钛合金紧固件连接结构接触腐蚀行为及其控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于航空结构中各种材料常常接触使用,因而使得电偶腐蚀和缝隙腐蚀成为航空结构的重要失效形式。本文采用标准缝隙腐蚀试验、标准电偶腐蚀试验、电化学极化试验、中性盐雾试验以及周期浸润腐蚀试验,研究了航空用钛合金紧固件及其连接结构在模拟海洋环境下的接触腐蚀行为,通过扫描电镜、X射线衍射等分析方法,分析了腐蚀机理,同时提出了相应的接触腐蚀控制方案。
     研究结果表明:碳纤维环氧复合材料在其紧固件螺接处共固化玻璃布可以有效地控制碳纤维环氧复合材料与钛合金紧固件之间的接触腐蚀;碳纤维环氧复合材料连接最佳组合为脉冲阳极化TC16螺栓配脉冲阳极化TC16螺母(MoS_2润滑),其次为蓝色阳极化TC16螺栓配合脉冲阳极化TC16螺母(MoS_2润滑)。
     无论单独对比件,还是连接脉冲阳极化和蓝色阳极化钛合金螺栓,不锈钢螺母Cr17Ni2的耐蚀性均优于1Cr11Ni2W2MoV;阳极化LY12铝合金螺母的耐蚀性优于不锈钢螺母。
     对于阳极化铝合金LY12夹层材料,带包铝层阳极化试样耐蚀性优于去包铝层阳极化试样,紧固件连接最佳方案为:钛合金TC16螺栓镀铝钝化,配合阳极化LY12螺母。
     结构钢30CrMnSiA镀镉耐蚀性优于结构钢镀锌;钛合金紧固件与结构钢接触腐蚀的最佳控制方案为:结构钢镀镉,钛合金紧固件镀铝。
     在钛合金紧固件连接LY12铝合金夹层和30CrMnSiA结构钢夹层的接触腐蚀实验中,电偶腐蚀因素占主导作用。
     对于结构钢,盐雾试验和周期浸润试验结果有较好的一致性,周期浸润试验加速程度大于中性盐雾试验,前者适用于半工业海洋气候,后者适用于海洋大气环境。
All sorts of materials are co-used in aerial structure and contact with each other, so Crevice Corrosion and Galvanic Corrosion are important failure forms of aerial structure. Contact Corrosion behaviors between aerial Titanium Alloy Fasteners and its jointed structure are studied, but also the corresponding control projects are presented by Standard Crevice Corrosion Test, Standard Galvanic Corrosion Test, Electrochemical Polarization Test, Neutral Salt Spray Test and Alternate Immersion Test, and by analysis methods such as Scan Electron Microscope and X-ray Diffraction.
    The results show that Graphite Epoxy Composite Material (abbreviated to GECM) which under fasteners solidified with glass cloth, Contact Corrosion between Ti Alloy Fasteners and GECM is effectively controlled, the best assemblage of GECM is Impulse Anodized TC16 bolts jointing with Impulse Anodized TC16 nuts lubricated by MoS2.
    Stainless Steel nuts lCrl7Ni2 have both better corrosion resistances than 1Cr11Ni2W2MoV whether they are single one or jointed with Impulse Anodized TC16 bolt or Blue Anodized TC16 bolts, when jointed with anodized TC16 bolts, anodized LY12 nuts have better corrosion resistance than any kind of Stainless Steel nuts.
    Anodized LY12 sandwich materials with Aluminum clad have better corrosion resistance than that without Aluminum clad, the best assemblage of the sandwich materials is Aluminum-coating TC16 bolts jointed with anodized LY12 nuts.
    Structural steel 30CrMnSiA plating Cd have better corrosion resistance than that plating Zn, the best assemblage of the sandwich materials is Aluminum-coating TC16 bolts jointed with plating Cd 30CrMnSiA nuts.
    The galvanic corrosion factor is dominant in the contact corrosion between titanium alloy fasteners and Anodized LY12 or 30CrMnSiA.
    For Structural steel, Neutral Salt Spray Test has better consistency with Alternate Immersion Test, and Alternate Immersion Test has a heaver acceleration effect than Neutral Salt Spray, the former is applied to semi-industrial marine climate, the latter is applied to marine atmospheric environment.
引文
[1] 刘秀晨,安成强,崔作兴,吴伟.金属腐蚀学.北京:化学工业出版社,2002.
    [2] 魏宝明.金属腐蚀理论及应用.北京:化学工业出版社,1993.
    [3] 杨武,顾濬祥,黎樵燊等.金属的局部腐蚀.北京:化学工业出版社,1995.
