TiO_2纳米材料的光催化及光伏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的高速发展,人类面临着能源危机与环境污染的双重压力。自1972年日本科学家Fujishima等人发现了二氧化钛(TiO2)半导体的光催化现象以及1991年瑞士科学家Gratzel等人成功研制的第一块TiO2基染料敏化太阳能电池以来,TiO2纳米材料的光催化和光伏特性已被广泛的研究。然而,由于TiO2半导体的带隙较大,仅仅能吸收太阳光中5%的紫外光,而对大部分的可见光得不到很好的吸收,并且导带中的光生电子与价带中的空穴极易复合,从而导致它的光催化活性和光电转换效率不够高,这将严重限制了该材料在光催化和光伏领域中的广泛应用。因此,提高TiO2材料的光催化活性和光伏特性将成为本文研究的重要目标。
     本文采用基于平面波赝势方法的密度泛函理论(DFT),系统的研究了金属、金属与非金属、非金属与非金属元素对TiO2光催化材料的掺杂改性。并且在金属与非金属元素掺杂TiO2体系中,我们采用新颖的溶胶-凝胶溶剂热法制备了掺杂TiO2光催化剂以及表征了它的各种性能。另外,我们还采用类似的计算方法研究了染料敏化太阳能电池(DSSCs)中苯甲酸(BA)染料分子敏化TiO2光阳极的物理化学机制和光伏特性。研究获得的创新性成果如下:
     第一,在金属Ni掺杂TiO2体系中,我们的计算结果表明:Ni替位O掺杂的锐钛矿和金红石TiO2的禁带中出现了一系列的Ni3d杂质能级;对于富O生长条件下的Ni替位Ti掺杂锐钛矿TiO2,杂质Ni原子的3d电子态引起了体系的带隙减小。这些结果导致TiO2出现吸收光谱边缘红移和高效的可见光光催化活性。我们的理论结果首次揭示了人们在实验中观察到的Ni掺杂增强TiO2可见光光催化活性的物理化学起因。
     第二,为了研究金属与非金属掺杂TiO2的光催化活性,我们首次采用理论与实验结合的方式研究了Eu/Si共掺杂锐钛矿TiO2和Si&Fe共掺杂锐钛矿与金红石TiO2体系的光催化活性。研究结果表明:随着杂质Si的掺入,O2p态和Si3p态的杂化诱发了锐钛矿TiO2的带隙减小;Eu的掺入会使锐钛矿Ti02的禁带中产生Eu4f杂质能级;当Eu和Si共同掺入时,Eu和Si的协同效应会使得锐钛矿TiO2的带隙减小,并且在禁带中出现Eu4f的杂质能级,它们使得TiO2材料对紫外光和可见光的吸收能力同时增强,因而导致Eu/Si共掺杂锐钛矿TiO2具有高效的可见光光催化活性。而且我们认为:非金属Si的掺入具有抑制Eu掺杂锐钛矿TiO2体系中光生电子-空穴对复合的作用。对于Si&Fe共掺杂锐钛矿和金红石TiO2,随着Fe的掺入,TiO2的价带顶和导带底均出现了Fe3d杂质能级;Si和Fe的协同效应能使共掺杂TiO2的带隙减小,同时在它的价带顶和导带底也都出现Fe3d杂质能级,从而引起TiO2的吸收光谱边缘出现明显的红移现象,导致Si&Fe共掺杂TiO2具有很强的可见光光催化活性。我们的理论与实验结果吻合的很好,这些创新性的研究成果将进一步的推动了TiO2材料在光催化领域中的广泛应用。
     第三,为了研究非金属与非金属掺杂TiO2的光催化活性,我们系统的研究了C/B共掺杂锐钛矿和金红石TiO2的光催化活性。计算结果表明:C/B共掺杂能在锐钛矿TiO2体系的禁带中诱发出一些C2P和B2P的杂化态,并且带隙减小约0.8eV;在C/B共掺杂金红石TiO2中,C2P态、B2P态与价带之间会发生强烈的耦合作用,因而使得体系的带隙变窄。它们导致TiO2的光谱吸收边缘出现明显的红移现象以及降低光生电子-空穴对的复合率,从而增强了TiO2的光催化活性。此外,随着C/B杂质浓度的增大,C/B共掺杂TiO2的光吸收和光催化活性也逐渐的提高。这些理论研究首次揭示了科学家们在实验中观察到的C/B共掺杂增强TiO2光催化活性的物理化学机制。
     第四,为了研究BA染料分子敏化TiO2光阳极的敏化机制,我们借助于DFT计算获得了吸附BA染料分子的锐钛矿(101)和金红石(110)TiO2表面体系的最稳定吸附结构。BA染料分子中的O2P态与锐钛矿(101)Ti02表面中的O2p、Ti3d态间的杂化会引起吸附体系的价带顶出现上移,它导致了吸附BA染料分子的锐钛矿(101)TiO2表面体系的光吸收能力增强;在吸附BA染料分子的金红石(110)TiO2表面体系中,O2p、C2p和Ti3d间的强耦合作用诱发了体系的光谱吸收边缘出现红移现象,并且该吸附体系的吸收光谱在476.0nm和610.0nm处出现了两个强吸收峰。我们的计算结果表明:BA染料分子在TiO2表面的吸附行为能有效的增强DSSCs中TiO2光阳极的光伏特性,这将有助于提高TiO2-DSSCs的光电转换效率,以至于该光电池能够迅速的走向产业化市场。
With the high speed development of world economy, mankind is faced with the dual pressures of the energy crisis and environmental pollution. Since1972, Japanese scientists Fujishima et al. discovered the photocatalytic phenomenon of TiO2semiconductor, and Swiss scientists Gratzel et al. developed successfully the first piece TiO2-based dye-sensitized solar cells in1991, the photocatalytic and photovoltaic properties of TiO2nanomaterials have been studied widely. However, due to the large band gap of TiO2semiconductor, it can only absorb5%ultraviolet(UV)-light and can't absorb a big portion visible-light in sunlight, and that photogenergated electrons in the conduction band and holes in the valence band tend to recombine relatively easily, resulting in lower photocatalytic activity and photoelectric conversion efficiency of TiO2, which will limit severely its applications in photocatalysis and photovoltaic fields. Therefore, improving the photocatalytic activity and photovoltaic property of TiO2materials will become one of the most important goals in this paper.
