无网格法在金属塑性成形数值模拟中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属塑性成形技术在金属零件的制造过程中起着十分重要的作用。为了预测各种过程参数对金属流动的影响,必须采用数值分析技术对成形过程进行模拟。由于金属成形过程是一个复杂的物理过程,涉及到几何非线性、物理非线性和接触非线性等。目前有限元数值模拟技术在塑性成形的分析研究中得到了非常广泛的应用,但由于有限元方法是基于网格的数值方法,当网格变形达到一定程度时,计算精度将严重受损,甚至导致计算无法进行下去。此时必须对畸变网格进行网格重划分。而网格重划分不仅耗时、计算精度受损,特别对于三维网格重划分技术至今仍是个世界性难题。
     鉴于有限元法对网格的依赖性,无网格法成为近年来学术界的研究热点。无网格法的近似函数没有网格依赖性,减少了因网格畸变而引起的困难,非常适用于处理高速碰撞、动态断裂、塑性流动、流固耦合等涉及大变形的各类应用问题。
     本文首先详细论述了配点型无网格法的基本原理及其在金属体积成形二维轴对称问题中的实现过程,包括重构核近似函数的形函数的构造及其一阶、二阶导数,摩擦接触条件的处理等关键性问题的求解。推导了弹塑性、刚塑性无网格法配点格式。并分别通过圆环镦粗和气门镦挤两个算例对算法的可行性进行了验证。
     本文详细论述了无网格法的动力显式计算格式,推导了塑性成形过程传热问题的无网格列式,结合有限元方法中常用的金属塑性变形与热传导耦合方法对圆环镦粗问题进行了无网格法热力耦合分析。并通过与前人实验结果的对比,验证了方法的可行性。
     推导了三维重构核近似函数的形函数及其形函数的一阶、二阶导数,给出了基于弹塑性材料的无网格法三维数值实现过程,并对时间步长的控制,摩擦边界条件的处理,节点影响域半径的控制等关键性问题进行了详细的阐述。实现了配点型无网格法在三维金属塑性成形过程中的数值模拟。对C型槽型材的挤压过程进行了数值模拟,并与有限元法计算结果进行了对比。最后以彩色塑泥做为模拟材料,采用分层制坯法,对挤压过程进行了物理模拟,结果表明,与数值模拟计算结果比较吻合。
     针对无网格法计算结果只包含节点信息,节点之间并没有拓扑关系,从而导致后处理可视化困难的问题,提出了结合模具干涉法和网格质量控制法来生成Delaunay四面体对无网格法计算结果进行可视化后处理的办法,给出了实现该方法的具体程序流程图,并通过实际三维无网格法计算结果验证了该方法的有效性和可行性。
     提出了一种新型形函数,详细论述了该形函数的构造方法,论证了该形函数满足的一些特性,推导了该形函数的基于Galerkin离散方案的等效积分弱形式并给出了详细的实施步骤和如何消除该形函数奇异性的方法。该方法中形函数的计算不涉及复杂的矩阵求逆过程,由于具备插值特性,可以直接处理边界条件。通过数值算例,分析了节点影响域半径对求解精度的影响,并与移动最小二乘近似函数比较,验证了该形函数的计算效率和计算精度。这是构造新的无网格法形函数的一个有益的尝试。
The metal plastic forming technique is very important to the manufacturing process of metal parts. In order to predict the influence of various processing parameters to metal flow, the numerical simulation technique is necessary. But the metal forming is a very complex physical process, including non-linear geometry, physical and contact, etc. In present, finite element analysis technique is widely applied in the research of plastic forming. But the finite element method is a numerical method based on mesh. When the mesh distorted seriously, the computation accuracy will lost, even the computation process can not be continued. Remesh process for the distorted mesh is necessary in order to continue the simulation. The remesh procedure is a very time consuming process especially to three dimensions remesh technique.
     According to finite element method depends on the mesh, more and more researchers begin to focus on the meshfree method. The shape function of meshfree method is without employment of mesh, which is very suitable for solving the large deformation problems such as high speed impact, dynamic crack expand, plastic forming, solid-liquid coupled, etc.
     Based on the detailed explain of basic theory and numerical procedure of meshfree method, the application of metal plastic forming numerical simulation procedure using collocation meshfree method based on reproducing kernel particle functions is researched deeply. Corresponding simulation code is developed, two dimensional symmetric and three dimensional problems are solved. Satisfied results show the feasibility of the method mentioned in this paper.
