高速数控加工的前瞻控制理论及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对加工路径尖锐拐角及高曲率而导致高速数控加工中的加工过切、机床异常振动及数据饥饿现象,提出了高速数控加工前瞻控制新算法。相对于传统加工控制过程,前瞻控制具有自动分析加工路径、自动发现路径危险点及自动处理路径危险点的能力,有效保证较高的加工效率及加工精度。根据前瞻控制的实现过程及实现目的,本文结合863高技术研究发展计划资助项目“面向微流控芯片的微模具制造装备研究”(2002AA421150)和浙江省重大机电装备专项项目“中高档数控机床控制系统”(2006C11067)等任务,系统研究了前瞻控制加减速算法、前瞻控制离散路径插值算法、前瞻控制参数曲线插补算法及前瞻控制过程中的误差补偿算法,最后论述了前瞻控制算法的具体实现过程。
     前瞻控制算法的组成构架中,加减速算法是基础,离散路径的插值算法、参数曲线的插补算法是必要手段,而误差补偿算法则是必须的配件。论文首先深入研究了传统数控系统加减速算法的实现原理和数控加工过程中离散加工路径段的速度矢量混和算法,基于多项式的多样性与实用性,针对性地论述了多项式通用加减速算法的实现,并基于特定加减速特性创新的提出了微小线段的速度光滑衔接算法。
     根据前瞻控制中路径分析及实际插补的需要,将离散加工路径的插值应用划分为局部插值及全局插值两种,基于求解线性方程组的追赶法和求解高次多项式方程的牛顿迭代法,详细阐述了常用参数式曲线插值算法。由于参数曲线插补在高速数控加工中应用越来越普遍,为了保证前瞻控制算法应用的广泛性,论文阐述了泰勒展开式插补方法和预测校正插补方法,并深入研究了参数曲线自适应插补算法。为了保证前瞻控制算法的系统与完整性,在数据缓冲指令产生算法硬件结构的基础上,结合传统数控系统误差补偿算法,创新的提出了前瞻控制中的误差均匀补偿算法。
     论文最后给出了高速加工中的前瞻控制实现过程,以离散加工路径和参数曲线加工路径为对象,结合伺服系统的特点,实现了路径危险点的分析、离散路径插补点的增加、参数曲线路径的加减速划分、危险点优化速度的求解及路径加减速的规划。实验结果表明,前瞻控制是高速数控加工的必要组成部分,是加工效率和加工精度的有效保证。
To deal with overshooting, mechanical harmful vibrations and data starvation caused by sharp corner or high curvature of tool path, a new look-ahead algorithm for high speed cutting machining is proposed by this paper. Compared to traditional numerical control, look-ahead control can analyze tool path、find dangerous points and deal with dangerous situations in machining automatically. Therefore machining productivity and accuracy can be improved efficiently. According to the goal of look-ahead control and considering both discrete and parametric curve tool path, this paper places emphases on acceleration and deceleration algorithm, discrete points interpolation algorithm, parametric curve interpolation algorithm and error compensation algorithm combined with the research of the National High Technology Research and Development Program (863 Program):"Microfluidic chip-oriented micromold manufacure equipments research" (2002AA421150) and the Special Project for Key Mechatronic Equipment of Zhejiang Province: "Medium and high class numerical control system" (2006C11067). At last, new look-ahead algorithm is proposed.
     In terms of configuration of look-ahead algorithm, the basic is acceleration and deceleration algorithm. Discrete points interpolation algorithm and parametric curve interpolation algorithm are necessary tools. Error compensation algorithm is necessary accessory. The paper firstly researches the principle of acceleration and deceleration algorithm and velocity blending algorithm for discrete tool path used in traditional numerical control system. Then according to the multiformity and practicality of polynomial, the acceleration and deceleration construction algorithm of polynomial is proposed. Under specific polynomial construction method, innovative velocity link method for small short straight lines is proposed.
     For the necessity of data analysis and parametric curve interpolation, the partial and overall interpolations algorithms for discrete tool path are used. Chasing method and Newton iterative method are applied in parametric curve interpolation algorithm. Due to the wider and wider use of parametric curve in high speed cutting machining and to guarantee the universality of look-ahead control, interpolation methods based on Taylor series and predictor-corrector are expatiated. Furthermore, interpolator adapted to tool path is introduced. To guarantee the systemic and integrality of look-ahead control algorithm and based on buffer command generation method, error even compensation algorithm is proposed.
