煤田火灾无线自组网钻孔温度远程监控系统的开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤田火灾分布很广,遍布南北半球,不仅中国有,而且印度、美国、俄罗斯、澳大利亚、印度尼西亚、中亚等国家和地区都普遍存在。中国由于特殊的地理位置和气候条件,成为世界上煤田自燃灾害最为严重的国家。据初步估算,我国煤田火灾每年至少造成200亿元的经济损失。现有的煤田火灾温度监测主要是人工测温法,测温法由于是点接触,预测预报范围小,安装、维护工作量大、不能提供实时监测和预警,特别是探头、引线极易破坏,在实际应用中受到技术和经济的限制,不宜大面积探火采用,不能很好的满足煤矿安全生产的要求。由于煤田发火区域有隐蔽性、着火点分散、被测点多、距离远等特点,使得对煤田火灾的预防、监控和治理非常困难。无线自组网技术、移动通信技术、互联网技术与温度传感器相结合的监测方法,是近几年来一个新的发展趋势,改变了传统温度传感器系统的拓扑结构,适应更多温度测量的应用场合。
     本文根据煤田火灾钻孔温度监测的实际需求,设计了集ZigBee技术、GPRS技术、Internet技术、嵌入式计算机控制技术、传感器技术、数据采集技术、数据库技术于一体的煤田火灾无线自组网钻孔温度远程监控系统。本文给出了系统的整体组成框架,对系统的功能和性能需求、工作原理和工作方式进行了分析,设计了无线测温终端、ZigBee-GPRS网关的硬件和软件及上位机监控中心系统,描述了监控系统的应用环境,给出了现场布置方法,论述了系统的监控机制,分析了工业现场的应用效果。本系统将ZigBee技术和GPRS技术相结合,实现了煤田火区钻孔温度数据短距离采集与数据的远程传输,解决了目前煤田火灾远程监控的难题,节省了系统的成本。工业现场应用表明本系统通讯距离满足大规模煤田火灾的监测需求,具有高的可靠性,能方便的实现煤田火灾监测的自动化和网络化。同时亦可检验煤田火灾治理效果,对煤矿优选安全生产方案,科学、合理地进行生产管理和事故预防工作起到了重要作用。因此,该远程监控系统的研究对煤田火灾的预测和火源探测技术的发展具有实际指导的重要意义。
Coalfield fire is widely distributed around the world, from China, India, America, Russia, Australia, Indonesia, Central Asia and other countries and regions. Due to the special geographical location and climatic conditions, the coalfield spontaneous combustion in China is among the most serious countries in the world. It is estimated that the economic losses of China's coalfield fire is at least RMB 200 billion per year. The existing temperature monitoring technique of the coalfield fire is mainly by means of artificial monitoring. As temperature monitoring possesses the shortcomings of point-contact, small forecast range, heavy workload of installation and maintenance, failing to provide real-time monitoring and early warning, especially the easy damage of probe and lead, it is restricted in practical applications due to technical and economic constraints, which leads to the infeasibility of widely used for fire detection, hence it can not be well positioned to meet the requirements of coal mine production safety. The Characters of spontaneously combusted coalfield, such as invisibility, scattered ignition points, remote distance and other characteristics, make coalfield fire prevention, monitoring and control extremely difficult. The monitoring method of the Wireless ad hoc network technology, mobile communication technology, Internet technology combined with the temperature sensor is a new development trend in recent years. It has changed the topology of the traditional temperature sensor system to meet the additional applications of the temperature measurement.
     According to actual demands of the coalfield fire borehole temperature monitoring, the system integrates ZigBee technology, GPRS technology, Internet technology, embedded computer control technology, sensor technology, data acquisition technology and database technology in one. The present gived a framework of the overall system composition, the function and required performance, the working principle and method of the system, designed the hardware and software of the wireless temperature measurement terminal, ZigBee-GPRS gateway and host computer control center system, described the application environment of the monitoring system and the layout method in engineering,discussed the monitoring mechanism of the system, and analyzed effect of the system in practical industrial engineering. The system integrates the advantages of both ZigBee and GPRS technology. It realized the coalfield fire area temperature Short-range acquisition of the data and remote transmitting of the data, solved the present difficult problem of monitoring remote coalfield fires. The application of system in practical engineering shows that the communication range of the system meets the needs of large-scale coalfield fire monitoring with high reliability. The system can easily achieve the automation and network of coalfield fire monitoring.It is very important for checking out the effect of the coalfield fire controlling. It plays an important role for coal mine optimal safety programs, scientific and reasonable production management and accident prevention. Therefore, the research of the remote monitoring system has significance of the practical guidance for the forecast of the coal fire and the developing of the fire detection technology.
