纳米多级孔镍合金复合电极的制备及电催化析氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:氢能是一种可再生的清洁能源,具有资源丰富、易储存等许多突出的优点。随着化石燃料的枯竭及环境问题的日益严重,氢能越来越受到人们的重视。电解水是大规模制氢的重要途径,为了降低阴极过电位以节约能耗,研究低析氢过电位、高催化活性的阴极材料具有重要的意义。影响析氢材料催化活性的因素主要有能量因素和几何因素。因此,制备高催化活性的析氢阴极材料,主要通过两种方式实现:一是寻找高催化活性的新型催化材料,提高电极本身的电化学活性;二是提高电极的真实比表面积,即增大电极的表面粗糙度,使电解过程中电极表面的真实电流密度降低,达到降低析氢过电位的目的。本论文采用电沉积法制备纳米多级孔镍合金复合电极,利用SEM、EDS、TEM以及XRD对合金电极的表面进行了表征,并比较了不同复合电极在质量分数为25%KOH溶液中的电催化析氢性能,为实现低能耗、高效率电解水制氢提供技术支持和理论支持,论文的主要研究内容如下:
     1、探讨了在柠檬酸体系中主要组份及工艺参数对电沉积Ni-W合金的成分和表面质量的影响,得出电沉积Ni-W合金的最佳配方和工艺参数,获得Ni的质量分数为74.22%,W的质量分数为25.78%的光亮Ni-W合金镀层。分别以纳米二氧化硅微球、纳米聚苯乙烯微球以及氢气泡为模板,采用无机模板移除电沉积法,有机模板移除电沉积法以及气泡模板法制备了多孔Ni-W合金电极,结果表明:采用无机模板移除电沉积法和有机模板移除电沉积法制备多孔Ni-W合金电极,虽然方法可行,但作为析氢电极用于电解水制氢,该电极的效果不佳;采用气泡模板法制备多孔Ni-W合金电极时,发现在高的阴极电流密度下,虽然可以获得多孔结构的镀层,但是不易获得多孔Ni-W合金电极。
     2、探讨了在柠檬酸体系中主要组份及工艺参数对电沉积Ni-Mo合金的成分、表面形貌以及电催化析氢活性的影响,得出电沉积Ni-Mo合金的最佳配方和工艺参数,获得Ni的质量分数为64.49%,Mo的质量分数为35.51%的光亮Ni-Mo合金镀层。采用溶胶凝胶-表面活性剂法制备出平均粒径为510nm的二氧化钛颗粒,采用原位合成法成功地制备出直径为200-500nm,比表面积达573m2/g,孔体积为1.19cm3/g,介孔孔径为3.2nm的纳米多级孔Ti-SiO2颗粒,采用同样的方法成功地制备出直径为200-800nm,比表面积达396m2/g,孔体积为1.37cm3/g,介孔孔径在3.3nm的纳米多级孔Al-SiO2颗粒。分别以纳米TiO2颗粒,纳米多级孔Ti-SiO2颗粒和纳米多级孔Al-SiO2颗粒作为复合粒子,制备出Ni-Mo复合电极,通过析氢极化曲线比较每种复合粒子浓度对复合电极电催化析氢活性的影响,结果表明:镀液中纳米Ti02、纳米多级孔Ti-SiO2和纳米多级孔Al-SiO2的浓度分别为4g/L,2g/L和2g/L时,复合电极的电催化析氢活性达到最佳值。在最佳复合粒子浓度的条件下,比较三种复合粒子对复合电极电催化析氢活性的影响,结果表明:三种Ni-Mo合金复合电极的电催化析氢活性比Ni-Mo合金电极都要好,其中纳米多级孔Ti-SiO2/Ni-Mo复合电极电催化析氢活性最好,纳米多级孔Al-SiO2/Ni-Mo复合电极次之,纳米Ti02/Ni-Mo复合电极最差。
     3、探讨了在柠檬酸体系中主要组份及工艺参数对电沉积Ni-Co合金的成分和电催化析氢活性的影响,得出电沉积Ni-Co合金的最佳配方和工艺参数,得到Ni的质量分数为62.25%,Co的质量分数为37.75%的Ni-Co合金镀层。采用模板溶解法制备出尺寸大约为70nm,球壳厚度为10nm左右,且空心球内外壁呈现多级孔结构,比表面积达896m2/g,孔体积达1.30cm3/g的空心纳米多级孔硅氢化合物颗粒,利用硅氢键的还原性,成功地在纳米多级孔硅氢化合物上负载贵金属Pd,通过TEM图表征发现:Pd纳米颗粒分布在纳米多级孔硅氢化合物颗粒的内部和表面上,内部Pd纳米颗粒的粒径大约为3nm,表面上Pd纳米颗粒的粒径为10-30nm左右,且没有破坏其内部的空心结构,得到纳米多级孔Pd-SiO2颗粒,以该纳米多级孔颗粒为复合粒子,制备出纳米多级孔Pd-SiO2/Ni-Co复合电极,通过对Ni-Co合金电极和纳米多级孔L Pd-SiO2/Ni-Co复合电极的电催化析氢性能进行研究,结果表明:Ni-Co合金的电催化析氢活性比纯镍要好得多,并随着合金镀层中Co含量的增加,电极电催化析氢活性不断增强,当镀液中纳米多级孔Pd-SiO2颗粒浓度为1.8g/L时,纳米多级孔Pd-SiO2/Ni-Co复合电极的电催化析氢活性最好。通过TEM图表征发现:Pd纳米颗粒分布在纳米多级孔硅氢化合物颗粒的内部和表面上,内部Pd纳米颗粒的粒径大约为3nm,表面上Pd纳米颗粒的粒径为10-30nm左右,且没有破坏其内部的空心结构,得到纳米多级孔Pd-SiO2颗粒,以该纳米多级孔颗粒为复合粒子,制备出纳米多级孔Pd-SiO2/Ni-Co复合电极,通过对Ni-Co合金电极和纳米多级孔Pd-SiO2/Ni-Co复合电极的电催化析氢性能进行研究,结果表明:Ni-Co合金的电催化析氢活性比纯镍要好得多,并随着合金镀层中Co含量的增加,电极电催化析氢活性不断增强,当镀液中纳米多级孔Pd-SiO2颗粒浓度为1.8g/L时,纳米多级孔Pd-SiO2/Ni-Co复合电极的电催化析氢活性最好。
     4、系统探讨了各种工艺参数对电沉积Ni-Mo-Co合金的成分和电催化析氢活性的影响,确定出在柠檬酸体系中电沉积Ni-Mo-Co合金的最佳配方和工艺参数,得到Ni的质量分数为35.10%,Mo的质量分数为50.15%,Co的质量分数为14.75%的光亮Ni-Mo-Co合金镀层。通过对不同组分的Ni-Mo-Co合金电极的电催化析氢性能进行比较,结果表明:随着合金镀层中Mo和Co含量的增加,合金电极的电催化析氢活性逐渐增大;通过比较纳米多级孔Pd-SiO2/Ni-Mo-Co复合电极、纳米多级孔Ti-SiO2/Ni-Mo-Co复合电极以及Ni-Mo-Co合金电极的电催化活性,结果表明:纳米多级孔Ni-Mo-Co复合电极的电催化析氢性能比Ni-Mo-Co合金电极要好,且纳米多级孔Pd-SiO2/Ni-Mo-Co复合电极的电催化析氢活性比纳米多级孔Ti-SiO2/Ni-Mo-Co复合电极要好,降低析氢过电位分别为80mV和60mV。
Abstract:Hydrogen energy is a kind of clean renewable energy which has many prominent merits such as rich in resources and easy to store up. Because of the exhaustion of the fossil fuels and the environmental crisis, people have paid more attention to it. The main method to prepare hydrogen on a large scale is water electrolysis. In order to decrease cathode overpotential for reducing energy consumption, it's of momentous significance to research new cathode eleetrode materials which have lower hydrogen-evolution overpotential and high catalytic activity. There are two important factors that can affect the catalytic activity of the hydrogen-evolution materials:energy factors and geometry factors. So there are two main methods can be taken to prepare cathode materials for hydrogen evolution which own high catalytic activity. One is to search for a new kind of catalytic materials of high catalytic activity so as to improve electrocatalytic activity of the electrode itself. The other is to inerease the actual specific surface area of the electrode, namely to amplify the electrode surface roughness which can decrease the true current density of the electrode surface in the course of electrolysis reaction so as to reduce the cathode overpotential. In this thesis, nanoporous nickel alloys composite electrodes were prepared by electrodeposition technique and characterized every electrode by SEM, EDS and XRD, and also analysised the electrochemical properties of hydrogen evolution reaction in25wt%KOH solution. The achievement will provide theoretic and technical support for water electrolysis with low energy, promote the development of the water electrolysis technique for hydrogen production. The main research contents are listed as following:
     1. Ni-W alloy coatings were prepared by electrodeposition technique in citric acid system. The influence of the main technical parameters on the compositions and surface quality of Ni-W alloy coatings were investigated, the bright Ni-W alloy coatings with W25.78wt%and Ni74.22wt%were obtained. The results showed that porous Ni-W alloy electrodes were obtained by removing templates electrodeposition methods, the inorganic templates were nano silica microspheres, the organic templates were nano polystyrene microspheres, the bubble templates were hydrogen bubbles. The methods of removing inorganic and organic templates electrodeposition for preparing porous Ni-W alloy electrodes were feasible, but the hydrogen evolution electrodes for electrolyzing water were ineffective. The electrodes with porous structure were obtained by bubble template electrodeposition method at high current density but the content of W in the Ni-W alloy coatings was too little, so it was difficult for obtaining porous Ni-W alloy electrodes using this method.
     2. Ni-Mo alloy coatings were prepared by electrodeposition technique in citric acid system. The influence of the main technical parameters on the compositions, surface morphology and the electrocatalytic activities for hydrogen evolution of Ni-Mo alloy coatings were investigated, the bright Ni-Mo alloy coatings with Mo35.51%wt%and Ni64.49wt%were obtained. Nano TiO2particles with average diameter510nm were prepared by Sol gel-surfactants. Nano hierarchically porous Ti-SiO2and Al-SiO2particles were prepared by using in-situ method. The diameter of Ti-SiO2particles were from200nm to500nm, specific surface area was573m2/g, pore volume was1.19cn3/g and mesopore size was3.2nm. The diameter of Ti-SiO2particles were from200nm to800nm, specific surface area was396m/g, pore volume was1.37cm/g and mesopore size was3.3nm. Nano hierarchically porous Ni-Mo composite electrodes were prepared with nano TiO2particles, nano hierarchically porous Ti-SiO2and Al-SiO2particles as composite particles respectively. The influence of the concentration of composite particles on the electrocatalytic activities of Ni-Mo composite electrodes for hydrogen evolution were investigated by polarization curves, the results showed that the electrocatalytic activities of Ni-Mo composite electrodes for hydrogen evolution reached the optimal values when the concentration of nano TiO2particles, nano hierarchically porous Ti-SiO2and Al-SiO2particles were4g/L2g/Land2g/L respectively. The influence of the three composite particles on the electrocatalytic activities of Ni-Mo composite electrodes for hydrogen evolution were investigated when the concentration of nano TiO2particles, nano hierarchically porous Ti-SiO2and Al-SiO2particles were4g/L,2g/Land2g/L respectively, the results showed that the electrocatalytic activities of Ni-Mo composite electrodes for hydrogen evolution were better than that of Ni-Mo alloy electrodes, and the electrocatalytic activity of nano hierarchically porous Ti-SiO2/Ni-Mo composite electrode for hydrogen evolution was the best in the three Ni-Mo composite electrodes, that of nano hierarchically porous Al-SiO2/Ni-Mo composite electrode and nano TiO2/Ni-Mo composite electrode were second and third, respectively.
     3. Ni-Co alloy coatings were prepared by electrodeposition technique in citric acid system. The influence of the main technical parameters on the compositions and the electrocatalytic activities of Ni-Co alloy coatings for hydrogen evolution were investigated, the bright Ni-Co alloy coatings with Co37.75%wt%and Ni62.25wt%were obtained. Nano hierarchically porous hydridosilica particles were prepared by dissolving template. The diameter of nano hierarchically porous hydridosilica hollow microspheres were about70nm, the thickness of hollow microspheres were obout10nm, the specific surface area was896m/g and pore volume was1.30cm/g. Precious metal Pd were successfully load on the nano hierarchically porous hydridosilica hollow microspheres due to the reductibility of silicon hydrogen bonds. The nano hierarchically porous Pd-SiO2particles with hollow structure were analyzed by TEM, the results showed that Pd nanoparticles were distributed in the internal and on the surface of nano hierarchically porous hydridosilica hollow microspheres, the diameter of Pd nanoparticles were about3nm in the internal of nano hierarchically porous hydridosilica hollow microspheres, and the diameter of Pd nanoparticles were from10nm to30nm on the surface of nano hierarchically porous hydridosilica hollow microspheres. Nano hierarchically porous Pd-SiO2/Ni-Co composite electrodes were prepared with nano hierarchically porous Pd-SiO2particles as composite particles. The influence of the concentration of composite particles on the electrocatalytic activities of Pd-SiO2/Ni-Co composite electrodes for hydrogen evolution were investigated by polarization curves, the results showed that the electrocatalytic activities of Pd-SiO2/Ni-Co composite electrodes for hydrogen evolution reached the optimal value when the concentration of nano hierarchically porous Pd-SiO2particles was1.8g/L. The influence of the different components on the electrocatalytic activities of Ni-Co alloy electrodes for hydrogen evolution were investigated, the results showed that the electrocatalytic activities of Ni-Co electrodes for hydrogen evolution were better than that of Ni electrode, and gradually increased with increase in the content of Co in the Ni-Co alloy coatings.