     Finally look-ahead control algorithm is proposed based on analysis of dangerous points、complement of points on discret tool path、partition of parametric tool path according to acceleration and deceleration、solution of optimal feedrate at dangerous points and arrangement of acceleration and deceleration for machining. On-line experiments shows look-ahead control is necessary for high speed cutting machining and guarantees productivity and accuracy efficiently.
引文
[1] SCHUETT T J. A closer look at Look-Ahead. 1996-05.http://www.creat.com/.
    
    [2] SCHUETT T J. The benefits and data bottlenecks of high speed milling. 1996-05.http://www.creat.com/.
    [3] SCHUETT T J. A recipe for successful high speed milling. 1996-05.http://www.creat.com/.
    [4] SCHUETT T J. Advanced control for high speed milling. 1996-05.http://www.creat.com/.
    
    [5] SCHUETT T J. Milling in the "hot zone" . 2001-05. http://www.creat.com/.
    [6] Weck M, Ye G H. Sharp corner tracking using the IKF control strategy. Annals of CIRP,1990,39:437-441.
    [7] Markino H, Ohde P. Motion control of the direct drive actuator. Annals of CIRP, 1991,40:375-378.
    [8] Tung E D, Tomizuka M. Feedforward tracking controller design based on the identification of low frequency dynamics. Measurement and control, 1993, 115: 348-356.
    [9] HAN G C, KIM D I, Kim H G, et al. A high speed machining algorithm for CNC machine tools[C]. IECON'99 Proceedings, 29Nov-3Dec, 1999.
    [10] Inaba H, Sakakibara S, et al. Method and apparatus for controlling the acceleration and deceleration of a movable element without abrupt changes in motion. United States Patent,Patent number 4555758, Nov.19, 1985.
    [11] Jeon J W., Suwon. Method on controlling the traveling path of a robot during acceleration and deceleration. United States Patent, Patent number 5373439, Dec.13, 1994.
    [12] Jeon J W. Efficient acceleration and deceleration technique for short distance movement in industry robots and CNC machine tools. Electronics Letters, 2000, 36: 776-768.
    [13] Jeon J W. A generalized approach for the acceleration and deceleration of industrial robots and CNC machine tools. Industrial Electronics. 2000,47: 133-139.
    [14] Kim D I, Jeon J.W. Software acceleration/deceleration methods for industrial robots and CNC machine tools. Mechatronics, 1994,4: 37-53.
    [15] Kim D I, Song J I. Dependence of machining accuracy on acceleration/deceleration and interpolation methods in CNC machine tools. IEEE-ISA annual meeting, Denver, U.S.A,1994.
    
    [16] Nozavo R, et al. Acceleration/deceleration circuit. U.S. Patent4554497, Nov.19, 1985.
    [17] White B, Houshyar A. Quality and optimum parameter selection in metal cutting. Computers in Industry. 1992,20: 87-98.
    [18] Yazar Z, Koch K F, Merrick T, Alton T. Feedrate optimization based on cutting force calculations in-axis milling of dies and molds with sculptured surface. International Journal of Machine Tools and Manufacture, 1994, 34: 365-377.
    [19] Lim E M, Hsiang M C. Integrated planning for precision machining of complex surfaces,Part 1: cutting path and feedrate optimization. International Journal of Machine Tools and Manufacture, 1997,37: 61-75.
    [20] Lim E M, Menq C H, Yen D W. Integrated planning for precision machining of complex surfaces, Part 2: application to the machining of a turbine blade die. International Journal of Machine Tools and Manufacture, 1997,37: 77-91.
    [21] Feng H Y,Su N. Integrated tool path and feedrate optimization for the finishing machining of 3D plane surfaces. International Journal of Machine Tools and Manufacture, 2000, 40:1557-1572.
    [22] Baek D K, Ko T J, Kim H S. Optimization of feedrate in a face milling operation using a surface roughness model. International Journal of Machine Tools and Manufacture, 2001,41:451-462.