引文
[1]能源发展“十一五”规划.国家发展改革委,2007:5~6
    [2]王传英基.于信息融合技术在煤层自然发火预测系统中的研究[D].沈阳:辽宁工程技术大学,2006
    [3]程卫民.矿井煤炭自燃的综合防治技术及其实践[J].西北煤炭,2007,5(3):17~22
    [4]姚常明,张平.露天煤矿揭煤自然发火特性研究[J].露天采煤技术,1999,(2):42~43
    [5] I.F Akyildiz, W.Su, Y. Sankarasubramaniam and E. Cayirci.Wireless sensor networks: a survey. December 2001
    [6] Arici T, Altunbasak Y.Adaptive Sensing for Environment Monitoring Using Wireless Sensor Networks[J]. IEEE WCN C, 2004, 5(1)
    [7]张孟建,孙志辉.一种基于Web技术的机械设备远程监控系统[J].微计算信息,2004,20(12)? ?
    [8] Jeff Reywheal. Designing A Wireless Network. MeCullough.2002: 120~130
    [9] A Arora, P Dutta, S Bapat, V Kulathumani, H Zhang. A line in the sand: Wireless sensor network for target detection, classification, and tracking. Computer Networks, 2004, 3(16): 93~102
    [10]刘彬.煤矿瓦斯监测网格型无线传感器网络的实现[D].北京:北京交通大学,2008
    [11]章浩.无线传感器网络中节点定位及其在农业中的应用[D].镇江:江苏大学,2007
    [12] Craig Ulmer. Wireless Sensor Networks. http: // users. ece. gatech. edu/grimace/research/ nsensorsimii/ wireless-sensor-networks.ppt
    [13] C. E. Nishimura and D. M. Conlon. IUSS dual use: Monitoring whales and earthquakes using SOSUS. Mar.Technol.Soc.J, 1994, 27(pp): 13~21
    [14] Nagpal R., Shrobe H., and Bachrach, J.Organizing a global coordinate system from local information on an ad hoc sensor network. In Information Processing in Sensor Networks: Second International Workshop, IPSN 2003 (Palo Alto, April 2003), no. 2634 in Lecture Notes in Computer Science, Springer-Verlag, pp. 333~348
    [15] Odyssey. MIT Sea Grant's AUV Lab, http: //auvlab.mit.edu
    [16] Heidemann J, Silva F, lntanagonwiwat C. Building efficient wireless sensor networks with low level naming. In: Marzullo K, ed. Proceedings of the 18th ACM Symposium on Operating System Principles. New York: ACM Press, 2001. 146~159
    [17] Guibas LJ. Sensing, tracking, and with relations. IEEE Signal Processing Magazine, 2002,19(2): 73~85
    [18] Rabaey M J, Ammer M, Silva L J, et al.PicoRadio supports ad hoc ultra-low power wireless networking [J].IEEE Computer Magazine, 2000, 33(7): 42~48
    [19] POTTIE J G, KAISER J W. Wireless network sensors[A].Proc of Communications of the ACM[C]. New York, USA, 2000.551~558
    [20] Warneke B, Last M, Liebowitz B, et al. Smart dust: communicating with a cubic-millimeter computer [J]. IEEE Computer, 2001, 34(1): 44~51
    [21] SHIH E, CHOSH, ICKESN, et al.Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks[A]. Proc of ACM Conference on Mobile Computing and Networking[C]. Rome, Italy, 2001
    [22] Yew. SCADDS: Scalable Coordination architectures for deeply distributed systems [EB/OL]. http: //www. isi. edu/scads, 2002
    [23]黄进宏,左菲,曾明.一种基于能量优化的无线传感网络白适应组织结构和协议[J].电讯技术,2002年,第6期:118~121
    [24]于海斌,曾鹏,王忠锋等.分布式无线传感器网络通信协议研究[J].通信学报,2004年,25(10):102~110
    [25]刘善平,林亚平,周四望.一种低能耗低延时的无线传感器网络MAC协议[J].计算机应用,2006年,26(2):287~291
    [26]顾肇基译.GSM网络与GPRS.电子工业出版社[M],2001.1:222~259
    [27] Peter stuckmann, Niels Ehlers, Bianca Wouters. GPRS Traffic Performance Measurements[J]. Communication Networks, 2002