     4. Ni-Mo-Co alloy coatings were prepared by electrodeposition technique in citric acid system. The influence of the main technical parameters on the compositions and the electrocatalytic activities of Ni-Mo-Co alloy coatings for hydrogen evolution were investigated, the bright Ni-Mo-Co alloy coatings with Ni35.10wt%, Mo50.15wt%, and Co14.75wt%, were obtained. The influence of the different components on the electrocatalytic activities of Ni-Mo-Co alloy electrodes for hydrogen evolution were investigated, the results showed that the electrocatalytic activities of Ni-Mo-Co alloy electrodes for hydrogen evolution were gradually increased with increase in the content of Co and Mo in the Ni-Mo-Co alloy coatings. The electrocatalytic activities of nano hierarchically porous Pd-SiO2/Ni-Co composite electrode, nano hierarchically porous Ti-SiO2/Ni-Co composite electrode and Ni-Mo-Co alloy electrode for hydrogen evolution were investigated, the results showed that the electrocatalytic activity of nano hierarchically porous Pd-SiO2/Ni-Co composite electrode for hydrogen evolution was better than that of Ti-SiO2/Ni-Mo composite electrode, and the electrocatalytic activity of Ni-Mo-Co composite electrodes were better than that of Ni-Mo-Co alloy electrode, the over-potential of hydrogen evolution of nano hierarchically porous Pd-SiO2/Ni-Co and Ti-SiO2/Ni-Co composite electrode decreased80mV and60mV respectively,which were relative to that of Ni-Mo-Co alloy electrode.
引文
[1]王革华.能源与可持续发展[M].北京:化学工业出版社,2005.
    [2]高虹,张爱黎.新型能源技术与应用[M].北京:国防工业出版社,2007.
    [3]黄素逸.能源与节能技术[M].北京:中国电力出版社,2004.
    [4]牛娇.制氢技术的系统评价体系研究[D].北京:北京化工大学,2007.
    [5]跃龙,肖云汉,田文栋,等.含碳能源直接制氢的热力学分析与实验研究[J].工程热物理学报,2003,24(5):744-746.
    [6]余力.两阶段煤炭地下气化工艺的应用[J].煤炭学报,2009,34(7):1008.
    [7]李传统.新能源与可再生能源技术[M].南京:东南大学出版社,2005.
    [8]李文兵,齐智平.甲烷制氢技术研究进展[J].天然气工业,2005,25(2):165-168.
    [9]苏亚欣,毛玉如,赵敬德.新能源与可再生能源概论[M].北京:化学工业出版社,2006.
    [10]张菊香,史鹏飞,张新荣,等.燃料电池甲醇重整制氢研究进展[J].电池,2004,34(5):359-361.
    [11]张新荣,史鹏飞.甲醇水蒸气重整制氢的研究进展[J].电池,2002,32(2):107-109.
    [12]张新荣,史鹏飞.燃料电池上甲醇水蒸气重整制氢研究进展[J].电源技术,2002,26(增刊):243-246.
    [13]王卫平,吕功煊.乙醇催化制氢研究进展[J].化学进展,2003,15(1):74-78.
    [14]Fujishima A, Honda K. Electrochemical photolysis of water at semiconductor electrode. Nature,1972,23(8):37-38.
    [15]加百勒·森迪,拉特格A.范·桑腾.可再生资源催化技术—从资源到能源生产[M].北京:化学工业出版社,2012.
    [16]倪萌,M. K. H. Leung, K. Sumathy.电解水制氢技术进展[J].能源环境保护,2004,18(5):5-9
    [17]Winter C, Nitsch J. Hydrogen as An Energy Carriers:Technologies. Systems. Economy [M]. Springer-Verlag,1988,179-181.
    [18]Breysse-Carabeuf E, Bocquet L, Junker M. Proceedings of the 1st European Hydrogen Energy Conference,2-5 September 2003, Grenoble, France. Paper C02/186. Association Francaise de l'Hydrogene, Paris, France(2003).
    [19]Suffredini H B, Cerne J L, Crnkovic F C, et al. Int. J. Hydrogen Energy, 25(2000)415.
    [20]Spacil H S, Tedmon C S Jr. J. Electrochem. Soc,1969,116:1618-1626.
    [21]Spacil H S, Tedmon C S Jr. J. Electrochem. Soc,1969,116:1627-1633.
    [22]张文强,于波,陈靖,等.高温固体氧化物电解水制氢技术[J].化学进展,2008,20(5):778-787.
    [23]Ma B, Li Y, Zhao J P, et al. Novel structural functional films based on self-assembly template and characterization of porous Ni/YSZ films [J]. Thin Solid Films,2009,517:5172-5175.
    [24]Boer B, Gonzalez M, Bouwmeester H J M, et al. The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes [J]. Solid State Ionics,2000,127:269-276.
    [25]翟秀静,刘奎仁,韩庆.新型能源技术[M].北京:化学工业出版社,2005.
    [26]侯志强,孙仁兴,邹妍,等.固体聚合物电解质水电解催化剂的研究进展[J].材料开发与应用,2008,23(3):74-78.
    [27]徐超.碱性电解水析氢电极研究[D].湖南:湖南大学,2011.
    [28]邓炎平.纳米多孔金电极的制备及应用[D].湖南:湖南师范大学,2008.
    [29]曹寅亮,李志林,王峰,等.镍锡析氢活性阴极的电化学制备及其在碱性溶液中的电催化机理[J].物理化学学报,2013,29(7):1479-1486.
    [30]张卫国.催化析氢活性阴极设计、制备与表征[D].天津:天津大学,2004.
    [31]Krstajic N, Popovic M, Grgur B, et al. On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution Part Ⅰ. The mechanism [J]. Journal of Electroanalytical Chemistry,2001,521:16-26.
    [32]Zhang L, Long X Y, Li D D, et al. Study on high-performance unsupported Ni-Mo-W hydrotreating catalyst [J]. Catalysis Communications,2011,12: 927-931.
    [33]Luo B P, Ren B, Xu Y, et al. A new method to improve surface morphology of Ni-Fe-Mo-Co alloy electrode and its catalytic activity for HER [J]. Transactions of Nonferrous Metals Society of China,2007,26:205-212.
    [34]Shibli S M A, Sebeelamol J N. Development of Fe2O3-TiO2 mixed oxide incorporated Ni-P coating for electrocatalytic hydrogen evolution reaction [J]. Internationl journal of hydrogen energy,2013,38:2271-2282.
    [35]Rosalbino F, Scavino G, Actis G M. Electrocatalytic activity of Ni-Fe-M (M=Cr, Mn, Cu) sintered electrodes for hydrogen evolution reaction in alkaline solution[J]. Journal of Electroanalytical Chemistry,2013,694:114-121.
    [36]Sequeiraa C A C, Santosa D M F, Brito P S D. Electrocatalytic activity of simple and modified Fe-P electrodeposits for hydrogen evolution from alkaline media[J]. Energy,2011,36:847-853.
    [37]罗北平,龚竹青,任碧野,等.高析氢催化活性和稳定性的纳米晶Ni-Fe-Mo-Co合金[J].功能材料,2006,6(37):940-943.
    [38]Wu L, He Y H, Lei T, et al. Characterization of porous Ni3Al electrode for hydrogen evolution in strong alkali solution [J]. Materials Chemistry and Physics,2013,141:553-561.
    [39]Gonzalez-Buch C, Herraiz-Cardona I, Ortega E M, et al. Development of Ni-Mo, Ni-W and Ni-Co macroporous materials for hydrogen evolution reaction[J]. Chemecal engineering transactions,2013,36:865-870.
