生长科学与技术.北京:科学出版社1997年第二版。
    
    [135]姚连增,俞文海.晶体世界.北京:科学出版社,1992年第一版。
    
    [136]张克从.近代晶体学基础.北京:科学出版社,1987年第一版。
    
    [137] Tomoko M, Masaaki S. Single crystal growth of organic semiconductors using meltedanthracene as a solvent: N, N'-dimethylperylene-3, 4: 9,10 -bis (dicarb-oximide)andphthalocyanines. J. Crys. Grow., 2001,226:130-137.
    
    [138] Tomoko M, Masaaki S. Single crystal growth of organic semiconductors by the RepeatedSolid Solvent Growth Method using melted anthracene as a solvent. J. Crys. Grow. ,2001, 229:553 - 557,
    
    [139] Brigman P. W. Proc. Amer. Acad. Aris. Sci., 1925,60:305.
    
    [140] Stockbarger D. C. The production of large single crystals of lithium fluoride. Rev.Sci. Insir., 1936, 7(3):133-136.
    
    [141] Arulchakkaravarthi A, Santhanaraghavan P, Ramasamy P. Crystal growth of Trans-stilbene by vertical Bridgman technique with modified growth vessels and itsCharacterization. J. Crys. Grow., 2001, 224:89-94.
    
    [142] Arulchakkaravarthi A, Jayavel P, Santhanaraghavan P, et al. Growth of organicmolecular single crystal trans-stilbene by selective self seeding from vertical Bridgmantechnique. J. Crys. Grow., 2002. 234:159 - 163.
    
    [143] Stober F, Z. Artificial Preparation of Large Crystals. Krist., 1925,61:299-314.
    
    [144] Forrest S R, Burrows P E. Growth modes of organic semiconductor thin films using organic molecular beam deposition: epitaxy, van der Waals epitaxy, and quasi-epitaxy. Supramolecular Science., 1997,4:127-139.
    
    [145] Laudise R A, Kloc Ch, Simpkins P G, et al. Physical vapor growth of organic semiconductors. J. Crys. Grow., 1998,187:449-454.
    
    [146] Leznoff C C, Lever A B P. Phthalocyanines: properties and applications. Cambridge: LSK, Vol. 1-4,1989-1996.
    
    [147] Wenhai J, Xu W, Yuchun C, ShukunY, et al. Single crystal growth of copper phthalocynine using exaltation-evaporation growth method. J. Crys. Grow., 2006,290:4-547.
    
    [148] Brown C J. Crystal structure of β-copper phthalocyanine. J Chem Soc (A)., 1968, 2488-2493
    
    [149] Akitaka Hoshino, Yoshiko Takenaka, Hideki Miyaji. Redetermination of the crystal structure of α-copper phthalocyanine grown on KC1. Acta Crystallographica., 2003, B59 (3): 393 - 403
    
    [150] Peter E, Heidi H, Mairi F, Haddow, Richard van Gelder. The innovative momentum of crystal engineering. Cryst Eng Comm., 2004,6(78):474 - 483
    
    [151] Laudise R A., Ch. Kloc, Simpkins P G, Siegrist T. Physical vapor growth of organic semicon - ductors. J. Crystal Growth., i998, 187:449-454.
    
    [152] Selvaraj S L, Xavier F P. Growth of phthalocyanine doped anthracene crystal using a three-zone furnace by vacuum sublimation method. J. Crystal Growth., 2001,225:168-172
    
    [153] Snow A W, Bargen W R. in Phthalocanines: Properties and Applications (Eds: C. C. Leznoff, A. B. P. Lever), VCH, Weinheim., 1989, 3: 341.
    
    [154] Ho K. C., Tsou Y. Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films. H. Sensors and Actuator B: Chemical., 2001, 77(1-2):253-259.
    
    [155] Park C, Yun D H, Kim S T, Park Y W. Enhancement of the NO_2-sensing capability of copper phthalocyanine by measuring the relative resistance change. Sens. Actuators B ., 1996, 30: 23 - 27.
    