    [28] Matti annala.Pentti vaha.Toshio Matsushita.et al.Remote Control of an Intelligent Vehicle in an Electronics Manufacturing Facility via the Internet[J].In: Proceeding of the 2000 IEEE International Workshop on Robot and Human Interactive Communication, 2000
    [29] M.vatani.Power quality monitoring system at Austin Energy[J]. IEEE PES Transmission and Distribution Conference and ExPosition, 7~12 Sept 2003
    [30] Messer H, Zinevich A, Alpert P.Environmental Monitoring by Wireless Communication Networks[J].Science, 2006, 312: 713~714
    [31] M.Elena, J.M.Quero, S.L.Toral, et al.CARDIOSMART: Intelligent Cardiology Monitoring system Using GPS/GPRS Networks, 2002
    [32] S Khoor, J Nieberl, K Fugedi, et al.internet-based GPRS Long-term ECG Monitoring and Non-linear Heart-rate Analysis for Cardiovascular Telemedicine Management[J]. Computers in Cardiology, 2003
    [33] Nicholsh.M.C., Bernard C.B.and avid M·H. Remote Instrument Diagnosis on the Internet[J]. IEEE Intelligent System, 1998, 5, 70~76
    [34]凌振宝,王君,马心璐.一种网络测控模型的研究[J].仪表技术与传感器.2003,2:37~38
    [35]黄承安,张跃,云怀中.基于GPRS的远程仪表监控系统[J].电测与机表,2003,40(8):42~45
    [36]吴云峰,周龙军.基于GPRS技术PLC远程通信应用于城市热网监控[J].世界仪表与自动化,2004,8(7):66~68
    [37]郭风雷,胡大可.基于GPRS的起重机械监控系统[J].机床与液压,2005,(2):137~138
    [38]曹洪太.基于Internet和GPRS技术的温室远程监控系统[D].山东:曲阜师范大学,2006
    [39]文远保,杜冠.GPS/GPRS车载监控终端开发[J].微处理机,2007.4,28(2):105~107
    [40]赵亮,黎峰.GPRS无线网络在远程数据采集中的应用[J].计算机工程与设计,2005.26(9):2552~2554
    [41]朱文凯,陶波,何岭松.基于Internet的嵌入式e-维护装置[J].测控技术,2002,21(6):17~21
    [42]彭瑜.低功耗、低成本、高可靠性、低复杂度的无线点通信协议-ZigBee[J].自动化仪表,2005,26(5):1~4
    [43] Weaver Bill.A buzz about ZigBee: Low-power self-organizing data networking. Scientific Computing and Instrumentation, 2005, 22(11): 14~48
    [44] Fukui K,Fukunaga S, Tanimo to K.ZigBee technology for low cost and low power radio communication systems. Journal Institute of Electronics Information and Communication Engineers, 2005, 88(1): 40~45
    [45] Doo Seop Yun, Sung Ho Cho.A data transmission method in ZigBee networks using power efficient device. Advanced Technologies for Communications, 2008, 162~165
    [46]瞿雷,刘盛德,胡咸斌.ZigBee技术及应用[M].北京:北京航空航天大学出版社,2007
    [47]徐惠君,夏吉庆,周修理.基于GPRS虚拟串口的无人抄表系统[J].东北农业大学学报,2007,38(2):240~242
    [48]张建华,金广锋.基于GPRS的远程抄表系统[J].科技广场,2007,7(3):95~99
    [49]虞明雷,姜媛媛.基于GPRS的无线传输系统[J].机电工程,2007,24(5):34~36
    [50] Proceed ings of the 1996 8th International Conference on Metering and Tariffs for Energy Supply. Digital measurement system for electricity meters. IEEE Conference Publieation,1996(7): 3~5
    [51]林海编著.浏览器/务器应用开发[M].北京:科学出版社,2000
    [52] (美)史密斯.Intranet客户机朋良务器应用指南[M].北京:人民邮电出版社,1999
    [53] Joel Kanter Understanding Thin-Client/Sevrer Computing[M]. ISBN l-57231-744-2,1997
    [54]苏晓峰等.一种基于Web的温室远程监控系统方案设计[J].农业网络信息,2006(1):18~21
    [55]金海红.基于ZigBee的无线传感器网络的节点设计[D],合肥,合肥工业大学,2007
    [56]何道清.传感器与传感器技术[M].北京:科学出版社,2004:207~210
    [57]刘爱华,满宝元.传感器原理与应用技术[M].北京:人民邮电出版社,2006:97~102
    [58]曾光宇.现代传感器技术与应用基础[M].北京:北京理工大学出版社,2006:126~129
    [59]牛洪昌,刘长军等.基于MAX6675的PC机实时多路温度采集系统[J].国外电子测量技术,2004年增刊,75~77
    [60]顾志峰,姚萌.基于网关的嵌入式数据采集系统[J],仪器仪表学报,2006,6
    [61] W.Richard Stevens著,范建华等译.《TCP/IP详解卷1:协议》,机械工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700