    [40]Altunbas E, Ahin S, Do B, et al. Investigation of the hydrogen evolution on Ni deposited titanium oxide nano tubes [J]. International journal of hydrogen energy,2012,37:11625-11631.
    [41]Danaee I, Noori S. Kinetics of the hydrogen evolution reaction on NiMn graphite modified electrode [J]. International journal of hydrogen energy,2011, 36:12102-12111.
    [42]Baranton S, Christophe C. Nickel cobalt hydroxide nanoflakes as catalysts for the hydrogen evolution reaction [J]. Applied Catalysis B:Environmental,2013, 136-137:1-8.
    [43]Lupi C, Dell'Era A, Pasquali M. Nickel-cobalt electrodeposited alloys for hydrogen evolution in alkaline media [J]. International journal of hydrogen energy,2009,34:2101-2106.
    [44]Yuce A O, Doner A, Kardas G. NiMn composite electrodes as cathode material for hydrogen evolution reaction in alkaline solution [J]. International journal of hydrogen energy,2013,38:4466-4473.
    [45]Jovic B M, Lacnjevac U C, Krstajic N V, et al. Ni-Sn coatings as cathodes for hydrogen evolution in alkaline solutions [J]. Electrochimica Acta,2013,114: 813-818.
    [46]Huang J, Ma R X, Huang T, et al. Carbor dioxide reforming of methane over Ni/Mo/SBA-15-La2O3 catalyst:Its characterization and catalytic performance [J]. Journal of Natural Gas Chemistry,2011,20(5):465-470.
    [47]Wu M, Shen P K, Wei Z D, et al. High activity PtPd-WC/C electrocatalyst for hydrogen evolution reaction[J]. Journal of Power Sources,2007,166:310-316.
    [48]Abbaspour A, Norouz-Sarvestani F. High electrocatalytic effect of Au-Pd alloy nanoparticles electrodeposited on microwave assisted sol-gel-derived carbon ceramic electrode for hydrogen evolution reaction [J]. International journal of hudrogen energy,2013,38:1883-1891.
    [49]Smiljanic M, Rakocevic Z, Maksic A, et al. Hydrogen evolution reaction on platinum catalyzed by palladium and rhodium nanoislands [J]. Electrochimica Acta,2014,117:336-343.
    [50]Doner A, Tezcan F, Kardas G. Electrocatalytic behavior of the Pd-modified electrocatalyst for hydrogen evolution [J]. International journal of hydrogen energy,2013,38:3881-3888.
    [51]Wu B H, Zheng N F. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nanotoday,2013,8:168-197.
    [52]Zhang G, Shao Z G, Lu W T, et al. Core-shell Pt modified Pd/C as an active and durable electrocatalyst for the oxygen reduction reaction in PEMFCs. Applied Catalysis B:Environmental.2013,133:183-194.
    [53]Wu G, Li N, Dai C S, et al. Electrochemical preparation and characteristics of Ni-Co-LaNi5 composite coatings as electrode materials for hydrogen evolution[J]. Materials Chemistry and Physics,2004,83:307-314.
    [54]Zabinski P R, Franczak A, Kowalik R. Electrodeposition of Functional Ni-Re Alloys for Hydrogen Evolution[J]. ECS Transactions,2012,41.3:39-48.
    [55]Srivastava M, William Grips V K, Rajam K S. Electrodeposition of Ni-Co composites containing nano-CeO2 and their structure, properties [J]. Applied Surface Science,2010,257:717-722.
    [56]Hoor F S, Aravinda C L, Ahmcd M F, et al. Fe-P and Fe-P-Pt co-deposits as hydrogen electrodes in alkaline solution [J]. J. Power Sources.2001,103 (1): 147-149.
    [57]Shafia H F, Tharamani C N, Ahmed M F, et al. Electrochemical synthesis of Fe-Mo and Fe-Mo-Pt alloys and their electrocatalytic activity for methanol oxidation[J]. Journal of Power Sources,2007,167:18-24.
    [58]Song L J, Meng H M. Effect of carbon content on Ni-Fe-C electrodes for hydrogen evolution reaction in seawater [J]. Int J Hydrogen Energy,2010,35: 10060-10066.
    [59]杨静,吴仲达,镍钼合金电极的析氢性能[J].稀有金属,1998,22(4):251-256.
    [60]魏海兴,周振芳,吕东方,等.脉冲电沉积制备Ni-Mo合金析氢电极[J].舰 船科学技术,2011,33(9):124-127.
    [61]Vijayakumar J, Mohan S, Kumar S A, et al. Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution [J]. Int J Hydrogen Energy, 2013,38:10208-10214.
    [62]Ham D J, Ganesan R, Lee J S. Tungsten carbide microsphere as an electrode for cathodic hydrogen evolution from water [J]. Int J Hydrogen Energy,2008,33: 6865-6872.
    [63]Quaino P, Santos E, Wolfschmidt H, et al. Theory meets experiment: Electrocatalysis of hydrogen oxidation/evolution at Pd-Au nanostructures [J]. Catalysis Today,2011,177:55-63.
    [64]Husin H, Su W N, Pan C J, et al. Pd/NiO core/shell nanoparticles on La0.02Na0.98TaO3 catalyst for hydrogen evolution from water and aqueous methanol solution [J]. Int J Hydrogen Energy 2013,38:13529-13540.
    [65]Smiljanic M, Srejic I, Grgur B, et al. Catalysis of hydrogen evolution on different Pd/Au (111) nanostructures in alkaline solution [J]. Electrochimica Acta,2013,88:589-596.
    [66]Smiljanic M, Srejic I, Grgur B, et al. Hydrogen evolution on Au (111) catalyzed by rhodium nanoislands [J]. Electrochemistry Communications,2013, 28:37-39.
    [67]Safavi A, Kazemi S H, Kazemi H. Electrocatalytic behaviors of silver-palladium nanoalloys modified carbon ionic liquid electrode towards hydrogen evolution reaction [J]. Fuel,2014,118:156-162.
    [68]段钱花,王森林,王丽品.电沉积多孔复合Ni-P/LaNis电极及其析氢电催化性能[J].物理化学学报,2013,29(1):123-130.
    [69]Dominguez-Crespo M A, Torres-Huerta A M, Brachetti-Sibaja B, et al. Electrochemical performance of Ni-RE (RE= rare earth) as electrode material for hydrogen evolution reaction in alkaline medium [J]. International Journal of Hydrogen Energy,2011,36:135-151
    [70]Maccio D, Rosalbino F, Saccone A, et al. Partial phase diagrams of the DyePt and HoePt systems and electrocatalytic behaviour of the DyPt and HoPt phases [J]. J Alloys Compd,2005,391:60-66.
    [71]Santos D M F, Saturnino P G, Maccio D, et al. Platinum-rare earth intermetallic alloys as anode electrocatalysts for borohydride oxidation[J]. Catal Today,2011, 170:134-40.
    [72]Santos D M F, Sequeira C A C, Maccio D, et al. Platinumerare earth electrodes for hydrogen evolution in alkaline water electrolysis [J]. International Journal of Hydrogen Energy,2013,38:3137-3145
    [73]Raoof J B, Omrani A, Ojani R, et al. Poly(N-methylaniline)/nickel modified carbon paste electrode as an efficient and cheep electrode for electrocatalytic oxidation of formaldehyde in alkaline medium [J]. Journal of Electroanalytical Chemistry,2009,633:153-158.