     The basic theory of collocation meshfree method and realization procedure in two dimensional symmetric problem of metal bulk forming are explained, including the construction of shape function and its first-order and second-order derivation, the treatment of friction and contact, etc. The collocation equations of elastic-plastic material and rigid-plastic material are deduced. The feasibility of the method is proved from two numerical examples.
     The explicit dynamic and heat transfer equations of metal plastic forming process using meshfree method are explained. Thermal-mechanical coupled meshfree analysis of ring compress process is realized combined with the commonly used metal deformation and heat transfer coupling algorithm in finite element method. The feasibility is proved compared with the experimental results of Male.
     The three dimensional equations of reproducing kernel particle function and its first-order and second-order derivation is deduced. The numerical implement procedure of three dimensional collocation meshfree method based on elastic-plastic material is given. Some key problems such as the control of time step, the treatment of friction-contact, the control of nodal influence radio, etc are explained in detail. A C-shape profile metal extrusion process using collocation meshfree method is analyzed and compared with the simulation results by finite element method. Using color plasticine, physical simulation model is carried out for the extrusion process. A method of layer-built billet has been proposed and effectively used. A good agreement of numerical simulation results and physical simulation results show the validity of the meshfree method.
     According to the absence of mesh and lack of connection information between the sprinkled nodes, on the other hand, make post-processing of meshfree results such as displacement, stress and strain in the whole domain an issue needs additional effort. A mold interpenetration and mesh quality control method based on incremental algorithm to build Delaunay tetrahedrons are proposed. The detailed flowchart of realizing the method is given. The numerical result shows the topological relationship produced by this method can describe the real shape of the discrete nodes very well.
     A new shape function is proposed. The construction procedure of this shape function is discussed. The characteristic of this shape function is proved. The equivalent integral weak form of discrete scheme based on Galerkin is derivated. Detailed implementary steps and the elimination of singularity are given. Without solving the complex anti-matrix, the procedure is simplified. Because of the interpolation property of this function, the essential boundary conditions can be imposed directly. According to a numerical example, the effects of the influence radio of domain to the accuracy are analyzed. Compared with the moving least square function, the effective and accuracy are proved of this shape function. A new way of researching shape function of meshfree method is proposed.
引文
[1] 彭颖红,金属塑性成形仿真技术,上海交通大学出版社,1999
    [2] 李尚健,金属塑性成形过程模拟,北京 机械工业出版社 1999
    [3] Chandra, Abhijit; Saigal, Sunil, Boundary element analysis of the axisymetric extrusion processes, International Journal of Non-Linear Mechanics, v 26, n 1, 1991, p 1-13
    [4] Iyama, Hirofumi; Nagano, Shiro; Itoh, Shigeru, The new trial of explosive forming, Journal of the Japan Explosives Society, Vol.64, No.1, 2003, p 52-59
    [5] Li, G.; Jinn, J.T.; Wu, W.T.; Oh, S.I., Recent development and applications of three-dimensional finite element modeling in bulk forming processes, Vol: 113, Issue: 1-3, 2001, 40-45
    [6] 周飞,苏丹,彭颖红,有限体积法仿真金属塑性成形的关键技术,上海交通大学学报,Vol.37,No.2,2003
    [7] 周飞,苏丹,彭颖红,铝型材挤压有限元与有限体积对比模拟,上海交通大学学报,Vol.37,No.7,2003
    [8] Couch, Richard; Sharp, Richard; Otero, Ivan; Tipton, Robert; McCallen, Rose, Application of ALE techniques to metal forming simulations, Advanced Computational Methods for Material Modeling, 1993, p 133-140
    [9] 王勖成 邵敏,有限单元法基本原理和数值方法(第 2 版),清华大学出版社,1998
    [10]陈如欣,胡忠民,塑性有限元法及其在金属成形中的应用 重庆大学出版社 1989
    [11] 乔端,钱仁根,非线性有限元法及其在塑性加工中的应用 冶金工业出版社 1990