    [23] Yun W S, Ko J H, Lee H U, Cho D W, Kornel F E. Development of a virtual machining system Part 3: cutting process simulation in transient cuts. International Journal of Machine Tools and Manufacture, 2002,42: 1617-1626.
    [24] Kim K K, Kang M C, Kim J S, Jung Y H, Kim N K. A study on the precision machinability of ball end milling by cutting speed optimization. Journal of Materials Processing Technology, 2002,130-131: 357-362.
    [25] Ko J H, Yun W S, Cho D W. Off-line feedrate scheduling using virtual CNC based on an evaluation of cutting performance. Computer-Aided Design, 2003, 35: 383-393.
    [26] Tounsi N, Elbestaw M A. Optimized feed scheduling in three axes machining.Part I:Fundamentals of the optimized feed scheduling strategy. International journal of machine tools & manufacture. 2003 ,43: 253-267
    [27] Lazoglu I. Sculptured surface machining: a generalized model of ball end milling force system. International Journal of Machine Tools and Manufacture, 2003,43:453-462.
    [28] Guzel B U, Lazoglu I. Increasing productivity in sculptured surface machining viaoff-line piecewise variable feedrate scheduling based on the force system model.International Journal of Machine Tools and Manufacture, 2004,44: 21-28.
    [29] Ko J H, Yun W S, Cho D W. Feedrate scheduling model considering transverse rupture strength of a tool for 3D ball-end milling. International Journal of Machine Tools and Manufacture, 2004,44:1047-1059.
    [30] Cheni J S B, Huang Y K, Chen M S. Feedrate optimization and tool profile modification for the high efficiency ball end milling process. International Journal of Machine Tools and Manufacture, 2005,45:1070-1076.
    [31] Erdim H, Lazoglu I, et al. Feedrate scheuling strategies for free-form surface.International journal of machine tools & manufacture. 2005 , xx: 1-11.
    [32] Koren Y. Interpolator for a computer numerical control system. IEEE Trans. Computers,1976,25:32-37.
    [33] Koren Y. Design of computer control for manufacturing systems. ASME Journal of Engineering for Industry, 1979,101: 326-332.
    [34] Papaioannou S G. Interpolation algorithms for numerical control. Computers in Industry,1979,1:27-40.
    [35] Koren Y, Masory.O, Reference-pulse circular interpolator for CNC systems. Journal of engineering for industry. 1981,103: 131-136.
    [36] Lonely D C. NC machining of free-form surfaces. Computer-Aided Design, 1987, 19:85-90.
    [37] Khalsa D S. High performance motion control trajectory commands based on the-convolution integral and digital filtering. In Proc. Intelligent Motion Conf., Oct. 1990,54-61.
    [38]Chou J J,Yang D C H.Command generation for three-axis CNC machining.Journal of Engineering for Industry,1991,133:305-310.
    [39]Butler J,Haack B,Tomizuka M.Reference input generation for high speed coordinated motion.Journal of Dynamic System,Measurement and Control,1991,113:67-74.
    [40]Kim D I,Song J I,Kim S.Digital signal processor system for CNC systems.IECON'91,Kobe,Japan,1991,1861-1866.
    [41]Johnson C T,Lorenz R D.Experimental identification of friction and its compensation in precise position controlled mechanism.IEEE Trans.IAS,1992,28:1392-1398.
    [42]Huang J T,Yang D C H.A generalized interpolator for command generation of parametric curves in computer controlled machines.ASME Japan/USA Symposium on Flexible Automation,1992,115:329-36.
    [43]Chou J J,Yang D C H.On the generation of coordinated motion of five-axis CNC/CMM machines.Journal of Engineering for Industry,1992,144:15-22.
    [44]Bedi S,Ali I,Quan N.Advanced techniques for CNC machines.ASME Journal of Engineering for Industry,1993.2106-2111.
    [45]Kim D I,Kim.An iterative learning control method with application for CNC machine tools.IEEE IAS'93,Toronto,Canada,1993.2106-2111.
    [46]Yang D C H,Kong T.Parametric interpolator versus linear interpolator for precision CNC machining.Computer-Aided Design,1994,26:225-233.
    [47]Dimitris K.High precision interpolation algorithm for 3D parametric curve generation.Computer-Aided Design,1994,26:851-856.