    [4] 曹楚南.腐蚀电化学.北京:化学工业出版社,1994.
    [5] 刘建华,吴昊,李松梅等.高强合金与钛合金电偶腐蚀行为.北京航空航天大学学报 2003;29(2):124-127.
    [6] 陶建勇.钛合金紧固件连接结构接触腐蚀行为研究.西安:西北工业大学学士学位论文,2003.
    [7] 梁成浩,金守训.合金元素对钛缝隙腐蚀性能的影响.中国腐蚀与防护学报 1995;15(3):210-216.
    [8] 辛湘杰,解峻峰,董敏.钛的腐蚀防护及工程应用.合肥:安徽科学技术出版社,1998.
    [9] 龙荣.钛制换热器缝隙腐蚀研究与探讨.氯碱工业2001;2001(6):42-44.
    [10] 张晓云;汤智慧.OCr13Ni8Mo2Al钢与铝合金和钛合金接触腐蚀与防护研究.腐蚀与防护2002;23(10):423-425.
    [11] 刘建华,吴昊,李松梅等.表面处理对TC2钛合金电偶腐蚀的影响.腐蚀科学与防护技术 2003;15(1):13-17.
    [12] Y.C.Lu MB. Chemical Treatment with Cerium to Improve the Crevice Corrosion Resistance of Austenitic Stainless Steels. Corrosion Science 1995; 37(1): 145-155.
    [13] Hyun-Young Chang etc. Initial Modeling of Crevice Corrosion in 316L Stainless Steels. Materials Processing Technology 1998; 103(2000):206-217.
    [14] Sedriks A.J. Corrosion of Stainless Steel. 1979.
    [15] 陈庆,时黎霞,腾玉华.介质的成分、浓度和温度对金属材料电化学腐蚀的影响.吉林化工学院学报 2000;17(1):63-66.
    [16] 冯浩,吴荫顺,邢广忠.碳酸钠—碳酸氢钠溶液中X42钢楔形缝隙内的电位和pH值分布.第四届全国腐蚀大会论文集 2003;270-272.
    [17] 陆峰,钟群鹏,曹春晓.大气环境条件下复合材料与金属电偶腐蚀及控制方法研究.材料保护 2002;35(12):19-22.
    [18] 孙成,李洪锡,高立群等.土壤盐浓差对碳钢铝合金电偶腐蚀行为影响.材料科学与工程 2001:19(1):67-69.
    [19] Betts B. Crevice Corrosion: Review of Mechanism, Modeling and Mitigation. British Corrosion Journey 1993; 28(4):279-295.
    [20] 赵永新,姚禄安,甘复兴.钛缝隙腐蚀行为的研究.中国腐蚀与防护学报 1990;10(3):252-258.
    [21] 化学工业部化工机械研究院.腐蚀与防护手册(腐蚀理论、试验及监测).北京:化学工业出版社,1989.
    [22] 王湛,何积铨,金明秀等.盐雾箱中镁合金电偶腐蚀的研究.第四届全国腐蚀大会论文集,339-341.2003.
    [23] 许淳淳,刘幼平,金志强等.No_3-对OCr18Ni9Ti钢在NaCl溶液中闭塞区腐蚀的抑制作用及其机理.中国腐蚀与防护学报 1991;11(2):225-231.
    [24] Harmson J.M.et al. Corrosion 1984-preceeding of the conference. 2ed. UK: 1984.
    [25] L.Reclaru J-MM. Effect of fluoride on Titanium and other dental alloys in dentistry. Biomaterials 19, 85-92. 1998.
    [26] 浦素云.温度对金属紧固件与碳纤维环氧复合材料的电偶腐蚀影响的研究.材料工程
    
    1989;7-9.
    [27] 王健云,周清木,秦平等.工业纯钛的缝隙腐蚀探讨.化工机械 2000;27(3):135-138.
    [28] 雍兴跃,丁忆;刘景军等.流体力学因素对电极反应作用的定量分析.腐蚀科学与防护技术 2003;15(4):204-207.
    [29] 韩冰,张波,方志刚等.高流速海水中舰艇常用材料腐蚀实验研究.第四届全国腐蚀大会论文集 2003;89-91.
    [30] HB5374.不同金属电偶电流测定方法.中国航空工业部标准.1987.
    [31] GB/T15748.船用金属材料电偶腐蚀试验方法.中华人民共和国国家标准,1995.
    [32] 赵晴,刘炳根.金属缝隙腐蚀时缝内电化学行为研究.南昌航空工业学院学报 1997;6-12.
    [33] D.R.Johns KS. The Crevice Corrosion and Stress Corrosion Cracking Resistance of Austenitic and Duplex Stainless Steel Fasteners. Corrosion Science 1997; 39(3):473-481.