    [12] J.-S. Chen, C. Pan, C. M. O. L. Roque, et al, A Lagrangian reproducing kernel particle method for metal forming analysis Computational Mechanics 22 (1998) 289-307
    [13] Belytschko T, Y. Krongauz, D. Organ, et al, Meshless method: An overview and recent developments,Computer Methods Appl. Mech. Engrg.,1996,139: 3-47
    [14] 张雄 宋康祖 陆明万,无网格法研究进展及其应用,计算力学学报,2003,20(6)
    [15] Shaofan Li, Wing Kam Liu, Meshfree and particle methods and their applications, Appl. Mech. Rev. Vol.55, No.1,2002
    [16] Thomas-Peter Fries, Hermann G. Matthies, Classification and Overview of Meshfree Methods,Institute of Scientific Computing Technical University Braunschweig Brunswick, Germany, March, 2003
    [17] 刘天祥,刘更等,无网格法的研究进展,机械工程学报,Vol. 38, No. 5, May, 2002
    [18] 李卧东,无网格法理论研究及其在工程中的应用 华中理工大学博士学位论文 2000
    [19] Lucy L, A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, 1977, 8(12): 1013-1024
    [20] R A Gingold, J J Monaghan, Smoothed Particle Hydrodynamics:Theory and application to non-spherical stars, Mthly. Notices. Roy. Astron. Soc., 1977, 181:375-389
    [21] Libersky, L.D, Randles, P.W., Carney, T.C., Dickinson, D.L, Recent improvements in SPH modeling of hypervelocity impact. International Journal of Impact Engineering, v 20, n 6-10 pt 2, 1997, p 525-532
    [22] Johnson G R, Beissel S R. Normalized smoothing functions for SPH impact computations. Int. J. Num. Meth. Engng., 1996, 39:2725-2741
    [23] Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys., 1995, 116:123-134
    [24] Dyka C T. Addressing tension instability in SPH methods. Technical Report NRL/MR/6384, NRL, 1994
    [25] Chen J K, Beraun J E, Jih C J. An improvement for tensile instability in smoothed particle hydrodynamics. Comput. Mech., 1999, 23:279-287
    [26] Attaway S W, Heinstein M W., Mello F J. Coupling of smooth particle hydrodynamics with PRONTO, American Society of Mechanical Engineers, Applied Mechanics Division, AMD, v 171, Advances in Numerical Simulation Techniques for Penetration and Perforation of Solids, 1993, p 83-94
    [27]J Bonet, S Kulasegaram, Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, International Journal of Numerical Methods in Engineering, 2000, 47:1189-1214
    [28]S. Kulasegaram, J. Bonet, R.W. Lewis, M. Profit, A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications, Computational Mechanics(2003)
    [29] Nayroles B, Touzot G, Villon P. Generalizing the finite element method : diffuse approximation and diffuse elements. Comput. Mech., 1992, 10: 307-318
    [30]T. Belytschko, Y. Lu, and L. Gu, “Element-Free Galerkin Methods,” International Journal for Numerical Methods in Engineering, v. 37, p. 229-256, 1994.
    [31] T. Belytschko, Y. Krongauz, M. Fleming, Smoothing and Accelerated Computations in the Element Free Galerkin Method, Journal of Computational and Applied Mathematics, Vol. 74, pp. 111-126, 1996
    [32] Krysl P, Belytschko T. Analysis of thin shells by element-free Galerkin method. Comput. Mech., 1995, 17: 26-35
    [33] Liu G R, Gu Y T. Coupling of element free Garlerkin and hybrid boundary element methods using modified variational formulation. Comput. Mech., 2000, 26:166-173
    [34] Belytschko T, Organ D, Krongauz Y. A coupled finite element-element free Garlerkin method. Comput. Mech., 1995, 17 :186-195
    [35] Hegen D. Element-free Garlerkin methods in combination with finite element approaches. Comput. Methods Appl. Mech. Engrg., 1996, 135: 143-166
    [36] Belytschko T, Krysl P, Krongnauz Y. A three dimensional explicit element-free Garlerkin method. Int. J. Numer. Meth. Fluids., 1997, 24: 1253-1270
    [37] Du C. An element-free Garlerkin method for simulation of stationary two-dimensional shallow water flows in rivers. Comput. Methods Appl. Mech. Engrg., 2000, 182: 89-107
    [38]L.W. Cordes, B. Moran, Treatment of material discontinuity in the element-free Galerkin method, Computer Methods in Applied Mechanics and Engineering, 1996, 139:75-89
    [41]龙述尧,弹塑性力学问题的无单元伽辽金法,工程力学,Vol.20 No.2,2003
    [42]何沛祥,无网格 Galerkin 法与有限元的耦合及其在功能梯度材料中的应用,中国科学技术大学博士学位论文 2002
    [43]O?ate E, Idelsohn S, Zienkiewicz OC, Taylor RL, A finite point method in computational mechanics, Applications to convective transport and fluid flow, International Journal for Numerical Methods in Engineering, 1996, 39:3839 –3866.