    [156] Nicholson M M. in Phthalocanines: Properties and Applications (Eds: C. C. Leznoff, A. B. P. Lever), VCH, Weinheim., 1993,3:75.
    
    [157] W(?)hrle D, Meissner D. Organic Solar Cells. Adv mater., 1991, 3(3):129-138.
    
    [158] Ali H, van Lier J E, Metal Complexes as Photo-and Radiosensitizers. Chem. Rev., 1999, 99 (9): 2379-2450.
    
    [159] Torres G de la, Torres T, Agull6-L6pez F. The phthalocyanine approach to second harmonic generation. Adv. mater., 1997, 9(3):265-269.
    
    [160] Torres G de la, Vazquez P, Agull6-L6pez F, Torres T. Phthalocyanines and related compounds:organic targets for nonlinear optical applications. J. Mater. Chem., 1998, 8 : 1671-1683.
    
    [161] Sundar V. C, Zaumseil J, Podzorov V, et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science., 2004,303:1644-1646.
    
    [162] Qiu Y, Hu Y. C, Dong G F, et al. H_2O effect on the stability of organic thin-film field-effect transistors. Appl. Phys. Lett., 2003, 83:1644.
    
    [163] Reynaert J, Cheyns D, Janssen D, et al. Ambipolar injection in a submicron-channel Light -emitting tetracene transistor with distinct source and drain contacts. J. Appl. Phys., 2005,97 :114501
    
    [164] Brutting W, Berleb S, Muckl A G. Device physics of organic light-emitting diodes based on molecular materials. Organic Electronics., 2001, 2(1):1-36.
    
    [165] Hung L S, Chen C H. Recent progress of Molecular Organic Electroluminescent Materials and Devices. Materials Science and Engineering R. ,2002, 39:143-222.
    
    [166] Winder C, Matt G, Hummelen J C, et al. Sensitization of low bandgap polymer bulk heterojunction solar cells. Thin Solid Films. ,2002,403/404:373-279.
    
    [167] Xie D, Jiang Y. D, Pan W, et al. Study on bis [phthalocyaninato] praseodymium complex/silicon hybrid chemical field-effect transistor gas sensor. Thin Solid Films., 2002,406:262-267.
    
    [168] Shen Y J. The Syntheses and Application of Phthalocyanines [M] .Beijing: Chemical Industry Press., 2000:6-7
    
    [169] Gardner J W, Iskandarani M Z, Bott B. Effect of electrode geometry on gas sensitivity of lead phthalocyanine thin films. Sens. Actuators B., 1992, 9:133 - 142
    
    [170] Miniewicz A, Bartkiewicz S, Parka J. Optical phase conjugation in dye-doped nematic liquid crystal. Opt. Commum.,1998,149:89-95
    
    [171] Okutan M, Koysal O, San S E. Effect of laser illumination on the electro optical characters of dye doped nematic liquid crystals. Displays., 2003,24:81-84
    [172] San S E, Okutan M, Koysal O, Ono H, Kawatsuki N. Dielectric properties of a side-chain liquid crystalline polymer under laser induced circumstances. Opt. Commun., 2004,238:79-84
    [173] Okutan M, San S E, Koysa O. Dielectric spectroscopy analysis of molecular reorientationin dye doped nematic liquid crystals having different preliminary orientation. Dyes and Pigments., 2005,65:169-174
    [174] Vincett P S, Voigt E M, Eieckhoff K E. Phosphorescence and fluorescence of phthalocyanines. Journal of Chemical Physics., 1971,55(8):4131-4140.
    
    [175] Kraft A, Grimsdale A C, Holmes A B. Electrolumineszierende konjugierte polymere- polymere erstrahlen in neuem Licht. Angew. Chem., 1998,110:416-417.
    
    [176] Hohnholz D, Steinbrecher S, HanackM. Applications of phthalocyanines in organic light emitting devices. Journal of Molecular Structure., 2000,521:231-237.
    