    [48]Shpitalni M,Koren Y,Lo C C.Real-time curve interpolators.Computer-Aided Design,1994,26:832-838.
    [49]Kim D I.Study on interpolation algorithm of CNC machine tools.ISA'95 Proceedings,1995,1930-1937.
    [50]Koren Y,Lin R S.Five-axis surface interpolators.Annals of CIRP,1995,44:379-382.
    [51]Qiu Q,Cheng Y,Li Y.Optimal circular arc interpolation for NC tool path generation in curve contour manufacturing.Computer-Aided Design,1997,29:751-759.
    [52]Lo C C.Feedback interpolators for CNC machine tools.Journal of Manufacturing Science and Engineering,1997,119:587-592
    [53]Lo C C.A new approach to CNC tool path generation.Computer-Aided Design,1998,30:649-655.
    [54]Zhang Q,Greenway R B.Development and implementation of a NURBS curve motion interpolator.Robotics and computer-Integrated Manufacturing,1998,14:27-36.
    [55]Ho H C H,Yen J Y,Lu S S.A decoupled path-following control algorithm based upon the decomposed trajectory error.International Journal of Machine Tools and Manufacture,1999,39:1619-1630.
    [56]Frouki R T,Tsai Y F,Yuan G F.Contour machining of free form surfaces with real-time PH curve CNC interpolators.Computer Aided Geometric Design,1999,16:61-76.
    [57]Yeh S S,Chang H P L.The speed-controlled interpolator for machining parametric curves.Computer-Aided Design,1999,31:349-357.
    [58]Lo C C.CNC machine tool surface interpolator for ball-end milling of free-form surfaces.International Journal of Machine Tools & Manufacture,2000,40:307-326.
    [59]Lin R S.Real-time surface interpolator for 3D parametric surface machining on 3-axis machine tools.International Journal of Machine Tools & Manufacture,2000,40:1513-1526.
    [60]Farouki R T,Tsai Y F.Exact Taylor series coefficients for variable-feedrate CNC curve interpolators.Computer-Aided Design,2001,33:115-165.
    [61]Cheng C W,Tsai M C,Cheng M Y.Real-time variable feedrate parametric interpolator for CNC machining.15~(th) IFAC World Congress,Barcelona,Spain,2002.
    [62]Zhi M X,Jin C C,Zheng J F.Performance evaluation of a real-time interpolation algorithm for NURBS curves.International Journal of Advanced Manufacturing Technology,2002,20:270-276.
    [63]Chen M Y,Tsai M C,Kuo J C.Real-time NURBS command generators for CNC servo controllers.International Journal of Machine Tools & Manufacture,2002,42:801-813.
    [64]Yeh S S,Chang H P L.Adaptive-feedrate interpolation for parametric curves with a confined chord error.Computer-Aided Design,2002,34:229-237.
    [65]Hu W.Interpolation algorithm based on central angle division.International Journal of Machine Tools & Manufacture,2002,42:473-478.
    [66]Tsai M C,Cheng C W,Cheng M Y.A real-time NURBS surface interpolator for precision three-axis CNC machining.International Journal of Machine Tools &Manufacture,2003,43:1217-1227.
    [67]Chang Y.Buffered DDA command generation in a CNC.Control Engineering Practice,2003,11:797-804.
    [68]Armstrong J R.Design of a graphic generator for remote terminal application.IEEE Trans.Computers,1973,22:464-469.
    [69]Lin C S,Change P R,Luh J Y S.Formulation and optimization of cubic polynomial joint trajectories for industrial robots.IEEE transactions on Automatic Control,1983,28:1066-1074.
    [70]Shin K G,Neil M D.Minimum-time control of robotic manipulators with geometric path controls.IEEE transactions on Automatic Control,1985,30:531-541.
    [71]Bobrow J E,Dubowsky S,Gibson J S.Time-optimal control of robotic manipulators along specified paths.The International Journal of Robotics Research,1985,4:3-11.
    [72]Kim B K,Shin K G.Minimum-time path-planning for robot arms and their dynamics.IEEE transactions on systems,Man and Cybernetics,1985,15:213-223.
    [73]Sah Y S,Lee K.NC milling tool path generation for arbitrary pockets defined by sculptured surfaces.Computer-Aided Design,1990,22:273-284.