    [44] Rainald L?hner1, Carlos Sacco, Eugenio O?ate, Sergio Idelsohn, A finite point method for compressible flow, Int. J. Numer. Meth. Engng 2002; 53:1765–1779
    [45] Y.-M. Guo, K. Nakanishi, A backward extrusion analysis by the rigid–plastic integralless–meshless method, Journal of Materials Processing Technology 140 (2003) 19–24
    [46] W. K. Liu, Y. Chen, S. Jun, J. S. Chen, etal, Overview and Applications of the Reproducing Kernel Particle Methods, Archives of Computational Methods in Engineering: State of the art reviews, Vol. 3, pp. 3-80, 1996
    [47]W. K. Liu, Y. Chen, R. A. Uras and C. T. Chang , Generalized Multiple Scale Reproducing Kernel Particle Methods, "Computer Methods in Applied Mechanics and Engineering", Vol. 139, pp. 91-158, 1996
    [48]W. K. Liu, R. A. Uras and Y. Chen, Enrichment of the Finite Element Method with the Reproducing Kernel Particle Method, "Journal of Applied Mechanics", ASME, Vol. 64, pp. 861-870, 1997
    [49]W. K. Liu, Y. Chen, C. T. Chang and T. Belytschko, Advances in Multiple Scale Kernel Particle Methods, A special feature article for the 10th anniversary volume of "Computational Mechanics", Vol. 18, No. 2, pp. 73-111, June, 1996
    [50]W. K. Liu, S. Li and T. Belytschko, Moving Least Square Reproducing Kernel Method Part I: Methodology and Convergence, "Computer Methods in Applied Mechanics and Engineering", Vol. 143, pp. 113-154, 1997
    [51]Yang You, Jiun-Shyan Chen, and Hongsheng Lu, Filters, Reproducing Kernel, and Adaptive Meshfree Method, Computational Mechanics, 2003
    [52] J. S. Chen, C. Pan, C. T. Wu and W. K. Liu, Reproducing Kernel Particle Methods for Large Deformation Analysis of Nonlinear Structures, "Computer Methods in Applied Mechanics and Engineering", Vol. 139, pp. 195-228, 1996
    [53] 李光耀,弹塑性大变形畸变问题的无网格分析,湖南大学学报,Vo1. 30, No.1,2003
    [54] S. Jun, W. K. Liu and T. Belytschko, Explicit Reproducing Kernel Particle Methods for Large Deformation Problems, International Journal for Numerical Methods in Engineering, Vol. 41, pp. 137-166, 1998
    [55] Shaofan Li, Wei Hao, Wing Kam Liu, Meshfree simulations of shear banding in large deformation, Int. J. Solids & Stru. 1999
    [56] J.S. Chen, C. Pan, C.T. Wu, Application of Reproducing Kernel Particle Methods to Large Deformations and Contact Analysis of Elastomers, Rubber Chem. Technol. 1998
    [57] K.M. Liew, T. Y. Ng, Y. C. Wu, Meshfree method for large deformation analysis–a reproducing kernel particle approach,Engineering Structures,24 (2002) 543–551
    [58] Shaofan Li, Dong Qian, Wing Kam Liu, et al, A Meshfree Contact-detect Algorithm, Com. Meth. Appl. Mech. Eng., Sep.1999
    [59] Aluru N R. A reproducing kernel particle method for meshless analysis of microelectro mechanical systems[J ]. Comput Mech, 1999, 23: 324-338.
    [60] Jun, Sukky, Reproducing kernel particle method for large deformations, Ph.D. Dissertation of Northwestern University, 1996
    [61] S Jun, W K Liu, T Belytschko, Explicit reproducing kernel particle methods for large deformation problems, International Journal for Numerical Methods in Engineering, 1998, 41(1): 137-166
    [62] Chen J. S., Han W., You Y., et al, A Reproducing Kernel Method with Nodal Interpolation Property,” International Journal for Numerical Methods in Engineering, Vol. 56, 2003, 935-960.
    [63]Weimin Han, Xueping Meng, Error analysis of the reproducing kernel particle method, Comput. Methods Appl. Mech. Engrg., 190, 2001, 6157-6181
    [64] Ohs R R, Aluru N R. Meshless analysis of piezoelectric devices, Comput Mech, 2001, 27:23-36.
    [65] N. R. Aluru, A point collocation method based on reproducing kernel approximations, Int. J. Numer. Meth. Engng. 2000, 47:1083-1121
    [66] 周进雄,李梅娥,张红艳等,再生核质点法研究进展,力学进展,Vol. 32, No. 4, 2002.
    [67] Duarte C A, Oden J T. Hp clouds: a meshless method to solve boundary value problems [R].Technical Report 95205. Texas Institute for Computational and Applied Mathematics. University of Texasat Austin, 1995.