    [177] Chen C H, Shi J, Tang C W. Recent Developments in Molecular Organic materials. Macromol. Symp., 1997,125:1-48
    
    [178] Fujii A, Yoshida M, Ohmori Y, et al. Two-band electroluminescent emission in organic electroluminescent diode with phthalocyanine film. Jpn. J. Appl. Phys.,1996, 35:37-39.
    
    [179] Blasse G, Dirksen G J, Meijerink A, et al. Chem. Phys. Lett., 1989,154:420-428.
    
    [180] Sakakibara Y, Vacha M T. Solid phthalocyanine with high fluorescence efficiency.T. Mol. Cryst. Liq. Cryst., 1998, 314:71-73.
    
    [181] Forrest S R, Burrows P E, Thompson M E. Organic emitters promise a new generation of displays. Laser Focus World.,1995, 99.
    
    [182] Parker I D. Carrier tunneling and device characteristics in polymer light-emitting diodes. J. Appl. Phys., 1994, 75:1656-1657.
    
    [183] Burrows P E, Forrest S R. Electroluminescenct from trap-limited current transport in vacuum deposited organic light emitting devices. Appl. Phys. Lett., 1994, 64:2285-2286.
    
    [184] Karg S, Meier M, Riess W. Light-emitting diodes based on poly-p-phenylene -Vinylene :I. Charge-carrier injection and transport. J. Appl. Phys., 1997, 82:1951.
    
    [185] Burrows P E, Shen Z, Bulovic V, et al. Relationship between electro-luminescence and current transport in organic heterojunction light-emitting devices. J. Appl. Phys., 1996, 79:7991-7980.
    
    [186] Blom P W, Mdejong M J, Vieggaar J J. Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett., 1996,68:3308-3309.
    
    [187] Grice A W, Bradley D D C, Bernius M T, et al. High brightness and efficiency blue light-emitting polymer diodes. Appl. Phys. Lett., 1998,73:629-630.
    
    [188] Aziz H, Popovic Z. Humidity-induced crystallization of tris(8-hydroxy-quinoline) aluminum layers in organic light-emitting devices. Appl. Phys. Lett., 1998, 72:756-757.
    
    [189] Yan M, Rothberg L, Galvin M E, et al. Defect quenching of conjugated polymer luminescence. Phys. Rev. Lett.,1994,73:744-746.
    
    [190] Hamada Y, Sano T, Kuroki K. Influence of the emission site on the running durability of organic electroluminescent devices. Jpn. J. Appl. Phys., 1995, 34:L824-826.
    
    [191] Do L M, Han E M. Observation of degradation processes of Al microscopy, atomic force microscopy, scanning electron microscopy, and auger electron spectroscopy. J. Appl. Phys., 1994,76:5118-5121.
    
    
    [192] Hirose Y, Kahn A. Chemistry, diffusion, and electronic properties of a metal/organicsemiconductor contact: In/perylenetetracarbosylic dianhydride. Appl. Phys. Lett.,1996,68:217-218.
    
    [193] Parker I D, Cao Y, Yang C Y. Lifetime and degradation effects in polymer light-emittingdiodes. J. Appl. Phys., 1999, 85:2441-2443.
    
    [194] Scurlock R D, Wang B J, Ogilby P R, et al. Singlet oxygen as a reactive intermediatein the photodegradation of an electroluminescent polymer. J. Am. Chem. Soc., 1995,117:10194-10199.
    
    [195] Aaron P, Andrew J W, Jeffrey C G, et al. Computational studies of the optical emissionof silicon, nanocrystals. J. Am. Chem. Soc. ,2003,125:2786-2791.
    
    [196]黄春辉,李富友,黄伟.有机电致发光材料与器件导论.上海:复旦大学出版社,2005年9月第一版.
    
    [197] Ottmar M, Hohnholz D, Wedel A. et al. Organic single and double layer electro -luminescent devices based on substituted phthalocyanines. Synthetic Metals., 1999, 105:145-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700