     In this paper, doping TiO2materials by the metal, metal and nonmetal, nonmetal and nonmetal elements have been investigated systematically using the density functional theory (DFT) based on the plane-wave pseudopotential approach. Moreover, metal and nonmetal elements doped TiO2photocatalyst is prepared using a novel sol-gel solvothermal method and is characterized by a variety of laboratory instruments. In addition, we also studied the physical and chemical mechanism and photovoltaic property of benzoic acid (BA) dye molecule sensitized TiO2photoanode by the similar computational method in dye-sensitized solar cells (DSSCs). Obtaining the innovative research results are as follows:
     First, in the metal Ni-doped TiO2, our calculated results indicate that substitutional Ni to O-doped anatase and rutile TiO2have a series of Ni3d impurity levels appearing in the band gap. For substitutionally Ni to Ti-doped anatase TiO2under O-rich growth condition,3d electronic states of Ni atoms cause the band gap narrowing of the system. These results lead to TiO2appearing the redshift of absorption spectrum edge and the efficient visible-light photocatalytic activity. Our theoretical results reveal firstly the physical and chemical origin of Ni-doped enhanced the visible-light photocatalytic activity of TiO2in experiments.
     Second, to investigate the photocatalytic activity of the metal and nonmetal doped TiO2, we firstly investigate the photocatalytic activity of Eu/Si codoped anatase TiO2and Si&Fe codoped anatase and rutile TiO2systems by the combination of theory and experiment. The research results show that with the doping of impurity Si, the hybridizations of O2p state and Si3p state induce the band gap narrowing of anatase TiO2. Eu doping can make Eu4f impurity levels appearing in the forbidden gap of anatase TiO2. The synergistic effects of Eu and Si codoping may reduce the band gap of anatase TiO2and produce Eu4f impurity levels in the band gap of anatase TiO2, which makes TiO2materials enhance the absorption of the UV-and visible-light, resulting in Eu/Si-codoped anatase TiO2with the outstanding visible-light photocatalytic activity. Moreover, we believe that the doping of nonmetal Si can effectively inhibit the recombination of photogenerated electron-hole pairs in Eu-doped anatase TiO2system. For Si&Fe-codoped anatase and rutile TiO2, Fe3d impurity levels appear on the valence band top and conduction band bottom of TiO2with the doping of Fe. Synergistic effect of Si and Fe can further reduce the band gap of codoping TiO2while Fe3d impurity levels appear on the valence band top and conduction band bottom of TiO2, which causes an obvious redshift of the optical absorption edge in TiO2, resulting in a strong visible-light photocatalytic activity in Si&Fe-codoped TiO2. Our theoretical and experimental results agree well. These innovative researches will further promote the applications of TiO2nanomaterials in the photocatalysis field.
     Third, in order to study the photocatalytic activity of the nonmetal and nonmetal doped TiO2, we investigated systematically the photocatalytic activity of C/B-codoped anatase and rutile TiO2. The calculated results indicate that C/B codoping can induce some hybridized states of C2p and B2p appearing in the forbidden gap of anatase TiO2and the band gap has a narrowing about0.8eV. In C/B-codoped rutile TiO2, the couples of the valence band, C2p and B2p result in a band gap narrowing of the system. These results lead to an obvious redshift of the optical absorption edge and a low recombination rate of photogenerated electron-hole pairs in TiO2system, which enhances the photocatalytic activity of TiO2. In addition, we find that the optical absorption and photocatalytic activity of C/B-codoped TiO2improve gradually with the increase of C/B impurities concentration. Our theoretical research reveals firstly the physical and chemical mechanism of C/B-codoped enhancing the photocatalytic activity of TiO2in scientists' experiments.
     Fourth, to investigate the sensitized mechanism of BA dye molecule sensitized TiO2photoanode, we obtain the most stable adsorption geometries of BA dye molecule adsorbed on anatase (101) and rutile (110) Ti02surfaces by the DFT calculations. The hybridization of between O2p states of BA molecule and O2p, Ti3d states of anatase (101) TiO2surface leads to an obvious rise of the valence band maximum, which causes the optical absorption enhancing of BA dye molecule adsorbed on anatase (101) TiO2surface. In BA dye molecule adsorbed on rutile (110) TiO2surface system, the coupling of among the O2p, C2p, and Ti3d induce a redshift of optical absorption edge, and the absorption spectrum of adsorption system appears two strong absorption peak at476.0nm and610.0nm. Our calculated results show that adsorption behavior of BA dye molecule on TiO2surfaces can effectively enhance the photovoltaic property of TiO2photoanode in DSSCs, which leads to an improved photoelectric conversion efficiency of TiO2-DSSCs, so that photoelectric cell can quickly take one's place on the industrialization market.
引文
[1]肖英.我国新能源技术进步问题与对策研究[J].科技进步与对策,2008,25(2):82-85
    [2]虞华,郭宗林,陈光亚,等.新能源产业现状及发展[J].中国电力,2011,44(1):83-85
    [3]赵斌,胡益锖,杨森,等.太阳能综述[J].化工装备技术,2012,33(1):57-64
    [4]Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38
    [5]Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region[J]. Chem. Phys. Lett.,1986,123(1):126-128
    [6]Vignesh K., Hariharan R., Rajarajan M., et al. Visible light assisted photocatalytic activity of TiO2-metal vanadate (M=Sr, Ag and Cd) nanocomposites[J]. Mat. Sci. Semicon. Proc., 2013,16(6):1521-1530
    [7]Linsebigler A. L., Lu G., Yates J. T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chem. Rev.,1995,95(3):735-758
    [8]Minabe T., Tryk D. A., Sawunyama P., et al. TiO2-mediated photodegradation of liquid and solid organic compounds[J]. J. Photochem. Photobiol. A:Chem.,2000,137(1):53-62