    [68] Duarte C A, Oden J T. Hp clouds: a h-p meshless method, Numerical Methods for Partical Differential Equations, 1996, 12: 673-705
    [69] Mendoncca P T R, Barcellos C S, Duarte A. Investigations on the hp cloud Method by solving Timoshenko beam problems. Comput. Mech. 2000, 25: 286-295
    [70] Garcia O, Fancello E A, de Barullos CS et al. hp- clouds in Mindlin’s thick plate model. Int. J. Num. Mech. Engng., 2000, 47(8): 1381-1400
    [71] 刘欣,朱德懋,陆明万等,平面裂纹问题的 h,p,hp 型自适应无网格方法的研究,力学学报,2000,32(3):308-318
    [72]Oden J.T., Duarte C.A., Zienkiewicz O.C. A new cloud-based hp finite element method. Int J Numer Methods Engrg. 1998,50:160-170
    [73]Liszka T.J., Duarte C., Tworzydlo W.W. Hp-meshless cloud method. Comput. Methods. Appl. Mech. Engrg. 1996; 139: 263-288
    [74]Babuska I., Melenk J.M, The partition of unity methods. Int. J. Numer. Methods Engrg. 1997, 40:727-758
    [75] Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., 1998, 22: 117-127
    [76] Liu G R, Gu Y T. Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches, Comput. Mech., 2000, 26: 536-546
    [77] 张见明,姚振汉,一种新型无网格法-杂交边界点法,中国计算力学大会’2001 会议论文集,339-343,2001,广州
    [78] 张雄,宋康祖,陆明万,Meshless Methods Based on Collocation with Radial Basis Function.Comput. Mech., 2000, 26(4): 333-343
    [79] 宋康祖,紧支函数无网格方法研究,清华大学博士学位论文,2000
    [80] J Bonet, S Kulasegaram, Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, International Journal of Numerical Methods in Engineering, 2000, 47:1189-1214
    [81] Jiun-Shyan Chen,Analysis of metal forming process based on meshless method,Journal of Materials Processing Technology,80–81 (1998) 642–646
    [82] J.-S. Chen, C. Pan, C. M. O. L. Roque, et al, A Lagrangian reproducing kernel particle method for metal forming analysis, Computational Mechanics 22 (1998) 289-307
    [83] Chen J S, Roque C M O L , et al. Analysis of metal forming process based on mesh less method [ J ].Journal of Materials Processing Technology , 1998, 80-81: 642-646.
    [84] Chen JS, Wang HP, New boundary condition treatments for meshless computation of contact problems, Computer Methods in Applied Mechanics and Engineering 2000 187:441– 468
    [85]Sangpil Yoon, Jiun-Shyan Chen, Accelerated meshfree method for metal forming simulation, Finite Elements in Analysis and Design, 38, (2002) 937-948
    [86] Yoon, Sangpil, Stabilized conforming nodal integration for Galerkin meshfree methods, Ph. D Dissertation of The University of Iowa, 2001。
    [87] J.S. Che n, C.T. Wu, S. Yoon, et al, “A Stabilized Conforming Nodal Integration for Galerkin Meshfree methods,” International Journal for Numerical Methods in Engineering, v. 50, p. 435-466, 2001.