    [34] GB1012.不锈钢三氯化铁缝隙腐蚀试验方法.中国国家标准,1998.
    [35] GB/T13671.不锈钢缝隙腐蚀电化学试验方法.中国国家标准,1992.
    [36] K.Habib. Detection of Crevice Corrosion by Optical Interferometry. Corrosion Science 1999; 42(2000):455-467.
    [37] 刘双梅.钛合金接触腐蚀、污染及防护技术研究.西安:西北工业大学硕士学位论文,1999.
    [38] 谢发勤,金石,严密林.离子镀铝的钛合金紧固件的耐蚀性能研究.西北工业大学学报 1995;13(1):147-150.
    [39] 李金桂,赵闺彦.航空产品腐蚀及其控制手册.航空工业部第六二一研究所,1984.
    [40] 郭晓伟.碳纤维增强塑料—结构钢复合结构的电偶腐蚀试验研究.材料开发与应用 2004;13(2):16-19.
    [41] 陆峰.复合材料表面防护对LY12CZ铝合金电偶腐蚀的影响.材料工程,1996(4):28-30.
    [42] 陆峰,钟群鹏,曹春晓.碳纤维环氧复合材料与金属电偶腐蚀的研究进展.材料工程,2003(4):39-43.
    [43] D.Eylon. Titanium for Energy and Industrial Application. 1981.
    [44] 赵继红.强酸环境下钛合金耐蚀性研究.西安:西北工业大学本科毕业论文,2003.
    [45] 张树启.紧固件用高强钛合金的发展钛工业进展 1998.
    [46] 李成功,傅恒志,于翘.航空航天材料.北京:国防工业出版社,2002.
    [47] 闵桂麟.关于飞机结构腐蚀的几个问题.航空工程与维修 2001;2001(1):37-38.
    [48] 吴旭勇.2002年中国机队腐蚀调查航空工程与维修 2003;2003(1).
    [49] Blackwood D J, Chooi SKM. Stability of protective oxide films formed on a porous titanium. Corrosion Science 2002; 44(3):395-405.
    [50] Bellucci F. Galvanic corrosion between nonmetallic composites and metals Ⅱ. Effect of area ratio and environmental degradation. Corrosion(Houston) 1992; 48(4):281-291.
    [51] Deaeration, pH shift, and surface disruption effects on the corrosion of modular THR alloys. Tulane Univ, New Orleans, LA, USA. Shreveport, LA, USA: IEEE, Piscataway, NJ, USA, 1995.
    [52] Galvanic corrosion effects on carbon fiber composites. Results from accelerated tests. BASF Structural Materials Inc, Anaheim, CA, USA. Anaheim, CA, USA: Publ by SAMPE, Covina, CA, USA, 1992.
    [53] Frejman LI. Galvanic macrocells with identical direction of electrode processes on cathode and anode. Zashchita Metallov 1998; 34(2):186-191.
    [54] He X, Noel JJ, Shoesmith DW. Temperature dependence of crevice corrosion initiation on titanium grade-2. Journal of the Electrochemical Society 2002; 149(9):440-449.
    
    
    [55] Hihara LH, Tamirisa C. Corrosion of SiC monofilament/Ti-15-3-3-3 metal-matrix composites in 3.15 wt.% NaCl. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing 1995; A198(1-2): 119-125.
    [56] Huang J, Shinohara T, Tsujikawa S. Protection of carbon steel from atmospheric corrosion by TiO_2 coating. Zairyo to Kank-yo/Corrosion Engineering 1999; 48(9):575-582.
    [57] Kitayama S, Shida Y. Effect of addition of alloying elements on the crevice corrosion resistance of titanium in hot salt solutions. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan 1991; 77(9): 1495-1502.
    [58] Prentice G, Holser RA, Farozic VJ, Pond RBJ, Cramblitt KL. Cathodic protection modeling of galvanically coupled heat exchangers. Corrosion(Houston) 1990; 46(1):75-84.
    [59] Peacock D. Connecting titanium to other metals. Materials Performance 1998; 37(8):68-69.
    [60] Reclaru L, Meyer JM. Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials 1998; 19(1-3):85-92.
    [61] Ross RW, Tuthill AH. Guidelines for successful use of marine fasteners. Corrosion (Houston)1991; 47(7):567-576.
    [62] Ross RWJ, Tuthill AH. Practical guide to using marine fasteners. Materials Performance 1990; 29(4):65-69.
    [63] Zook LM. Cathodic protection deployment on space shuttle solid rocket boosters. ASTM Special Technical Publication 1999;(1370): 101-111.