    [9]Fujishima A., Rao T. N., Tryk D. A. Titanium dioxide photocatalysis[J]. J. Photochem. Photobiol. C,2000,1(1):1-21
    [10]Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528):269-271
    [11]Kumar A., Jain A. K. Photophysics and photocatalytic properties of Ag+-activated sandwich Q-CdS-TiO2[J]. J. Photochem. Photobiol. A:Chem.,2003,156(1):207-218
    [12]Irie H., Watanabe Y., Hashimoto K., et al. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J]. J. Phys. Chem. B,2003,107(23):5483-5486
    [13]Lindgren T., Mwabora J. M., Avendano E., et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive dc magnetron sputtering[J]. J. Phys. Chem. B,2003,107(24):5709-5716
    [14]Huang D. G., Liao S. J., Liu J. M., et al. Preparation of visible-light responsive N-F-codoped TiO2 photocatalyst by a sol-gel solvothermal method [J]. J. Photochem. Photobiol. A:Chem.,2006,184(3):282-288
    [15]Cong Y., Zhang J. L., Chen F., et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity[J]. J. Phys. Chem. C,2007, 111:(19)6976-6982
    [16]Xu J. H., Dai W. L., Li J., et al. Simple fabrication of thermally stable apertured N-doped TiO2 microtubes as a highly efficient photocatalyst under visible light irradiation[J]. Catal. Commun.,2008,9(1):146-152
    [17]Shi J. W., Zheng J. T., Wu P. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles[J]. J. Hazard. Mater.,2009,161(1):416-422
    [18]Tan K., Zhang H., Xie C., et al. Visible-light absorption and photocatalytic activity in molybdenum- and nitrogen-codoped TiO2[J]. Catal. Commun.,2010, 11(5):331-335
    [19]Dong F., Guo S., Wang H., et al. Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach[J]. J. Phys. Chem. C, 2011,115(27):13285-13292
    [20]Lu Y. H., Xu B., Zhang A. H., et al. Hexagonal TiO2 for photoelectrochemical applications[J]. J. Phys. Chem. C,2011,115(36):18042-18045
    [21]Dong W., Sun Y, Ma Q., et al. Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2-SiO2 nanocomposites to various organic contaminants [J]. J. Hazard. Mater.,2012,229:307-320
    [22]Liu M., Qiu X., Miyauchi M., et al. Energy-level matching of Fe(Ⅲ) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts[J]. J. Am. Chem. Soc., 2013,135(27):10064-10072
    [23]Leshuk T., Parviz R., Everett P., et al. Photocatalytic activity of hydrogenated TiO2[J]. ACS Appl. Mater. Interfaces,2013,5(6):1892-1895
    [24]Frank S. N., Bard A. J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. J. Am. Chem. Soc.,1977,99(1):303-304
    [25]Ranjit K. T., Willner I., Bossmann S. H., et al. Lanthanide oxide doped titanium dioxide photocatalysts:effective photocatalysts for the enhanced degradation of salicylic acid and t-cinnamic acid[J]. J. Catal.,2001,204(2):305-313
    [26]Ranjit K. T., Willner I., Bossmann S. H., et al. Lanthanide oxide-doped titanium dioxide photocatalysts:novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid[J]. Environ. Sci. Technol.,2001,35(7):1544-1549
    [27]Zhou J., Zhang Y., Zhao X. S., et al. Photodegradation of benzoic acid over metal-doped TiO2[J]. Ind. Eng. Chem. Res.,2006,45(10):3503-3511
    [28]Li F. B., Li X. Z., Ng K. H. Photocatalytic degradation of an odorous pollutant: 2-mercaptobenzothiazole in aqueous suspension using Nd3+-Ti02 catalysts[J]. Ind. Eng. Chem. Res.,2006,45(1):1-7
    [29]Liang C. H., Li F. B., Liu C. S., et al. The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of orange II[J]. Dyes Pigments, 2008,76(2):477-484
    [30]Shen X. Z., Liu Z. C., Xie S. M., et al. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination[J]. J. Hazard. Mater.,2009,162(2):1193-1198
    [31]Huang D. G., Liao S. J., Zhou W. B., et al. Synthesis of samarium- and nitrogen-co-doped TiO2 by modified hydrothermal method and its photocatalytic performance for the degradation of 4-chlorophenol[J]. J. Phys. Chem. Solids,2009,70(5):853-859
    [32]Ohno T., Akiyoshi M., Umebayashi T., et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Appl. Catal. A:General,2004, 265(1):115-121
    [33]Wan L., Li J. F., Feng J. Y., et al. Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN[J]. Appl. Surf. Sci.,2007, 253(10):4764-4767
    [34]O'Regan B., Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991,353(6346):737-740
    [35]Nazeeruddin M. K., Pechy P., Renouard T., et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells[J]. J. Am. Chem. Soc.,2001, 123(8):1613-1624
    [36]Gratzel M. Dye-sensitized solar cells[J]. J. Photochem. Photobiol. C,2003,4(2):145-153
    [37]Sayama K., Tsukagoshi S., Mori T., et al. Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes[J]. Sol. Energy Mater. Sol. Cells,2003, 80(1):47-71
    [38]Yao Q. H., Meng F. S., Li F. Y., et al. Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode[J]. J. Mater. Chem.,2003,13(5):1048-1053
    [39]Wang Z. S., Kawauchi H., Kashima T., et al. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell[J]. Coord. Chem. Rev.,2004,248(13):1381-1389
    [40]Chen Y, Zeng Z., Li C., et al. Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes[J]. New. J. Chem.,2005,29(6):773-776
    [41]Lundqvist M. J., Nilsing M., Lunell S., et al. Spacer and anchor effects on the electronic coupling in ruthenium-bis-terpyridine dye-sensitized TiO2 nanocrystals studied by DFT[J]. J. Phys. Chem. B.,2006,110(41):20513-20525
    [42]Tan B., Wu Y Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film[J]. J. Phys. Chem. B,2006,110(5):2087-2092
    [43]Ito S., Chen P., Comte P., et al. Fabrication of screen-printing pastes TiO2 powders for dye-sensitised solar cells[J]. Progr. Photovoltaics,2007,15(7):603-612
    [44]Gao F., Wang Y, Shi D., et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells[J]. J. Am. Chem. Soc.,2008,130(32):10720-10728
    [45]Liu B., Aydil E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells[J]. J. Am. Chem. Soc.,2009, 131(11):3985-3990
    [46]Marco L. D., Manca M., Giannuzzi R., et al. Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency[J]. J. Phys. Chem. C,2010,114(9):4228-4236