    [74]Corte D A D, Torres C, Correa P D S, et al. The hydrogen evolution reaction on nickel-polyaniline composite electrodes [J]. Int J Hydrogen Energy 2012,37: 3025-3032.
    [75]Zhuo J Q, Wang T Y, Zhang G, et al. Salts of C6o(OH)8 Electrodeposited onto a Glassy Carbon Electrode:Surprising Catalytic Performance in the Hydrogen Evolution Reaction [J]. Angew. Chem. Int. Ed.2013,52,10867-10870.
    [76]马强,魏海兴,隋然.电沉积Ni-S, Ni-Co-S合金析氢阴极的研究[J].舰船防化,2011,1:10-15.
    [77]Nishikawa K, Dokko K, Kinoshita K, et al. Three-dimensionally ordered macroporous Ni-Sn anode for lithium batteries [J]. Journal of Power Sources, 2009,189:726-729.
    [78]东栋,于维平.锂离子电池微孔Sn-Co-C负极的制备及其性能[J].材料热处理学报,2011,32(8):6-10.
    [79]Marozzi C A, Chialvo A C. Development of electrode morphologies of interest in electrocatalysis Part 2:Hydrogen evolution reaction on macroporous nickel electrodes [J]. Electrochimica Acta,2001,46:861-866.
    [80]Marozzi C A, Chialvo A C. Development of electrode morphologies of interest in electrocatalysis. Part 1:Electrodeposited porous nickel electrodes [J]. Electrochimica Acta,2000,45:2111-2120.
    [81]Rafailovic L D, Gammerb C, Rentenberger C, et al. Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition [J]. Nano Energy,2013,2:523-529.
    [82]Raoofa J B, Ojania R, Kiani A, et al. Fabrication of highly porous Pt coated nanostructured Cu-foam modified copper electrode and its enhanced catalytic ability for hydrogen evolution reaction [J]. International journal of hydrogen energy,2010,35:452-458.
    [83]Kiani A, Hatami S. Fabrication of platinum coated nanoporous gold film electrode:A nanostructured ultra low-platinum loading electrocatalyst for hydrogen evolution reaction [J]. International journal of hydrogen energy,2010, 35:5202-5209.
    [84]Ke F H, Huang L, Cai J S, et al. Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries [J]. Electrochim Acta,2007,52:6741-6747.
    [85]史克英,辛柏福,池玉娟,等.以SBA-16为模板电沉积生长多孔氧化铁纳米线阵列[J].化学学报,2004,62(19):1859-1861.
    [86]杨培霞,苏彩娜,张新梅,等.以多孔氧化铝为模板电沉积制备磁性纳米线阵列膜[J].电镀与环保,2010,31(1):1-5.
    [87]Herraiz-Cardona I, Ortega E, Vazquez-Gomez L, et al. Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction [J]. International journal of hydrogen energy,2012,37: 2147-2156.
    [88]倪似愚,郑国渠,曹华珍,等.多孔阳极氧化铝为模板电沉积制备纳米线的研究进展[J].科技通报,2003,19(6):467-469.
    [89]张海明,余俊杰,李晓洁,等.多孔氧化铝模板电沉积法制备ZnO纳米结构阵列的研究[J].人工晶体学报,2008,37(5):1274-1277.
    [90]赵行文.多孔氧化铝模板及其金属电沉积的研究[D].长沙:中南大学,2011.
    [91]Han R B, Pan W, Shi S L, et al. Electrodeposition of macroporous magnetic metal films using colloidal nickel phosphate templates [J]. Materials Letters, 2007,61:5014-5017.
    [92]刘志锋,靳正国,李巍,等.聚苯乙烯球模板辅助电沉积制备多孔片晶ZnO薄膜[J].硅酸盐学报,2005,33(12):1478-1481.
    [93]Xiao A G, Yang J F, Zhang W Q. Hierarchically porous-structured nickel oxide film prepared by chemical bath deposition through polystyrene spheres template [J]. J Porous Mater,2010,17:283-287.
    [94]孙玺,于维平.模板-电沉积法制备孔状结构锡钴负极材料[J].华南师范大学学报,2009,11:5-7.
    [95]陈良木,陈范才,李文军,等.电沉积镍-钼-钴泡沫合金析氢电极的工艺研究[J].电镀与涂饰,2010,29(8):1-17.
    [96]Grubac Z, Metikos-Hukovic M, Babic R. Nanocrystalline and coarse grained polycrystalline nickel catalysts for the hydrogen evolution reaction [J]. International journal of hydrogen energy,2013,38:4437-4444.
    [97]Cheng K, Cao D X, Yang F, et al. Pd doped three-dimensional porous Ni film supported on Ni foam and its high performance toward NaBH4 electrooxidation[J]. Journal of Power Sources,2013,242:141-147.
    [98]孙雅峰.氢气泡模板法电沉积制备多孔金属薄膜[D].浙江:浙江师范大学,2006.
    [99]邓型深,姜吉琼,田甜.工艺参数对氢气泡模板法电沉积多孔镍薄膜比表面积的影响[J].电镀与涂饰,2010,30(2):1-3.
    [100]陈良木,陈范才,李文军,等.电沉积镍-钼-钴泡沫合金析氢电极的工艺研究[J].电镀与涂饰,2010,29(8):1-3.
    [101]Ramirez D, Bartlett P, Abdelsalam M, et al. Electrochemical synthesis of macroporous zinc oxide layers by employing hydrogen peroxide as oxygen precursor [J]. Physica Status Solidi (A) Applications and Materials Science, 2008,205(10):2365-2370.
    [102]Herraiz-Cardona I, Gonzalez-Buch C, Valero-Vidal C, et al. Co-modification of Ni-based type Raney electrodeposits for hydrogen evolution reaction in alkaline media [J]. Journal of Power Sources,2013,240:698-70.
    [103]Cai J, Xu J, Wang J M, et al. Fabrication of three-dimensional nanoporous nickel filmswith tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction [J]. Int J Hydrogen Energy 2013,38: 934-941.
    [104]Yin Z W, Chen F Y. Electrochemically fabricated hierarchically porous Ni(OH)2/NiCu electrodes for hydrogen evolution reaction [J]. Electrochimica Acta,2014,117:84-91.
    [105]牛振江,孙雅峰,陈蝶,等.氢气泡模板电沉积多孔金属镍薄膜[J].无机化学学报,2006,22(5):930-934.
    [106]Herraiz-Cardona I, Ortega E, Vazquez-Gomez L, et al. Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction [J]. International Journal of Hydrogen Energy,2012,37: 2147-2156.
    [107]Zhang H B, Ye Y H, Shen R Q, et al. Effect of Bubble Behavior on the Morphology of Foamed Porous Copper Prepared via Electrodeposition [J]. Journal of the Electrochemical Society,2013,160 (10):441-445.
    [108]陈劲松.喷射电沉积法直接制备多孔泡沫镍基础研究[D].南京:南京航空 航天大学,2009.
    [109]宫凯.喷射电沉积法制备多孔金属镍机理_工艺及应用研究[D].南京:南京航空航天大学,2010.