    [74]Parkinson D B,Moreton D N.Optimal biarc-curve fitting.Computer-Aided Design,1991,23:411-419.
    [75]Catania G.A computer-aided prototype system for NC rough milling of free-form shaped mechanical part-pieces.Computer-Aided Design,1992,20:275-293.
    [76]Meek D S,Walton D J.Approximation of discrete data by G~1 arc splines.Computer-Aided Design,1992,24:301-306.
    [77]Schonherr J.Smooth biarc curves.Computer-Aided Design,1993,25:365-370.
    [78]Meek D S,Walton D J.Approximation of NURBS curves by arc splines.Computer-Aided Design,1993,25:371-376.
    [79]Marciniak K,Putz B.Approximation of spirals by piecewise curves of fewest circular arc segments.Computer-Aided Design,1994,16:87-90.
    [80]Lartigue C,Thiebaut F,Maekawa T.CNC toolpath in terms of B-spline curves.Computer-Aided Design,2001,33:307-319.
    [81]Stadelmann R.Computation of Nominal path values to generate various spatial curves for machine tools.Annals of CIRP,1989,38:373-376.
    [82]Millan K Y,Desmond J W.Curve fitting with arc splines for NC toolpath generation.Computer-Aided Design,1994,26:845-849.
    [83]Griffiths J G.Toolpath based on Hilbert's curve.Computer-Aided Design,1994,26:839-843.
    [84]Yang D C H,Wang F C.An quintic spline interpolator for motion command generation ofcomputer-controlled machines.Journal of Mechanical Design,1994,116:226-231.
    [85]Wang F C,Yang D C H,Nearly arc length parameterized quintic-spline interpolation for precision machining.Computer Aided Design,1993,25:281-288.
    [86]Erkorkmaz K,Altintas Y.High speed contouring control algorithm for CNC machine tools.ASME Dynamic Systems and Control Division Proceedings,IMECE'98,64:463-469.
    [87]Erkorkmaz K,Altintas Y.High speed CNC system design part 1:jerk limited trajactory generation and quintic spline interpolation.International Journal of Machine Tools &Manufacture,2001,41:1323-1345.
    [88]Erkorkmaz K,Altintas Y.Quintic spline interpolation with minimal feed fluctuation.Journal of Manufacturing Science and Engineering,2005,127:339-349.
    [89]Kiritsis D.High precision interpolation algorithm for 3D parametric curve generation.Computer-AidedDesign,1994,26:850-856.
    [90]Zhang G X,Veale R,Charlton T,Hocken R.Error compensation of coordinate measuring machines.Annals of CIRP,1985,34:445-448.
    [91]Duffie N A,Malmberg S J.Error diagnosis and compensation using kinematic models and position error data.Annals of CIRP,1987,36:355-358.
    [92]Sartori S,Veale,Zhang G X.Geometric Error measurement and compensation of machines.Annals of CIRP,1995,44:599-609.
    [93]Rastko,R.S.,Frank,L.L.Neutral net backlash compensation with Hebbian tuning using dynamic inversion.Automatica,2001,37:1269-1277.
    [94]Tan K K.,Huang S N,Seet H L.Geometric error compensation of precision motion system using radialbasis function.IEEE transaction on instrumentation and measurement.2000,49:984-991.
    [95]Tan K K,Lim S Y,Huang S N.Two-degree-freedom controller incorporating RBF adaption for precisionmotion control applications.International Conference on Advanced Intelligent Mechatronics Proceedings,Atlanta,USA,2003,848-853.
    [96]Gang T,Petar V K.Adaptive control of system with backlash.Automatica,1993,29:323-335.
    [97]Kwon Y S,Hwang HY,Lee H R,Kim S H.Rate loop control based on torque compensation inanti-baeklash geared servo system.The 2004 American Control Conference Proceedings,Boston,Massachusetts,2004,3327-3332.
    [98]Chang Y F.Buffered DDA command generation in a CNC.Control engineering practice,2003,11:797-804.
    [99]陈世平.高速切削加工技术及其发展前景.机械设计与制造工程.2001,30:43-44.
    [100]陈成.实现高速数控加工关键技术的研究.机械工程与自动化.2007,4:146-148.
    [101]陈烨.超高速数控机床控制系统.航空制造技术.2000,3:17-20.