    [47]Fan S. Q., Kim C., Fang B., et al. Improved efficiency of over 10% in dye-sensitized solar cells with a ruthenium complex and an organic dye heterogeneously positioning on a single TiO2 electrode[J]. J. Phys. Chem. C,2011,115(15):7747-7754
    [48]Laskova B., Zukalova M., Kavan L., et al. Voltage enhancement in dye-sensitized solar cell using (001)-oriented anatase TiO2 nanosheets[J]. J. Solid. State. Electrochem.,2012, 16(9):2993-3001
    [49]Mosconi E., Selloni A., De Angelis F. Solvent effects on the adsorption geometry and electronic structure of dye-sensitized TiO2:a first-principles investigation[J]. J. Phys. Chem. C,2012,116(9):5932-5940
    [50]Ronca E., Pastore M., Belpassi L., et al. Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells:disentangling charge transfer and electrostatic effects[J]. Energy Environ. Sci.,2013,6(1):183-193
    [51]Fadadu K. B., Soni S. S. Spectral sensitization of TiO2 by new hemicyanine dyes in dye solar cell yielding enhanced photovoltage:probing chain length effect on performance [J]. Electrochimica Acta,2013,88:270-277
    [52]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002
    [53]Zhang H., Banfield F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:insights from TiO2[J]. J. Phys. Chem. B,2000, 104(15):3481-3487
    [54]Hanaor D. A. H., Sorrell C. C. Review of the anatase to rutile phase transformation[J]. J. Mater. Sci.,2011,46(4):855-874
    [55]Bakardjieva S., Stengl V., Szatmary L. Transformation of brookite-type TiO2 nanocrystals to rutile:correlation between micro structure and photoactivity[J]. J. Mater. Chem.,2006,16(18):1709-1716
    [56]Tang H., Berger H., Schmid P. E. Photoluminescence in TiO2 anatase single crystals[J]. Solid State Commun.,1993,87(9):847-850
    [57]Pascual J., Camassel J., Mathieu H. Resolved quadrupolar transition in TiO2[J]. Phys. Rev. Lett.,1977,39(23):1490-1493
    [58]Pascual J., Camassel J., Mathieu H. Fine structure in the intrinsic absorption edge of TiO2[J]. Phys. Rev. B,1978,18(10):5606-5614
    [59]Lu M. C, Chen J. N., Chang K. T. Effect of adsorbents coated with titanium dioxide on the photocatalytic degradation of propoxur[J]. Chemosphere,1999,38(3):617-627
    [60]Nazeeruddin M. K., Kay A., Rodicio I., et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=C1-, Br-,T, CN-, and SCN-) on nanocrystalline TiO2 electrodes[J]. J. Am. Chem. Soc.,1993, 115(14):6382-6390
    [61]Sayama K., Sugihara H., Arakawa H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye[J]. Chem. Mater.,1998,10(12):3825-3832
    [62]Schlichthorl G., Park N. G, Frank A. J. Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells[J]. J. Phys. Chem. B,1999,103(5):782-791
    [63]Lagemaat J., Park N. G, Frank A. J. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells:a study by electrical impedance and optical modulation techniques[J]. J. Phys. Chem. B,2000,104(9):2044-2052
    [64]Gratzel M. Perspectives for dye-sensitized nanocrystalline solar cells[J]. Prog. Photovolt. Res. Appl.,2000,8(1):171-185
    [65]Matijevic E., Budnick M., Meites L., et al. Preparation and mechanism of formation of titanium dioxide hydrosols of narrow size distribution[J]. J. Colloid Interface Sci.,1977, 61(2):302-311
    [66]Dislich H., Hinz P. History and principles of the sol-gel process, and some new multicomponent oxide coatings[J]. J. Non-Cryst. Solids,1982,48(1):11-16
    [67]Buddhudu S., Morita M., Murakami S., et al. Temperature-dependentluminescence and energy transfer in europium and rare earth codoped nanostructured xerogel and sol-gel silica glasses[J]. J. Lumin.,1999,83:199-203
    [68]Yang P., Song C. F., Lu M. K., et al. Defects and Photoluminescence of Ni2+ and Mn2+-doped sol-gel SiO2 glass[J]. J. Solid State Chem.,2001,160(l):272-277
    [69]Langlet M., Coutier C., Meffre W., et al. Microstructural and spectroscopic study of sol-gel derived Nd-doped silica glasses[J]. J. Lumin.,2002,96(2):295-309
    [70]Yang P., Lu M. K., Song C. F., et al. Photoluminescence properties of alkaline metallic ions doped sol-gel silica glasses[J]. Mater. Sci. Eng.:B,2002,90(1):99-102
    [71]Ayres J., Simendinger W. H., Balik C. M. Characterization of titanium alkoxide sol-gel systems designed for anti-icing coatings:I. chemistry[J]. J. Coat. Technol. Res.,2007, 4(4):463-471
    [72]Bacsa R. R., Gratzel M. Rutile formation in hydrothermally crystallized nanosized titania[J]. J. Am. Ceram. Sci.,1996,79(8):2185-2188
    [73]Zheng Y. Q., Shi E. W., Cui S. X., et al. Hydrothermal preparation of nanosized brookite powders[J]. J. Am. Ceram. Sci.,2000,83(10):2634-2636
    [74]Nagase T., Ebina T., Iwasaki T., et al. Hydrothermal synthesis of brookite[J]. Chem. Lett., 1999,9:911-912
    [75]Wang C. C., Ying J. Y. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals[J]. Chem. Mater.,1999,11(11):3113-3120
    [76]Kang M., Lee S. Y, Chung C. H., et al. Characterization of a TiO2 photocatalyst synthesized by the solvothermal method and its catalytic performance for CHCl3 decomposition[J]. J. Photochem. Photobio. A:Chem.,2001,144(2):185-191
    [77]Kim C. S., Moon B. K., Park J. H., et al. Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant [J]. J. Crystal Growth,2003,257(3):309-315
    [78]Wen B. M., Liu C, Y, Liu Y Bamboo-shaped Ag-doped TiO2 nanowires with heterojunctions[J]. Inorg. Chem.,2005,44(19):6503-6503
    [79]Byrappa K., Adschiri T. Hydrothermal technology for nanotechnology[J]. Progress in Grystal Growth and Characterization of Mater.,2007,53(2):117-166
    [80]Yang H. G, Liu G., Qiao S. Z., et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant{001} facets[J]. J. Am. Chem. Soc.,2009, 131(11):4078-4083
    [81]许平昌,柳阳,魏建红等.溶剂热法制备Ag-TiO2纳米材料及其光催化性能[J].物理化学学报,2010,26(8):2261-2266
    [82]Supphasrirongjaroen P., Praserthdam P., Mekasuwandumrong O., et al. Impact of Si and Zr addition on the surface defect and photocatalytic activity of the nanocrystalline TiO2 synthesized by the solvothermal method[J]. Ceram. Inter.,2010,36(4):1439-1446