    [88]Li Guangyao, T Belytschko, Element-free Galerkin method for contact problems in metal forming analysis, Engineering Computations, 2001, 18:62-78
    [89] Guangyao Li, Kalilou Sidibe, Guirong Liu, Meshfree method for 3D bulk forming analysis with lower order integration scheme, Engineering Analysis with Boundary Elements, 2004
    [90] Y.-M. Guo, K. Nakanishi, A backward extrusion analysis by the rigid–plastic integralless–meshless method, Journal of Materials Processing Technology 140 (2003) 19–24
    [91]Edwin Hardee, Kuang-Hua Chang, Iulian Grindeanu, et al, A Structural Nonlinear Analysis Workspace (SNAW) based on meshless methods, Advances in Engineering Software 30 (1999) 153–175
    [92]Xiong S W, Liu W K, Cao J, Rodrigues J M C, Martins P A F, On the utilization of the reproducing kernel particle method for the numerical simulation of plane strain rolling. International Journal of Machine Tools and Manufacture, 2003,43: 89-102
    [93]Hui-Ping Wang, Meshfree smooth contact formulation and boundary condition treatments in multi-body contact, Ph.D. Dissertation of the University of Iowa, 2000
    [94]Cheng-Tang Wu, Mark E. Botkin, Hui-Ping Wang, Development of a Coupled Finite Element and Mesh-free Method in LS-DYNA, 7th International LS-DYNA Users Conference, 2002
    [95]Nam H. Kim, Ki-Young Yi, Kyung K. Choi, Meshless analysis and die shape design of extrusion process, American Institute of Aeronautics and Astronautics, AIAA–2002–5563
    [96] N. H. Kim, K. K. Choi, and M. Botkin, Numerical Method for Shape Optimization Using Meshfree Method, Structural and Multidisciplinary Optimization, 2002
    [97] Nam Ho Kim 1, Ki-young Yi, Kyung Kook Choi, A material derivative approach in design sensitivity analysis of three-dimensional contact problems, International Journal of Solids and Structures 39 (2002) 2087–2108
    [98]娄路亮 曾攀 方刚,无网格法及其在体积成形中的应用,塑形工程学报,Vol.8 No.3, 2001
    [99] 王卫东,无网格伽辽金法及其在金属塑性成形过程数值模拟中的应用研究,山东大学博士论文,2003
    [100] 王卫东,无网格法中本质边界条件的处理,力学季刊,Vol.23, No.4, 2002
    [101]卿启湘,李光耀,刘潭玉,棒材拉拔问题的弹塑性无网格法分析,机械工程学报,Vol.40,No.1,2004
    [102]卿启湘,李光耀,王永和,刘潭玉,棒材通过锥形模的静液挤压成形的无网格法分析,计算力学学报,Vol.21,No.6,2004
    [103]崔青玲,李长生,刘相华,王国栋,熊尚武,无网格 RKPM 法模拟平板轧制过程,应用力学学报,Vol.22,No.2,2005
    [104]崔青玲,刘相华,王国栋,熊尚武,无网格 RKPM 法及其在体积成型中的应用,东北大学学报,Vol 25,No.9,2
    [1] 王勖成 邵敏,有限单元法基本原理和数值方法(第 2 版),清华大学出版社,1998
    [2] Thomas-Peter Fries, Hermann G. Matthies, Classification and Overview of Meshfree Methods, Institute of Scientific Computing Technical University Braunschweig Brunswick, Germany, March, 2003
    [3] Nayroles B, Touzot G, Villon P. Generalizing the finite element method : diffuse approximation and diffuse elements. Comput. Mech., 1992, 10: 307-318
    [4] Lucy L, A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, 1977, 8(12): 1013-1024
    [5] W. K. Liu, Y. Chen, S. Jun, J. S. Chen, etal, Overview and Applications of the Reproducing Kernel Particle Methods, Archives of Computational Methods in Engineering: State of the art reviews, 1996, Vol. 3, pp. 3-80
    [6] Duarte C A, Oden J T. Hp clouds: a meshless method to solve boundary value problems [R].Technical Report 95205. Texas Institute for Computational and Applied Mathematics. University of Texasat Austin, 1995.
    [7] Sibson R, A vector identity for the Dirichlet tessellation, Mathematical Proceedings of the Cambridge Philosophical Society, 1980, 87:151-155
    [8] John Dolbow, Ted Belytschko, An Introduction to Programming the Meshless Element Free Galerkin Method, [J].Archives in Computational Mechanics,1998, 5(3): 207-241.
    [9] Philip. Schembri, A 3D meshless computational procedure for nonlinear analysis of structures, Ph.D. Dissertation of Texas A&M University, December 2002
    [10] 张雄,刘岩,无网格法,清华大学出版社,2004,北京
    [11] T. Belytschko, Y. Lu, and L. Gu, “Element-Free Galerkin Methods,” International Journal for Numerical Methods in Engineering, v. 37, p. 229-256, 1994.
    [12] Shaofan Li, Wing Kam Liu, Meshfree and particle methods and their applications, Appl. Mech. Rev. Vol.55, No.1,2002
    [13] Belytschko T, Y. Krongauz, D. Organ, et al, Meshless method: An overview and recent developments,Computer Methods Appl. Mech. Engrg.,1996,139: 3-47
    [14] Kaljevic I, Saigal S. An improved element free Galerkin formulation. International Journal for numerical methods in Engineering, 1997. 40, 2953-2974
    [15] B. N. Rao, S. Rahman, A Coupled Meshless-Finite Element Method for Fracture Analysis of Cracks, International Journal of Pressure Vessels and Piping 78(2001) 647-657
    [16] Beissel S, Belytschko T. Nodal integration of the element-free Galerkin. method. Computer Methods in Applied Mechanics and Engineering 1996, 139:49–74.