    [110]Zhang Y P, Chun Z Y, Zhang X P. Porous titanium-nickel alloys with adjustable Porosity Fabricated Using Poreforming Agent and Conventional Sintering [J]. Journal of Materials Science & Engineering,2007,25(6):938-968.
    [111]臧纯勇,汤慧萍,王建永,等.镍合金多孔材料力学性能的研究进展[J].热加工工艺,2009,38(10):29-36.
    [112]汪劲松.镍质多孔材料的电镀修饰[J].材料研究与应用,2008,2(1):43-46.
    [113]刘康美.制取多孔W-Ni-Fe的工艺研究[J].稀有金属材料与工程,1987,6:34-37.
    [114]刘康美,殷为宏,廖际常.W-Ni-Fe合金多孔材料的研究[J].粉末冶金技术,1989,7(1):40-42.
    [115]孙彤,翟玉春,马培华.电镀法制备多孔光催化材料及其性能研究[J].有色金属,2006,58(2):39-43.
    [116]何捍卫,刘红江,刘芳,等.泡沫镍基镍硫合金涂层形貌、结构和析氢性能研究[J].功能材料,2006,1(37):87-91.
    [117]米国发,刘翔宇,李红宇,等.Ni-Cr-Co-W-Mo-Al-Ti合金制备多孔材料的组织与性能研究[J].粉末冶金技术,2007,25(4):330-335.
    [118]Lytle J C, Yan H W, Ergang N S, et al. Structural and electrochemical properties of three-dimensionally ordered macroporous tin. IV oxide films [J]. Journal of Molecular Catalysis A:Chemical,2006,24:17-18.
    [119]Ramirez D, Bartlett P, Abdelsalam M, et al. Electrochemical synthesis of macroporous zinc oxide layers by employing hydrogen peroxide as oxygen precursor [J]. Phys. Stat. Sol,2008,205.10:2365-2370.
    [120]Zhua Q W, Zhang Y H, Wang J J, et al. Facile synthesis of hollow and porous nickel microspheres by low temperature molecular self-assembly [J]. Solid State Sciences,2011,13:438-443.
    [121]Liao Y, Ma B, Zhao J P, et al. Excellent mechanical properties of three-dimensionally ordered macroporous nickel photonic crystals [J]. Journal of Alloys and Compounds,2011,509:290-293.
    [122]Bozena L. Experimental design in the electrodeposition process of porous composite Ni-P+TiO2 coatings [J]. Materials Chemistry and Physics,2011,128: 442-448.
    [123]魏海兴,周振芳,吕东方,等.纳米晶Ni-Mo合金电沉积工艺[J].舰船科学技术,2011,33(12):125-128.
    [124]朱荣凯,黎亚明.多孔电沉积制备纳米线[J].应用科技,2002,29(1):53-54.
    [125]叶金文,刘颖,李芳,等.纳米多孔镍基催化材料的结构与催化性能[J].精细化工,2005,22(3):192-194.
    [126]李亚宁,汤慧萍,王建永,等.脱合金法制备纳米多孔镍材料研究进展[J].中国材料进展,2011,30(10):49-53.
    [127]张英杰,闫宇星,章江洪.电沉积Zn-Ni合金纳米多层膜的耐蚀性能[J].材料保护,2009,42(11):8-11.
    [128]许乔瑜,魏彩虹,卢锦堂,等.电沉积镍基合金及其纳米复合镀层的研究现状[J].材料导报,2005,19(5):40-46.
    [129]Abdel Aal A, Shaaban A, Abdel Hamid Z. Nanocrystalline soft ferromagnetic Ni-Co-P thin film on Al alloy by low temperature electroless deposition [J]. Applied Surface Science,2008,254:1966-1971.
    [130]Atalay F E, Kaya H, Yagmur V, et al. The effect of back electrode on the formation of electrodeposited Co-Ni-Fe magnetic nanotubes and nanowires [J]. Applied Surface Science,2010,256:2414-2418.
    [131]Bakhit B, Akbari A. Nanocrystalline Ni-Co alloy coatings:electrodeposition using horizontal electrodes and corrosion resistance [J]. J.Coat.Technol.Res, 1998,12:37-38.
    [132]Farzaneh M A, Zamanzad-Ghavidel M R, Raeissi K, et al. Effects of Co and W alloying elements on the electrodeposition aspects and properties of nanocrystalline Ni alloy coatings [J]. Applied Surface Science,2011,257: 5919-5926.
    [133]Sriraman K R, Ganesh Sundara Raman S, Seshadri S K. Corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys [J]. Materials Science and Engineering A,2007,246:39-45.
    [134]Beltowska-Lehman E, Indyka P, Bigos A, et al. Electrodeposition of nanocrystalline Ni-W coatings strengthened by ultrafine alumina particles [J]. Surface & Coatings Technology. SCT-17124; No of Pages 5.
    [135]Panagopoulos C N, Plainakis G D, Lagaris D A. Nanocrystalline Ni-W coatings on copper [J]. Materials Science and Engineering B.,2011,176:477-479.
    [136]罗北平,龚竹青,武鹄,等.电沉积制备纳米晶Fe-Ni-Mo合金箔[J].矿冶工程,2006,26(4):46-49.
    [1371李爱昌,赵娣,李倩,等,(Ni-Mo)-TiO2纳米薄膜的制备及其光催化降解罗丹明B的性能[J].中国有色金属学报,2012,22(2):526-532.
    [138]李凝,高诚辉.电沉积非晶/纳米晶Ni-Mo合金电极结构及其电化学性能[J].中国机械工程,2011,22(17):2117-2121.
    [139]Li Y D, Jiang H, Hang W H, et al. Effects of peak current density on the mechanical properties of nanocrystalline Ni-Co alloys produced by pulse electrodeposition [J]. Applied Surface Science,2008,254:6865-6869.
    [140]Xu J X, Xu Y. Fabrication and magnetic property of binary Co-Ni nanowire array by alternating current electrodeposition [J]. Applied Surface Science,2007, 253:7203-7206.
    [141]Ranjith B, Paruthimal Kalaignan G, et al. Ni-Co-TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath [J]. Applied Surface Science,2010,257:42-47.
    [142]Shi L, Sun C F, Gao P, et al. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating [J]. Applied Surface Science,2006,252:3591-3599.
    [143]Zhou Y, Zhang H, Qian B. Friction and wear properties of the co-deposited Ni-SiC nanocomposite coating [J]. Applied Surface Science,2007,253: 8335-8339.
    [144]Srivastava M, William Grips V K, Raj am K S. Electrochemical deposition and tribological behaviour of Ni and Ni-Co metal matrix composites with SiC nano-particles [J]. Applied Surface Science,2007,253:3814-3824.
    [145]He H B, Chen A P, Lv H, et al. Fabrication of TiO2 film with different morphologies on Ni anode and application in photoassisted water electrolysis [J]. Applied Surface Science,2013,266,126-131.
    [146]Zheng Z, Li N, Wang C Q, et al. Electrochemical synthesis of Ni-S/CeO2 composite electrodes for hydrogen evolution reaction [J]. Journal of Power Sources,2013,230:10-14.