    [83]Shen X. J., Zhang J. L., Tian B. Z. Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile[J]. J. Hazard. Mater.,2011,192(2):651-657
    [84]Hagfeld A., Gratzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chem. Rev.,1995,95(1):49-68
    [85]Hoffmann M. R., Martin S. T., Choi W., et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995,95(1):69-96
    [86]Choi W., Termin A., Hoffmann M. R. The role of metal ion dopants in quantum-sized 2:correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem.,1994,98(51):13669-13679
    [87]Xu J. H., Dai W. L., Li J., et al. Simple fabrication of thermally stable apertured N-doped TiO2 microtubes as a highly efficient photocatalyst under visible light irradiation[J]. Catal. Commun.,2008,9(1):146-152
    [88]Yu J. G, Xiong J. F., Cheng B., et al. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity[J]. Appl. Catal. B: Environ.,2005,60(3-4):211-221
    [89]Cherian S., Wamser C. C. Adsorption and photoactivity of tetra (4-carboxyphenyl) porphyrin (TCPP) on nanoparticulate TiO2[J]. J. Phys. Chem. B,2000,104(15):3624-3629
    [90]Bai S., Li H., Guan Y, et al. The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on T1O2 nanotubes[J]. Appl. Surf. Sci.,2011, 257(15):6406-6409
    [91]赵宗彦,柳清菊,朱忠其,等.S掺杂对锐钛矿相Ti02电子结构与光催化性能的影响[J].物理学报,2008,57(6):3760-3767
    [92]Yang K., Dai Y, Huang B. First-principles calculations for geometrical structures and electronic properties of Si-doped TiO2[J]. Chem. Phys. Lett.,2008,456(1):71-75
    [93]Wu G, Nishikawa T., Ohtani B., et al. Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response[J]. Chem. Mater.,2007, 19(18):4530-4537
    [94]Yu J. C., Yu J., Ho W., et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chem. Mater.,2002,14(9):3808-3816
    [95]Chen. D., Yang D., Wang Q., et al. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles[J]. Ind. Eng. Chem. Res.,2006, 45(12):4110-4116
    [96]张勇,唐超群,戴君.锐钛矿Ti02及其掺Fe所导致的红移现象研究:赝势计算和紫外光谱实验[J].物理学报,2005,54(1):323-327
    [97]Shirley R., Kraft M., Inderwildi O. R. Electronic and optical properties of aluminium-doped anatase and rutile TiO2 from ab initio calculations[J]. Phys. Rev. B,2010, 81(7):075111-075119
    [98]Long R., English N. J. First-principles calculation of electronic structure of V-doped anatase TiO2[J]. ChemPhysChem,2010,11(12):2606-2611
    [99]Morgan B. J., Watson G. W. GGA+U description of lithium intercalation into anatase TiO2[J]. Phys. Rev. B,2010,82(14):144119-144129
    [100]Weng H., Yang X., Dong J., et al. Electronic structure and optical properties of the Co-doped anatase TiO2 studied from first principles[J]. Phys. Rev. B,2004, 69(12):125219-125224
    [101]Irie H., Watanabe Y., Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J]. J. Phys. Chem. B,2003,107(23):5483-5486
    [102]Jing D., Zhang Y., Guo L. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution[J]. Chem. Phys. Lett.,2005,415(1):74-78
    [103]Liu Y, Wei J. H., Xiong R., et al. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles[J]. Appl. Surf. Sci.,2011, 257(18):8121-8126
    [104]Gu D. E., Yang B. C., Hu Y D. V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation [J]. Catal. Commun.,2008,9(6):1472-1476
    [105]Long R., English N. J. Band gap engineering of (N, Ta)-codoped TiO2:a first-principles calculation[J]. Chem. Phys. Lett.,2009,478(4):175-179
    [106]Long R., English N. J. Synergistic effects on band gap-narrowing in titania by codoping from first-principles calculations[J]. Chem. Mater.,2010,22(5):1616-1623
    [107]Su Y, Xiao Y, Li Y, et al. Preparation, photocatalytic performance and electronic structures of visible-light-driven Fe-N-codoped TiO2 nanoparticles [J]. Mater. Chem. Phys., 2011,126(3):761-768
    [108]邢朋飞,王金淑,金建新,等.S-N共掺杂纳米Ti02可见光光催化剂的制备及其性能研究[J].纳米科技,2007,4(2):29-34
    [109]Pelaez M., Cruz A., Stathatos E., et al. Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water[J]. Catal Today, 2009,144(1):19-25
    [110]Han T., Fan T., Chow S. K., et al. Biogenic N-P-codoped TiO2:synthesis, characterization and photocatalytic properties[J]. Bioresource Technology,2010, 101(17):6829-6835
    [111]Tsetseris L. Stability and dynamics of carbon and nitrogen dopants in anatase TiO2:a density functional theory study[J]. Phys. Rev. B,2010,81(16):165205-165211
    [112]Shi W., Chen Q., Xu Y., et al. A first-principles calculation on the electronic properties of Si/N-codoped TiO2[J]. Appl. Surf. Sci.,2011,257(7):3000-3006
    [113]Zhou P., Yu J., Wang Y. The new understanding on photocatalytic mechanism of visible-light response N-S codoped anatase TiO2 by first-principles [J]. Appl. Catal. B: Environ.,2013,142-143:45-53
    [114]陈云霞,郝江波,何鑫.Ti02基太阳能电池研究进展[J].陶瓷学报,2007,28(1):73-78
    [115]李文欣,胡林华,戴松元.染料敏化太阳电池研究进展[J].中国材料进展,2009,28(7):20-25
    [116]Suzuki A., Kobayashi K., Oku T., et al. Fabrication and characterization of porphyrin dye-sensitized solar cells[J]. Mater. Chem. Phys.,2011,129(1):236-241
    [117]Gratzel M. Recent advances in sensitized mesoscopic solar cells[J]. Acc. Chem. Res., 2009,42(11):1788-1798
    [118]Angelis F. D., Fantacci S., Mosconi E., et al. Absorption spectra and excited state energy levels of the N719 dye on TiO2 in dye-sensitized solar cell models[J]. J. Phys. Chem. C,2011, 115(17):8825-8831
    [119]Roy P., Kim D., Lee K., et al. TiO2 nanotubes and their application in dye-sensitized solar cells[J]. Nanoscale,2010,2(1):45-59
    [120]刘艳彪,周保学,熊必涛,等.Ti02纳米管阵列太阳能电池薄膜材料及电池性能研究[J].科学通报,2007,52(10):1102-1106
    [121]Xu C., Wu J., Desai U. V., et al. High-efficiency solid-state dye-sensitized solar cells based on TiO2 coated ZnO nanowire arrays[J]. Nano Lett.,2012,12(5):2420-2424
    [122]秦冲,苑伟政,孙磊,等.染料敏化纳米晶TiO2太阳能电池[J].光电技术,2006,26(1):6-9
    [123]Li L. L., Diau E. W. G Porphyrin-sensitized solar cells[J]. Chem. Soc. Rev.,2013, 42(1):291-304