    [64] El Dahshan ME, Shams El Din AM, Haggag HH. Galvanic corrosion in the systems titanium/316 L stainless steel/Al brass in Arabian Gulf water. Desalination 2002; 142(2):161-169.
    [65] Igual Munoz A, Garcia Anton J, Guinon JL, Perez Herranz V. Galvanic studies of copper coupled to alloy 33 and titanium in lithium bromide solutions. Corrosion 2002; 5802):995-1003.
    [66] Igual Munoz A, Garcia Anton J, Guinon JL, Perez Herranz V. Corrosion behavior and galvanic coupling of stainless steels, titanium, and alloy 33 in lithium bromide solutions. Corrosion 2003; 59(7):606-615.
    [67] Cheng TP, Lee .JT, Tsai WT. Galvanic corrosion of titanium-coupled aluminum bronze. Materials Chemistry and Physics 1993; 36(1-2):156-160.
    [68] Cortada M, Giner L, Costa S, Gil FJ, Rodriguez D, Planell JA. Galvanic corrosion behavior of titanium implants coupled to dental alloys. Journal of Materials Science: Materials in Medicine 2000; 11(5):287-293.
    [69] Cooper KP, Slebodnick P, Thomas ED. Seawater corrosion behavior of laser surface modified Inconel 625 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing 1996; A206(1): 138-149.
    [70] Kimura M, Yamashita M, Uchida H, Fuji A. Corrosion current distributions of pure titanium/type 5083 aluminum alloy friction welding joints in 3.5% Nacl solution. Zairyo to Kankyo/Corrosion Engineering 2001; 50(5):237-242.
    [71] Seal O, Sumitani M. Effect of anodic/cathodic area ratio on pitting attacks for aluminum alloy 5052 in AlCl_3 solution. Keikinzoku/Journal of Japan Institute of Light Metals 1993; 43(2):71-75.
    [72] Grosgogeat B, Reclaru L, Lissac M, Dalard E Measurement and evaluation of galvanic corrosion between titanium/Ti6A 14V implants and dental alloys by electrochemical techniques and Auger spectrometry. Biomaterials 1999; 20(10):933-941.
    [73] Buzovkina TB, Aleksandrov VA, Shlyaga LI, Ponomareva ND, Egorov ES. Dynamics of crevice microbial marine corrosion. Zashchita Metallov 1991; 27(5):838-840.
    
    
    [74] Danadural KSK, Rajeswari S. Corrosion behaviour of 316L stainless steel and titanium-stabilized stainless steels in a paper-machine white-water system. Corrosion Prevention and Control 1999; 46(2):39-45.
    [75] Haselmair H, Morach R, Boehni H. Field and laboratory testing of high-alloy steels and nickel alloys used in fastenings in road tunnels. Corrosion(Houston)1994; 50(2):160-168.
    [76] He X, Noel JJ, Shoesmith DW. Temperature dependence of crevice corrosion initiation on titanium grade-2. Journal of the Electrochemical Society 2002; 149(9):440-449.
    [77] Liang C. Study on the crevice corrosion behavior of titanium. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering 1994; 23(6):41-45.
    [78] Pariona MM, Muller IL. Numerical simulation and factorial design of titanium crevice corrosion in sodium chloride solution. Computers & Chemistry 1998; 22(5):377-384.
    [79] Postlethwaite J, Evitts RW, Watson MK. Modelling the initiation of crevice corrosion of passive alloys at elevated temperatures. Materials Science Forum 1995; 192-194(pt 1): 121-132.
    [80] Reclaru L, Meyer JM. Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials 1998; 19(1-3):85-92.
    [81] Turissini RL, Bruno TV, Dahlberg EP, Setterlund FB. Crevice corrosion under gasket causes titanium plate heat exchanger failure. Materials Performance 1998; 37(1):62-63.
    [82] Crevice corrosion-NaCl concentration map for grade-2 titanium at elevated temperature, univ of Tokyo, Tokyo, Jpn. Boston, MA, USA: Publ by Materials Research Society, Pittsburgh, PA, USA, 1993.
    [83] Crevice corrosion-NaCl concentration map for alloy 625 at elevated temperature. Univ of Tokyo, Tokyo, Jpn. Kyoto, Jpn: Materials Research Society, Pittsburgh, PA, USA, 1995.
    [84] Localization in the crevice corrosion of titanium. Kyoto, Jpn: Publ by Pergamon Press Inc, Tarrytown, NY, USA, 1992.
    [85] Kitayama S, Shida Y. Effect of small amount of alloying elements on the crevice corrosion resistance of titanium in high temperature NaCl solutions. ISIJ International 1991; 31(8):897-905.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700