    [147]Shi G J, Zhao Y, Huang Y A, et al. Mesoporous Carbon Supported Co-Mo and Ni-Mo Catalysts for Hydrodesulfurization [J]. Chinese Journal of Catalysis, 2010,31:961-964.
    [148]吕荣冠,杨军,王久林,等.多孔锂-硅薄膜锂离子电池负极材料的电沉积制备及其电化学性能[J].物理化学学报,2011,27(4):759-763.
    [149]王森林,张艺.Ni-Mo/LaNi5多孔复合电极的制备及其电催化析氢性能[J]. 物理化学学报,2011,27(6):1417-1423.
    [150]Liao L, Zhu J, Bian X J, et al. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution [J]. Adv. Funct. Mater,2013,23: 5326-5333.
    [151]Bian X J, Zhu J, Liao L, et al. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres:A highly active catalyst for electrochemical hydrogen evolution [J]. Electrochemistry Communications,2012,22:128-132.
    [152]杨富国,方正,吴振玉,等.电沉积钯镍合金的组成与性能[J].材料保护,2001,34(9):14-15
    [153]Stroumbouli M, Gyftou P, Pavlatou E A, et al. Codeposition of ultrafine WC particles in Ni matrix composite electrocoatings [J]. Surface and Coatings Technology,2005,195:325-332.
    [154]Khabazian S, Sanjabi S. The effect of multi-walled carbon nanotube pretreatments on the electrodeposition of Ni-MWCNTs coatings [J]. Applied Surface Science,2011,257:5850-5856.
    [155]曹浪,左正忠,田志斌,等.焦磷酸盐-柠檬酸盐体系电镀光亮Zn-Ni合金的研究[J].电镀与精饰,2011,33(1):30-34.
    [156][156] Koltai T, Galsan V, Tetenyi P. Effect of pretreatment on HDS activity of supported NiW and NiMo catalysts. ERRATA,1999,67:391-396.
    [157]张鹏,赵永武.Ni-Fe-w合金镀层的结构形貌及摩擦学性能研究[J].润滑与密封,2007,32(2):89-91.
    [158]Gao Y, Huang L, Zheng Z J, et al. The influence of cobalt on the corrosion resistance and electromagnetic shielding of electroless Ni-Co-P deposits on Al substrate [J]. Applied Surface Science,2007,253:9470-9475.
    [159]Xu J, Li Z Y, Zhu W H, et al. The comparative study of thermal fatigue behavior of laser deep penetration spot cladding coating and brush plating Ni-W-Co coating [J]. Applied Surface Science,253, (5):2618-2624.
    [160]韩夏云,龙晋明,郭忠诚,等.电沉积Zn-AI-P合金耐腐蚀性的研究[J].材料保护,2003,36(11):44-45.
    [161]彭超,殷志伟,汪晓,等.十二烷基硫酸钠和1.4-丁炔二醇电沉积Ni-W合金的机理[J].粉末冶金材料科学与工程,2011,16(2):167-174.
    [162]Wang H, Liu R, Cheng F J, et al. Electrodepositing amorphous Ni-W alloys for MEMS [J]. Microelectronic Engineering,2010,87:1901-1906.
    [163]Quiroga Arganaraz M P, Ribotta S B, Folquer M E, et al. Ni-W coatings electrodeposited on carbon steel:Chemical composition, mechanical properties and corrosion resistance [J]. Electrochimica Acta,2011,56:5898-5903.
    [164]周红光,肖云,谷惠文.Ni-W合金电镀研究综述[J].广东化工,2011,38(4):56-57.
    [165]Juskenas R, Valsiunas I, Pakas V, et al. On the state of W in electrodeposited Ni-W alloys [J]. Electrochimica Acta,2009,54:2616-2620.
    [166]Chang L M, Wang Z T, Shi S Y, et al. Study on microstructure and properties of electrodeposited Ni-W alloy coating [J]. Journal of Alloys and Compounds, 2011,509:1501-1504.
    [167]Banerjee M, Singh A, Majumdar A K, et al. Signature effects of spin clustering and distribution of spin couplings on magnetization behaviour in Ni-Fe-Mo and Ni-Fe-W alloys [J]. Journal of Physics,2011,23:4-9.
    [168]余祖孝,郝世雄,孙亚丽,等.热处理工艺对化学镀Ni-W-Mo-P四元合金性能的影响[J].材料热处理技术,2008,33(22):51-55.
    [169]余祖孝,郝世雄,刘东亮,等.添加剂对化学镀镍-钨-钼-磷镀层性能的影响[J].机式工程材料,2008,32(8):71-73.
    [170]Tanase S I, Pinzaru Tanase D, Dobromira M,et al. Morphology, magnetic, magnetoresistance and optical properties of Co-Ni-Mo alloys thin films [J]. Applied Surface Science,2011,257:10903-10909.
    [171]Chang L M, Guo H F, An M Z, et al. Effect of Ce2(SO4)3 on structure and properties of Ni-Co/Al2O3 composite coating deposited by pulse reverse current method [J]. Applied Surface Science,2007,253:6085-6089.
    [172]Kumar A, Kumar M, Kumar D, Effect of composition on electroless deposited Ni-Co-P alloy thin films as a diffusion barrier for copper metallization [J]. Applied Surface Science,2012,258:7962-7967b.
    [173]Karpuz A, Kockar H, Alper M. Effect of film thickness on properties of electrodeposited Ni-Co films [J]. Applied Surface Science,2012,258:5046-5051.
    [174]Liu W L, Chen W J, Tsai T K, et al. Effect of nickel on the initial growth behavior of electroless Ni-Co-P alloy on silicon substrate [J]. Applied Surface Science,2007,253:3843-3848.
    [175]Tury B, Lakatos-Varsa'nyi M, Roy S, et al. Effect of pulse parameters on the passive layer formation on pulse plated Ni-Co alloys [J]. Applied Surface Science,2007,253:3103-3108.
    [176]Wang L P, Gao Y, Xue Q J, et al. Microstructure and tribological properties of electrodeposited Ni-Co alloy deposits [J]. Applied Surface Science,2005, 242:326-332.
    [177]Chen S Y, Liang J, Liu C S, et al. Preparation of a novel Ni/Co-based alloy gradient coating on surface of the crystallizer copper alloy by laser [J]. Applied Surface Science,2011,258:1443-1450.
    [178]Li Y J, Wang R, Qi F M, WangC M. Preparation, characterization and microwave absorption properties of electroless Ni-Co-P-coated SiC powder [J]. Applied Surface Science,2008,254:4708-4715.
    [179]Karpuz A, Kockar H, Alper M. The effect of different chemical compositions caused by the variation of deposition potential on properties of Ni-Co films [J]. Applied Surface Science,2011,257:3632-3635.
    [180]Tian L L, Xu J C, Qiang C W, et al. The electrodeposition behaviors and magnetic properties of Ni-Co films [J]. Applied Surface Science,2011,257: 4689-4694.
    [181]Karpuza A, Kockara H, Alper M, et al. Electrodeposited Ni-Co films from electrolytes with different Co contents [J]. Applied Surface Science,2012,258: 4005-4010.
    [182]Pan X F, Mu G H, Shen H G, et al. Preparation and microwave absorption properties of electroless Co-Ni-P coated strontium ferrite powder [J]. Applied Surface Science,2007,253:4119-4122.