    [124]Sharmoukh W., Allam N. K. TiO2 nanotube-based dye-sensitized solar cell using new photosensitizer with enhanced open-circuit voltage and fill factor[J]. ACS Appl. Mater. Interfaces,2012,4(8):4413-4418
    [125]Alivov Y., Fan Z. Y. Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles[J]. Appl. Phys. Lett.,2009,95(6):063504-063506
    [126]Zhang X., Wang S. T., Wang Z. S. Effect of metal-doping in TiO2 on fill factor of dye-sensitized solar cells[J]. Appl. Phys. Lett.,2011,99(11):113503-113505
    [127]Meng S., Kaxiras E. Electron and hole dynamics in dye-sensitized solar cells: influencing factors and systematic trends[J]. Nano Lett.,2010,10(4):1238-1247
    [128]Sauvage F., Fonzo F. D., Bassi A. L., et al. Hierarchical TiO2 photoanode for dye-sensitized solar cells[J]. Nano Lett.,2010,10(7):2562-2567
    [129]Ye M., Xin X., Lin C., et al. High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes[J]. Nano Lett.,2011,11(8):3214-3220
    [130]Dev P., Agrawal S., English N. J. Functional assessment for predicting charge-transfer excitations of dyes in complexed state:a study of triphenylamine-donor dyes on titania for dye-sensitized solar cells[J]. J. Phys. Chem. A,2013,117(10):2114-2124
    [131]Bian Z., Zhu J., Wang S., et al. Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase[J]. J. Phys. Chem. C,2008, 112(16):6258-6262
    [132]Chin S., Park E., Kim M., et al. Photocatalytic degradation of methylene blue with TiO2 nanoparticles prepared by a thermal decomposition process[J]. Powder Technology,2010, 201(2):171-176
    [133]Valentin C. D., Pacchioni G., Selloni A., et al. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations [J]. J. Chem. Phys. B, 2005,109(23):11414-11419
    [134]Ozaki H., Iwamoto S., Inoue M. Effects of amount of Si addition and annealing treatment on the photocatalytic activities of N- and Si-codoped titanias under visible-light irradiation[J]. Ind. Eng. Chem. Res.,2008,47(7):2287-2293
    [135]Angelis F. D., Fantacci S., Selloni A., et al. Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells[J]. Nano Lett.,2007, 7(10):3189-3195
    [136]Pastore M., Angelis F. D. Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models:an ab initio investigation[J]. ACS Nano,2010,4(l):556-562
    [137]Jang Y. H., Xin X., Byun M., et al. An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode[J]. Nano Lett.,2012,12(1):479-485
    [138]Maggio E., Martsinovich N., Troisi A. Theoretical study of charge recombination at the TiO2-electrolyte interface in dye sensitised solar cells[J]. J. Chem. Phys.,2012, 137(22):22A508-22A515
    [139]Born M., Huang K. Dynamical theory of crystal lattices[M]. Oxford:Oxford University Press,1954
    [140]Hartree D. R. The wave mechanics of an atom with a non-coulormb central field.I. theory and methods[J]. Proc. Camb. Phil. Soc.,1928,24:89-110
    [141]Hartree D. R. The wave mechanics of an atom with a non-coulomb central field. II. some results and discussion[J]. Proc. Camb. Phil. Soc.,1928,24:111-132
    [142]Fock V. Approximate method of solution of the problem of many bodies in quantum mechanics[J]. Z. Phys.,1930,61(1):126-148
    [143]Thomas H. The calculation of atomic fields[J]. Proc. Camb. Phil. Soc.,1927, 23:542-548
    [144]Fermi E. Applications of statistical gas methods to electronic system[J]. Accad. Naz. Lincei.,1927,6:602-606
    [145]Hohenberg P., Kohn W. Inhomogeneous electron gas[J]. Phys. Rev.,1964, 136(3B):B864-B871
    [146]Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev.,1965,140(4A):A1133-A1138
    [147]Ceperley D. M., Alder B. J. Ground state of the electron gas by a stochastic method[J]. Phys. Rev. Lett.,1980,45(7):566-569
    [148]Perdew J., Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Phys. Rev. B,1981,23(10):5048-5079
    [149]Perdew J., Wang Y. Accurate and simple analytic representation of the electron gas correlation energy [J]. Phys. Rev. B,1992,45(23):13244-13249
    [150]Perdew J., Burke K., Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett.,1996,77(18):3865-3868
    [151]Wu Z., Cohen R. E. More accurate generalized gradient approximation for solids[J]. Phys. Rev. B,2006,73(23):235116-235121
    [152]Koch W., Holthausen M. C. A chemist's guide to density functional theory. Wiley-VCH, 2001
    [153]Anisimov V. I., Zaanen J., Andersen O. K. Band theory and mott insulators:hubbard U instead of stoner I[J]. Phys. Rev. B,1991,44(3):943-954
    [154]Anisimov V. I., Korotin M. A., Nekrasov I. A., et al. The role of transition metal impurities and oxygen vacancies in the formation of ferromagnetism in Co-doped TiO2[J]. J. Phys.:Condens. Matter,2006,18(5):1695-1700
    [155]Abeles F. Optical properties of solids[M]. Amsterdam:North-Holland,1972
    [156]Kramers H. A. Some remarks on the theory of absorption and refraction of x-rays[J]. Nature,1926,117:775-778
    [157]De R., Kronig L. On the theory of dispersion of x-rays[J]. J. Opt. Soc. Am.,1926, 12:547-551
    [158]Arntz F., Yacoby Y. Electroabsorption in rutile TiO2[J]. Phys. Rev. Lett.,1966, 17(16):857-860
    [159]Yamashita H., Harada M., Misaka J., et al. Degradation of propanol diluted in water under visible light irradiation usingmetal ion-implanted titanium dioxide photocatalysts[J]. J. Photochem. Photobiol. A:Chem.,2002,148(1):257-261
    [160]Wang Y. W., Zhang L. Z., Li S., et al. Polyol-mediated synthesis of ultrafine TiO2 nanocrystals and tailored physiochemical properties by Ni doping[J]. J. Phys. Chem. C.,2009, 113(21):9210-9217
    [161]Zhou Z., Li M., Guo L. A first-principles theoretical simulation on the electronic structures and optical absorption properties for O vacancy and Ni impurity in TiO2 photocatalysts[J]. J. Phys. Chem. Solids,2010,71(12):1707-1712
    [162]Jin R., Wu Z., Liu Y, et al. J. Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method[J]. Hazard. Mater.,2009,161(1):42-48
    [163]Sakthivel S., Kisch H. Daylight photocatalysts by carbon-modified titanium dioxide[J]. Angew. Chem. Int. Edit.,2003,42(40):4908-4911