    [17] Jeffrey Gosz, Wing Kam Liu, Admissible Approximations for Essential Boundary Conditions in the Reproducing Kernel Particle Method, Computational Mechanics, Vol. 19, pp. 120-135, 1996
    [18] Sonia Fernandez-Mendez, Imposing essential boundary conditions in mesh-free methods,Comput. Methods Appl. Mech. Engrg. 193 (2004) 1257–1275
    [19] Günther, Implementation of boundary conditions for meshless methods,Computer Methods in Applied Mechanics and Engineering,1998,163:205-230
    [20] Q.Z. Xiao, M. Dhanasekar, Coupling of FE and EFG using collocation approach, Advances in Engineering Software 33 (2002) 507–515
    [21] Lu H. and Chen J. S., Adaptive Meshfree Particle Method, Lecture Notes in Computational Science and Engineering, Vol. 26, 2002, 251-267.
    [22] Wing Kam Liu, Rasim Aziz Uras, Y. Chen, Enrichment of the Finite Element Method with the Reproducing Kernel Particle Method
    [23]T. Zhu, and S. N. Atluri, A Modified Collocation Method and a Penalty Formulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method, Computational Mechanics, vol. 21, 211-222 1998.
    [24] Lancaster, P. and Salkauskas, K, Surfaces Generated by Moving Least Sqaures Methods, Mathematics of Computation, 1981, 37:141-158
    [1] 彭颖红,金属塑性成形仿真技术,上海交通大学出版社,1999
    [2] Y.-M. Guo, K. Nakanishi, A backward extrusion analysis by the rigid–plastic integralless–meshless method, Journal of Materials Processing Technology 140 (2003) 19–24
    [3]J Bonet, S Kulasegaram, Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, International Journal of Numerical Methods in Engineering, 2000, 47:1189-1214
    [4] 宋康祖,紧支函数无网格方法研究,清华大学博士论文,2001
    [5] W. K. Liu, Y. Chen, S. Jun, J. S. Chen, etal, Overview and Applications of the Reproducing Kernel Particle Methods, Archives of Computational Methods in Engineering: State of the art reviews, Vol. 3, pp. 3-80, 1996
    [6] J.-S. Chen, C. Pan, C.M.O. Roque, et al, A lagrangian reproducing kernel paticle method for metal forming analysis, Computational Mechanics 22 (1998) 289-30
    [1] 彭颖红,金属塑性成形仿真技术,上海交通大学出版社,1999
    [2] 李尚健,金属塑性成形过程模拟,北京 机械工业出版社 1999
    [3] P. Cleary, J. J. Monaghan, Conduction modelling with SPH, J. Computat. Phys. 148, 227, (1999)
    [4] J.J. Monaghan, Simulating free surface flows with SPH, Journal of Computational Physics, 110, 399-406 (1994).
    [5] J.-S. Chen, C.Pan, C.M.O.L.Roque, H.-P. Wang, a lagrangian reproducing kernel particle method for metal forming analysis, Computational Mechanics 1998;22: 289-307
    [6] Jiun-Shyan Chen, Analysis of metal forming process based on meshless method, Journal of Materials Processing Technology, 1998;80–81: 642–646
    [7]Aluru.N.R, A reproducing Kernel particle method for meshless analysis of micro-electromechanical systems. Comput Mech, 1999, 23:324~338
    [8]Li G, Belytschko T. element-free Galerkin method for contact problems in metal forming analysis. Eng Comput 2001;18:62-78
    [9] Sladek, J., Sladek, V., and Atluri, S.N.,(2001):"A pure contour formulation for the meshless LBIE method in thermoelasticity" Computer Modeling in Engineering & Sciences, Vol.2., No.4.