    [183]易晓芳.镍基析氢电极材料的制备及其性能表征[D].四川:西南科技大学,2011.
    [184]刘小兵.电沉积Ni-P-WC复合镀层在KOH溶液中析氢行为的研究[D].上海:上海大学,2003.
    [185]蔡荆.脱合金法制备纳米多孔镍膜及电化学性能研究[D].浙江:浙江大学,2013.
    [186]Bhardwaj M. Enhancement of uncoupled nonlinear equations method for determining kinetic parameters in case of hydrogen evolution reaction after dropping two assumptions [J]. international journal of hydrogen energy,2009, 34:1655-1663
    [187]Boonyongmaneerat Y, Saengkiettiyut K, Saenapitak S, et al. Effects of WC addition on structure and hardness of electrodeposited Ni-W [J]. Surface & Coatings Technology,2009,203:3590-3594.
    [188]Zemanova M, Krivosudska M, Chovancova M, et al. Pulse current electrodeposition and corrosion properties of Ni-W alloy coatings [J]. J Appl Electrochem,2011,41:1077-1085.
    [189]Zheng H J, Huang J G, Wang W, et al. Preparation of nano-crystalline tungsten carbide thin film electrode and its electrocatalytic activity for hydrogen evolution [J]. Electrochemistry Communications,2005,7:1045-1049.
    [190]Metikos-Hukovic M, Grubac Z, Radic N, et al. Sputter deposited nanocrystalline Ni and Ni-W films as catalysts for hydrogen evolution [J]. Journal of Molecular Catalysis A:Chemical,2006,249:172-180.
    [191]Sheng J Y, Yi X D, Li F, et al. Effects of tungsten on the catalytic activity of Ni-W catalysts for the hydrogenation of aromatic hydrocarbons [J]. Reac Kinet Mech Cat,2010,99:371-379.
    [192]Mitov M, Hristova E, Hristov G, et al. Catalytic activity of NiW electrodeposits [J]. Environ Chem Lett.2009,7:249-253.
    [193]Ma C N, Shen J F, Brandon N, et al. Preparation of tungsten carbide-supported nano Platinum catalyst and its electrocatalytic activity for hydrogen evolution [J]. International journal of hydrogen energy,2007,32:2824-2829.
    [194]刘素芹,戴高鹏,王启会.电沉积Ni-W合金泡沫的研究[J].金属材料与冶金工程,2009,37(2):27-34.
    [195]孙静静.纳米Si02的氨基改性及对重金属离子的吸附[D].湖南:湖南工业大学,2013.
    [196]Xu L J, Du J J, Deng Y, et al. Fabrication and Characterization of Nanoporous Pseudo-Carbon Paste Electrode [J]. Advanced Science Letters,2011,4: 104-107.
    [197]Abdel-Karim R, Halim J, Surface morphology and electrochemical characterization of electrodeposited Ni-Mo nanocomposites as cathodes for hydrogen evolution [J]. Journal of Alloys and Compounds,2012,530:85-90.
    [198]Tasic G S, Maslovara S P, Zugic D L, et al. Characterization of the Ni-Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis [J]. International journal of hydrogen energy,2011,36: 11588-11595.
    [199]Krstajic N V, Jovic V D, Gajic-Krstajic L J, et al. Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution [J]. International journal of hydrogen energy,2008, 33:3676-3687.
    [200]郑颖,杨军,陶亮,等.锂离子电池用多孔硅/石墨/碳复合负极材料的研究[J].无机化学学报,2007,23(11):1883-1886.
    [201]王海燕,卢景霄,吴芳,等.多孔硅在太阳能电池应用中的相关研究[J].人工晶体学报,2006,35(5):1076-1079.
    [202]王冠中,李鹏,马玉蓉,等.金属离子在多孔硅表面的吸附与电镀过程中金属在多孔硅表面的淀积[J].化学学报,1998,56:171-177.
    [203]Rumpf K, Granitzer P, Polt P, et al. Structural and magnetic characterization of Ni-filled porous silicon [J]. Thin Solid Films,2006,515:716-720.
    [204]Harnisch F, Sievers G, Schroder U. Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions [J]. Applied Catalysis B:Environmental,2009,89:455-458.
    [205]Bian X J, Zhu J, Liao L, et al. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres:A highly active catalyst for electrochemical hydrogen evolution, Electrochemistry Communications,22 (2012) 128-132
    [206]任黎雯,杨良准,华春芳,等.介孔二氧化钛微球的合成与表征[J].化学研究,2008,19(3):1-4.
    [207]李娜.多级孔结构介孔二氧化硅的合成及其性能研究[D].天津:南开大学,2012.
    [208]Li N, Wang J G, Liu J Y, et al. Synthesis of hydrothermally stable, single-crystal mesoporous aluminosilicates Al-SBA-1 with hierarchically nanoporous structure and their catalytic properties [J]. Nanoscale,2012,4,2150-2156.
    [209]Li N, Wang J G, Zhou H J, et al. Synthesis of single-crystal-like, hierarchically nanoporous silica and periodic mesoporous organosilica, using polyelectrolyte-surfactant mesomorphous complexes as a template [J]. Chemistry of Materials,2011,23,4241-4249.
    [210]袁铁锤.电沉积Ni-S合金析氢阴极材料及析氢机理的研究[D].长沙:中南大学,2008.
    [211]Chen F C, Jiang C C, Liu J F, et al. Preparation of the nickel foam/Ni-Ce-Co-O film electrode by thermal decomposition for oxygen evolution reaction [J]. Applied Surface Science,2007,253:5155-5160.
    [212]Ohmori T, Go H, Nakayama A, et al. Influence of sputtering parameters on hydrogen evolution overvoltage in sputter-deposited Co-Mo alloy electrode [J]. Materials Letters,2011,47:103-106.
    [213]Sun Y, Prins R. Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over noble metals supported on mesoporous zeolites. Angew [J]. Chem. Int. Ed., 2008,47:8478-8481.
    [214]Li N, Wang J G, Chen T H. Facile fabrication of hierarchically nanoporous silica nanoparticles [J]. RSC Advances,2012,2,2229-2231.
    [215]Li N, Du J J, Xu L J, et al. Facile Fabrication of Hollow Hydridosilica Nanoparticles with Mesoporous Shell and Their Dual Effect in Pd Nanoparticles Immobilization [J]. Chemical Engineering Journal,2014,240, 161-168.
    [216]王国庆,尉海军,朱磊,等.Ni-Mo-Co合金电极制备工艺的研究[J].稀有金属与硬质合金,2011,39(2):21-24.
    [217]Jaksic M M, Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory [J]. International Journal of Hydrogen Energy,1987,12 (11),727-752
    [218]Jaksic M M, Electrocatalysis of hydrogen evolution in the light of the brewer-engel theory for bonding in metals and intermetallic phases [J]. Electrochimica Acta,1984,29,1539-1550.
    [219]Xu L J, Du J J, Chen B Z. Preparation and Electrocatalytic Activity of Nanocrystalline Ni-Mo-Co Alloy Electrode for Hydrogen Evolution [J]. Journal of Nanoscience and Nanotechnology,2013,13,2016-2020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700