    [164]Li Y., Hwang D. S., Lee N. H., et al. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst[J]. Chem. Phys. Lett.,2005, 404(1):25-29
    [165]Choi Y., Umebayashi T., Yoshikawa M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts[J]. J. Mater. Sci.,2004,39(5):1837-1839
    [166]Khan S. U. M., Al-Shahry M., Ingler Jr. W. B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297(5590),2243-2245
    [167]Zhao W., Ma W., Chen C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation[J]. J. Am. Chem. Soc.,2004,126(15):4782-4783
    [168]Tseng H. H., Wei M. C, Hsiung S. F., et al. Degradation of xylene vapor over Ni-doped TiO2 photocatalysts prepared by polyol-mediated synthesis[J]. Chem. Eng. J.,2009, 150(1):160-167
    [169]Nakhate G G, Nikam V. S., Kanade K. G, et al. Hydrothermally derived nanosized Ni-doped TiO2:a visible light driven photocatalyst for methylene blue degradation[J]. Mater. Chem. Phys.,2010,124(2):976-981
    [170]Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Phys. Rev. B, 1993,47(1):558-561
    [171]White J. A., Bird D. M. Implementation of gradient-corrected exchange-correlation potentials in car-parrinello total-energy calculations [J]. Phys. Rev. B,1994,50(7):4954-4957
    [172]Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B,1976,13(12):5188-5192
    [173]Kuo M. Y, Chen C. L., Hua C. Y, et al. Density functional theory calculations of dense TiO2 polymorphs:implication for visible-light-responsive photocatalysts[J]. J. Phys. Chem. B, 2005,109(18):8693-8700
    [174]DiValentin C., Pacchioni G, Selloni A. Origin of the different photoactivity of N-doped anatase and rutile TiO2[J]. Phys. Rev. B,2004,70(8):085116-085119
    [175]Yang K., Dai Y, Huang B. Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles[J]. J. Phys. Chem. C,2007, 111(51):18985-18994
    [176]Lee J., Park J., Cho J. Electronic properties of N-and C-doped TiO2[J]. Appl. Phys. Lett.,2005,87(1):011904-011906
    [177]Yang K., Dai Y., Huang B. Origin of the photoactivity in boron-doped anatase and rutile TiO2 calculated from first principles [J]. Phys. Rev. B,2007,76(19):195201-195206
    [178]Beeson T. D., MacMillan D. W. C. Enantioselective organocatalytic a-fluorination of aldehydes[J]. J. Am. Chem. Soc.,2005,127(24):8826-8828
    [179]Jia L., Wu C, Li Y., et al. Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping[J]. Appl. Phys. Lett.,2011,98(21):211903-211905
    [180]Li N., Yao K. L., Li L., et al. Effect of carbon/hydrogen species incorporation on electronic structure of anatase-TiO2[J]. J. Appl. Phys.,2011,110(7):073513-073517
    [181]Gonzalez-Borrero P. P., Bernabe H. S., Astrath N. G. C., et al. Energy-level and optical properties of nitrogen doped TiO2:an experimental and theoretical study [J]. Appl. Phys. Lett., 2011,99(22):221909-221911
    [182]Zhao D., Huang X., Tian B., et al. The effect of electronegative difference on the electronic structure and visible light photocatalytic activity of N-doped anatase TiO2 by first-principles calculations[J]. Appl. Phys. Lett.,2011,98(16):162107-162109
    [183]Kresse G., Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Phys. Rev. B,1994, 49(20):14251-14269
    [184]Kresse G, FurthmUller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54(16):11169-11186
    [185]Perdew J. P., Ahevary C. J., Vosko S. H., et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B,2004,46(11):6671-6687
    [186]Dudarev S. L., Botton G. A., Savarsov S. Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide:an LSDA+U study[J]. Phys. Rev. B,1998, 57(3):1505-1509
    [187]Yang K., Dai Y, Huang B., et al. Density-functional characterization of antiferromagnetism in oxygen-deficient anatase and rutile TiO2[J]. Phys. Rev. B,2010, 81(3):033202-033205
    [188]Yang K., Dai Y., Huang B., et al. Density functional characterization of the visible-light absorption in substitutional C-anion-and C-cation-doped TiO2[J]. J. Phys. Chem. C,2009, 113(6):2624-2629
    [189]Arroyo-de Dompablo M. E., Morales-Garcia A., Taravillo M. DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs[J]. J. Chem. Phys.,2011,135(5):054503-054511
    [190]Tang H., Levy F., Berger H., et al. Urbach tail of anatase TiO2[J]. Phys. Rev. B,1995, 52(11):7771-7774
    [191]Yang K., Dai Y, Huang B. Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations[J]. J. Phys. Chem. C,2007, 111(32):12086-12090
    [192]Jia L., Wu C., Han S., et al. Theoretical study on the electronic and optical properties of (N, Fe)-codoped anatase TiO2 photocatalyst[J]. J. Alloys Compd.,2011,509(20):6067-6071
    [193]Gratzel M. Photoelectrochemical cells[J]. Nature,2001,414(6861):338-344
    [194]Boppana V. B. R., Lobo R. F. Photocatalytic degradation of organic molecules on mesoporous visible-light-active Sn(II)-doped titania[J]. J. Catal.,2011,281(1):156-168
    [195]Hernandez-Alonso M. D., Fresno F., Suarez S., et al. Development of alternative photocatalysts to TiO2:Challenges and opportunities[J]. Energy Environ. Sci.,2009, 2(12):1231-1257
    [196]Rodrigues S., Ranjit K. T., Uma S., et al. Single-step synthesis of a highly active visible-light photocatalyst for oxidation of a common indoor air pollutant:acetaldehyde[J]. Adv. Mater.,2005,17(20):2467-2471
    [197]Dholam R., Patel N., Adami M., et al. Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst[J]. Int. J. Hydrogen Energy,2009,34(13):5337-5346
    [198]Van Grieken R., Marugan J., Sordo C., et al. Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2[J]. Appl. Catal. B Environ.,2009, 93(1):112-118
    [199]Lin Y. M., Jiang Z. Y., Zhu C. Y, et al. Visible-light photocatalytic activity of Ni-doped TiO2 from ab initio calculations[J]. Mater. Chem. Phys.,2012,133(2):746-750
    [200]Parida K. M., Naik B. Synthesis of mesoporous TiO2-xNx spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination[J]. J. Colloid. Interf. Sci.,2009,333(1):269-276
    [201]Ho W., Yu J. C., Lee S. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity [J]. Chem. Commun.,2006,14(10):1115-1117