    [10] N.Rebelo, S. Kobayashi, A coupled analysis of viscoplastic deformation and heat transfer, Int, J. Mech. Sci., 1980, 22, 707-718
    [11] A.T. Male, M.G. Cockcroft, A Method for the Determination of the Coefficient of Friction of Metals under Conditions of Bulk Plastic Deformation, J. Inst. Met. 1965;93: 38–4
    [1]Zhou. Fei, Su. Dan, Peng. Yinghong, Key technologies for simulation of metal forming process with finite volume method, Journal of Shanghai Jiaotong University, Vol.37, No.2, 2003: 149-152
    [2]胡云进,周维垣,寇晓东,三维无单元法及其应用,岩土力学与工程学报,Vol.23, No.7, 2004: 1136-1140
    [3] Philip. Schembri, A 3D meshless computational procedure for nonlinear analysis of structures, Ph.D. Dissertation of Texas A&M University, December 2002
    [4] Li Guangyao, T Belytschko, Element-free Galerkin method for contact problems in metal forming analysis, Engineering Computations, 2001, 18:62-78
    [5] Guangyao Li, Kalilou Sidibe, Guirong Liu, Meshfree method for 3D bulk forming analysis with lower order integration scheme, Engineering Analysis with Boundary Elements, 2004
    [6] I. Alfaro, D. Bel, E. Cueto, M. Doblaré, Three-dimensional simulation of aluminum extrusion by the α-shape based natural element method, Computer Methods in Applied Mechanics and Engineering, Vol.195: 4269-4286
    [7]John O. Hallquist, LS-DYNA theoretical manual, Livermore Software Technology Corporation, May 1998
    [8] J. Bonet, S. Kulasegaram, Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, International Journal of Numerical Methods in Engineering, 2000, 47:1189-1214
    [9] S. Li, D. Qian, W.K. Liu, T. Belytschko, "A meshfree contact-detection algorithm," Computer Methods in Applied Mechanics and Engineering, 190: 3271-3292 (2001)
    [10] 詹梅,面向带阻尼叶片精锻过程的三维有限元数值模拟研究,西北工业大学博士学位论文,2000,西安
    [1] 彭颖红,金属塑性成形仿真技术,上海交通大学出版社,1999
    [2] 史宝军,袁明武,陈永强,无网格方法数值结果的可视化方法与实现,工程力学,Vol.21, No.6, 2004: 51-55
    [3] Franz Aurenhammer, Voronoi Diagrams: A survey of a fundamental data structure, ACM computing surveys, Vol. 23, No.3, 1991:345-405
    [4] A. Bowyer, Computing Dirichlet Tessellation, The Computer Journal, Vol.24, No.2, 1981:162-166
    [5] D. F. Waston, Computing the n-dimension Delaunay Tessellation with Application to Voronoi Polytopes, The Computer Journal, Vol.24, No.2, 1981:167-172
    [6] 石教英,蔡文立,科学计算可视化算法与系统,科学出版社,1996
    [7] 杨欣,限定 Delaunay 三角剖分,北京航空航天大学博士学位论文,2001
    [8] J X. Zhou, J B. Wen, H Y. Zhang, L. Zhang, A node integration and post-processing techniquebased on Voronoi diagram for Galerkin meshless methods, Comput. Methods Appl. Mech. Engrg. 192 (2003) 3831–3843
    [9] Boissonnat J-D, Geometric structures for three-dimensional shape representation. ACM Transactions on Graphics, 1984, 3(4):266-286.
    [10] Edelsbrunner H, Mucke E P. Three-dimensional alpha shapes. ACM Transaction on Graphics, 1994,13(1): 43-72.
    [11] Bajaj C L, Bernardini F,Xu G. Automatic reconstruction of surfaces and scalar fields from 3D scans. In Cook R ed. Proceedings of SIGGRAPH’95. Danvers:Assison-Wssley Publishing Company,1995, 109-118.
    [1] Belytschko T, Y. Krongauz, D. Organ, et al, Meshless method: An overview and recent developments,Computer Methods Appl. Mech. Engrg.,1996,139: 3-47
    [2] Belikov V V, Ivanov V D, Kontorovich V K, et al. The non Sibson interpolation: A new method of interpolation of the values of a function on an arbitrary set of points. Computational Mathematics and Mathematical Physics, 1997, 37(1):9~15
    [3] Cueto E, Sukumar N, Calvol B, et al. Overview and recent advances in natural neighbour Galerkin methods. Archives of Computational Methods in Engineering, 2003, 10(4):307~384
    [4] 王勖成 邵敏,有限单元法基本原理和数值方法(第 2 版),清华大学出版社,1998
    [5] Sambridge M, Braun J, McQueen H. Computational meth ods for natural neighbour interpolation in two and three dimensions. In: May, Easton, eds. The Seventh Biennial Computational Techniques and Applications Conference,1995-07-03-07, Melbourne, Australia, Singapore: World Scientific, 1986. 685~692
    [6] 张雄,刘岩,无网格法,清华大学出版社,2004,北京
    [7] Cueto E, Cegonino J, Calvo B, Doblare M. On the imposition of essential boundary conditions in natural neighbour Galerkin methods. Commun Numer Meth Engng, 2003, 19: 361~376
    [8] John Dolbow, Ted Belytschko, An Introduction to Programming the Meshless Element Free Galerkin Method[J],.Archives in Computational Mechanics,1998, 5(3): 207-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700