    [102]郝一舒,邵纳,李沪曾.HSM技术在模具制造中的应用.中国制造业信息化.2005,34:112-114.
    [103]舒发,李文双,孙洪江,胡金平.超高速切削加工及其关键技术.煤矿机械.2004,7:80-82.
    [104]李合生,曾忠,曾炜.超高速切削加工技术及其发展趋势.机械设计与制造.2005,5:162-164.
    [105]熊建武,周进,陈湘舜.高速切削加工技术的特点及应用要求.科学技术与工程.2006,6:1044-1046.
    [106]沙志宏,陈子辰,傅建中.高速切削加工及其机床发展.组合机床与自动化加工技术.2003,11:6-8.
    [107]李佳特.CNC控制器发展趋势.世界制造技术与装备市场.2004,2:22-25.
    [108]李佳特.FANUC最新数控和伺服技术.机械工人.2007,2:20-22.
    [109]刘明灯,陆启建.一种高速高精皮米插补数控系统.数控机床与数控系统.2006,35:23-39.
    [110]刘明灯.陆启建.一种高速高精度数控系统.制造技术与机床.2007,3:48-51.
    [111]王宇晗,肖凌剑,曾水生等.小线段高速加工速度衔接数学模型.上海交通大学学报,2004,38:901-904.
    [112]李曦,唐小琦,陈吉红,周济.NC伺服的加减速控制算法的研究与实现.机床与液压,2000,3:3-4.
    [113]郭玉平,顾仰.增量运动的加减速策略研究.微特电机,1997,2:6-7.
    [114]张洪兴,聂秋根,袁坤.CNC机床伺服驱动系统的自动升降速处理.组合机床与自动化加工技术,2002,8:69-71.
    [115]游有朋,王珉,朱剑英.参数曲线的自适应插补算法.南京航天航空大学学报,2000,32:667-671.
    [116]游有朋,王珉,朱剑英.NURBS曲线高速高精度加工的插补控制.计算机辅助设计与图形学学报,2001,13:943-947.
    [117]金建新.机床CNC系统中任意空间曲线的可控步长插补方法.机械工程学报.2000,36:95-97.
    [118]叶伯生,杨叔子.任意三维抛物线的一种高速插补方法.华中理工大学学报,1996,24:9-11.
    [119]张莉彦.基于数据采样插补的加减速控制的研究.北京化工大学学报,1997,29:91-93.
    [120]方逵.参数曲线近似弧长参数化的插值方法.计算机辅助设计与图形学学报,1996,8:115-120.
    [121]游华云,叶佩青,汪劲松,杨开明,2003.轮回式双向螺距误差补偿方法.清华大学学报(自然科学版),13:1456-1459.
    [122]彭芳瑜,何莹,李斌,2006.NURBS曲线高速插补中的前瞻控制.计算机辅助设计与图形学学报.18:625-629.
    [123]施法中.计算机辅助几何设计与非均匀有理B样条.高等教育出版社,2001.
    [124]王省富.样条函数及其应用.西北工业大学出版社,1989.
    [125]施吉林,刘淑珍,陈桂芝.计算机数值方法.高等教育出版社,1999.
    [126]吴勃英,王德明,丁效华,李道华.数值分析原理.科学出版社,2003.
    [127]陈士良.数值方法与计算机实现.清华大学出版社,2005.
    [128]颜庆津.数值分析.北京航空航天大学出版社,2006.
    [129]易大义,陈道琦.数值分析引论.浙江大学出版社,2006.
    [130]张曙,Heisel.U.并联运动机床.机械工业出版社,2003.
    [131]Z.嘉杰克.线性动态系统与信号.西安交通大学出版社,2004.
    [132]张建刚.数控技术.华中科技大学出版社,2000.
    [133]周济,周艳红.数控加工技术.国防工业出版社,2002.
    [134]杨叔子,杨克冲.机械工程控制基础.华中理工大学出版社,1998.
    [135]张伯霖,杨庆东,陈长年.高速切削技术及应用.机械工业出版社,2002.
    [136]PMAC USER's MANUAL.Delta Tau Data System Inc.1998.
    [137]PMAC SOFTWARE REFERENCE.Delta Tau Data System Inc.1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700