    [202]Hong X.T., Luo Z. P., Batteas J. D. Enhanced visible-light absorption and dopant distribution of iodine-TiO2 nanoparticles synthesized by a new facile two-step hydrothermal method[J]. J. Solid State Chem.,2011,184(8):2244-2249
    [203]Oh S. M., Kim S. S., Lee J. E., et al. Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma[J]. Thin Solid Films,2003, 435(1):252-258
    [204]Yan X., He J., Evans D. G., et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors [J]. Appl. Catal. B: Environ.,2005,55(4):243-252
    [205]Lv K., Zuo H., Sun J., et al. (Bi, C and N) codoped TiO2 nanoparticles[J]. J. Hazard. Mater.,2009,161(1):396-401
    [206]Long R., English N. J. Band gap engineering of (N, Si)-codoped TiO2 from hybrid density functional theory calculations [J]. New J. Phys.,2012,14(5):053007-053017
    [207]Weng H., Dong J., Fukumura T., et al. First principles investigation of the magnetic circular dichroism spectra of Co-doped anatase and rutile TiO2[J]. Phys. Rev. B,2006, 73(12):121201(R)-121204(R)
    [208]Janisch R., Spaldin N. A. Understanding ferromagnetism in Co-doped TiO2 anatase from first principles [J]. Phys. Rev. B,2006,73(3):035201-035207
    [209]Gai Y, Li J., Li S. S., et al. Design of narrow-gap TiO2:a passivated codoping approach for enhanced photoelectrochemical activity [J]. Phys. Rev. Lett.,2009,102(3):036402-036405
    [210]Umebayashi T., Yamaki T., Itoh H., et al. Band gap narrowing of titanium dioxide by sulfur doping[J]. Appl. Phys. Lett.,2002,81(3):454-456
    [211]Umebayashi T., Yamaki T., Yamamoto S., et al. Sulfur-doping of rutile-titanium dioxide by ion implantation:photocurrent spectroscopy and first-principles band calculation studies[J]. J. Appl. Phys.,2003,93(9):5156-5160
    [212]Tian F., Liu C. DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2[J]. J. Phys. Chem. B,2006,110(36):17866-17871
    [213]Valentin C. D., Pacchioni G, Selloni A. Theory of carbon doping of titanium dioxide[J]. Chem. Mater.,2005,17(26):6656-6665
    [214]Jung K. Y., Park S. B., Ihm S.-K. Local structure and photocatalytic activity of B2O3-SiO2/TiO2 ternary mixed oxides prepared by sol-gel method[J]. Appl. Catal. B,2004, 51(4):239-245
    [215]Wu Y., Xing M., Zhang J. Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity[J]. J. Hazard. Mater.,2011,192(1):368-373
    [216]Burdett J. K., Hughbanks T., Miller G J., et al. Structural-electronic relationships in inorganic solids:powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K[J]. J. Am. Chem. Soc.,1987,109(12):3639-3642
    [217]Yang K., Dai Y, Huang B. Density functional study of boron-doped anatase TiO2[J]. J. Phys. Chem. C,2010,114(46):19830-19834
    [218]Yum J. H., Baranoff E., Kessler F., et al. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials[J]. Nat. Commun.,2012, 3(1655):631-638
    [219]Yella A., Lee H. W., Tsao H. N., et al. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency [J]. Science,2011, 334(6056):629-634
    [220]Meng S., Ren J., Kaxiras E., et al. Natural dyes adsorbed on TiO2 nanowire for photovoltaic applications:enhanced light absorption and ultrafast electron injection[J]. Nano Lett.,2008,8(10):3266-3272
    [221]Rui Y, Li Y, Zhang Q., et al. Facile synthesis of rutile TiO2 nanorod microspheres for enhancing light-harvesting of dye-sensitized solar cells[J]. CrystEngComm,2013, 15(8):1651-1656
    [222]Wang P., Humphry-Baker R., Moser J. E., et al. Amphiphilic polypyridyl ruthenium complexes with substituted 2,2'-dipyridylamine ligands for nanocrystalline dye-sensitized solar cells[J]. Chem. Mater.,2004,16(17):3246-3251
    [223]Wu S. J., Chen C. Y., Chen J. G., et al. An efficient light-harvesting ruthenium dye for solar cell application[J]. Dyes and Pigments,2010,84(1):95-101
    [224]Lee C. W., Lu H. P., Lan C. M., et al. Novel zinc porphyrin sensitizers for dye-sensitized solar cells:synthesis and spectral, electrochemical, and photovoltaic properties[J]. Chem. Eur. J.,2009,15:1403-1412
    [225]Kim S., Choi H., Kim D., et al. Novel conjugated organic dyes containing bis-dimethylfluorenyl amino phenyl thiophene for efficient solar cell[J]. Tetrahedron,2007, 63(37):9206-9212
    [226]Liu J., Wang Y., Sun D., et al. Enhancing the performance of dye-sensitized solar cells by benzoic acid modified TiO2 nanorod electrode[J]. Renewable Energy,2012,38(1):214-218
    [227]Labat F., Baranek P., Adamo C. Structural and electronic properties of selected rutile and anatase TiO2 surfaces:an ab initio investigation[J]. J. Chem. Theory Comput.,2008, 4(2):341-352
    [228]Perdew J. P., Bruke K., Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett.,1996,77(18):3865-3868
    [229]Frisch M. J., Trucks G. W., Schlegel H. B., et al. Gaussian 09, revision C.01, Gaussian, Inc., Wallingford, CT,2010
    [230]Bauernschmitt R., Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory[J]. Chem. Phys. Lett.,1996, 256(4):454-464
    [231]Diebold U. The surface science of titanium dioxide[J]. Surf. Sci. Rep.,2003, 48(5):53-229
    [232]Herman G. S., Dohnalek Z., Ruzycki N., et al. Experimental investigation of the interaction of water and methanol with anatase TiO2(101)[J]. J. Phys. Chem. B,2003, 107(12):2788-2795
    [233]Harris L. A., Quong A. A. Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2(110)[J]. Phys. Rev. Lett.,2004, 93(8):086105-086108
    [234]Martsinovich N., Jones D. R., Troisi A. Electronic structure of TiO2 surfaces and effect of molecular adsorbates using different DFT implementations[J]. J. Phys. Chem. C,2010, 114(51):22659-22670
    [235]Liang K. K., Chang R., Hayashi M., et al. Principles of molecular spectroscopy and photochemistry[M].2001
    [236]Deng Y., Zhang K., Chen H., et al. Iron-catalyzed photochemical transformation of benzoic acid in atmospheric liquids:product identification and reaction mechanisms[J]. Atmos. Environ.,2006,40(20):3665-3676

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700