金思维提取物对拟AD模型大鼠脑内tau蛋白磷酸化途径的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立散发性老年性痴呆(SAD)大鼠模型,应用具有益气活血、补肾化痰作用的中药复方提取物金思维进行治疗,观察金思维对该模型行为学、海马神经元超微结构、tau蛋白磷酸化相关酶类以及胰岛素信号转导通路相关蛋白表达的影响;探讨金思维治疗AD的作用机理,为指导临床应用和开发新药提供理论和实验依据。
     方法:将实验动物随机等分6组:假手术组、模型组、盐酸多奈哌齐组和金思维大、中、小剂量治疗组。采用双侧脑室注射微量链脲佐菌素(ICV-STZ)的方法建立拟AD大鼠模型。模型成功后,治疗组分别予盐酸多奈哌齐和金思维(分为大、中、小三个不同剂量)进行三个月的治疗,同时模型组和假手术组给予等体积的双蒸水。采用Morris水迷宫、免疫组织化学、Western blot、电镜以及图像分析技术等手段,观察模型鼠行为学、海马CA1区形态学的改变,分别检测海马组织tau蛋白磷酸化位点(Ser199/202)和相关酶类(GSK-3β、PP-2A、PP-1),以及胰岛素信号转导通路相关蛋白(IR、IGF-I、IRS-1、IRS-2)的含量和表达水平。
     结果:
     1金思维能明显改善ICV-STZ模型大鼠出现的学习记忆障碍:定位航行试验中,模型组大鼠平均逃避潜伏期和游泳距离较假手术组明显延长(P<0.05或/P<0.01),金思维各剂量组和盐酸多奈哌齐组平均逃避潜伏期和游泳距离较模型组明显缩短(P<0.05/P<0.01);空间探索试验中,模型组与假手术组比较,原平台象限活动时间明显缩短(P<0.01);金思维各剂量组与模型组比较,原站台象限活动时间均明显延长(P<0.01),且与盐酸多奈哌齐组相比无显著性差异。
     2 ICV-STZ模型组大鼠海马组织存在胰岛素信号转导通路障碍:IR、IGF-I、IRS-1、IRS-2的含量和表达水平均下调(P<0.01),金思维各剂量组均可不同程度的上调这些蛋白的含量和表达(P<0.05/P<0.01)。
     3与假手术组相比,ICV-STZ模型组大鼠在Ser199/202位点磷酸化水平明显升高(P<0.01),非磷酸化水平明显降低(P<0.01);而金思维各剂量组和盐酸多奈哌齐组在此二位点的磷酸化水平较模型组显著降低(P<0.05/P<0.01),非磷酸化水平显著升高(P<0.05/P<0.01),尤以大、中剂量组突出。
     4 ICV-STZ模型组大鼠海马CA1区微管出现断裂和溶解,金思维可修复断裂或溶解的微管;与假手术组相比,模型组蛋白激酶GSK-3β的表达明显升高(P<0.01),磷酸酶PP-2A、PP-1表达明显下降(P<0.01);金思维各剂量组GSK-3β的含量和表达水平较模型组显著降低(P<0.05/P<0.01),PP-2A和PP-1的含量和表达水平显著升高(P<0.05/P<0.01),与假手术组接近。
     结论:
     1 ICV-STZ模型大鼠存在胰岛素/ IGF-I信号转导异常以及学习记忆功能障碍,该模型可成功地模拟SAD的病理特征。
     2金思维提取物可明显改善tau蛋白Ser199/202位点的磷酸化程度,从而防止了过度磷酸化tau蛋白的产生及其带来的毒性作用;金思维能够保持蛋白激酶和磷酸酶表达平衡,确保海马神经元tau蛋白的正常磷酸化,保护微管结构,防止轴突损伤。
     3金思维可改善胰岛素/ IGF-I信号转导通路,发挥胰岛素及IGF-I营养和保护神经元的功效,从而恢复和促进学习记忆功能。
Objective:
     To establish rat model of Sporadic Alzheimer’s disease(SAD),and treat with GETO (herbal extract), which have the role function of supplementing Qi, activating blood flow, invigorating the kidney and dissipating phlegm. In this paper, we observe the learning and memorizing ability of the rats,ultrastructure of hippocampal neurons, as well as the expression of enzymes related to phosphorylation of tau and insulin signal transduction pathway in hippocampal neurons of AD rats. So as to investigate the neuroprotective role of GETO on rats with AD, provide further theoretical and experimental evidence for new medicine in clinical application
     Methods:
     Experimental animals were randomly divided into six groups: sham-operated group, model group, Donepezil group and GETO large, middle and small dosage treated groups. To establish the Sporadic Alzheimer’s disease model by intracerebroventricular injection of STZ (ICV-STZ) bilaterally, GETO groups were treated with gastric perfusion of GETO in three different dosage. The model group and sham group were given double distilled water respectively. 3 months later, Learning and memorizing ability of the rats were inspected through Morris water maze test. Immunohistochemistry(IHC), Western bolt, electron microscope and system of image pro-plus were used to determine ultramicrostructure of hippocampus CA1 region, and the expression of enzymes related to phosphorylation of tau(GSK-3β、PP-2A、PP-1), as well as protein expression of insulin signal transduction pathway(IR、IGF-I、IRS-1、IRS-2)in hippocampal neurons of AD rats.
     Results:
     1 GETO can ameliorate the ability of learning and memory of ICV-STZ rats. In place navigation test, Morris water maze test showed that the escape latency and swimming distance were significantly longer in the model group than that in the sham group (P<0.05 or P<0.01), but shorter in GETO groups and Donepezil group(P<0.05 or P<0.01).In spatial probe test, compared with the sham group, swimming time in the platform of previous quadrant was significantly shorter in model group(P<0.01), but significantly longer in GETO groups(P<0.01), and there was no difference between Donepezil group and GETO groups.
     2 Compared with the sham group, the levels of phosphorylated tau protein at Ser199/202 epitope were elevated in ICV-STZ rat brain hippocampus, and the levels of non- phosphorylated tau protein at Ser199/202 epitope were decreased (P<0.01); but in GETO groups and donepezil group, the levels of phosphorylated tau at the same epitope were obviously decreased, and non-phosphorylated proteins were obviously increased (P<0.05/ P<0.01), especially in Large and Middle dosage treated groups.
     3 The microtubules of hippocampal neurons of ICV-STZ model showed prominent changes of fragmentation and dissolution, while the treatment of GETO can significantly ameliorate these changes. The hippocampal neurons of AD rats showed significant intracellular increase in the tau phosphokinase, GSK-3β(P<0.01)and decrease in the tau dephosphry- lating enzymes, PP-1 and PP-2A(P<0.01). Compared with model group, GETO can down- regulate the expression of GSK-3βand up-regulate the expression of PP-2A and PP-1 (P<0.05/P<0.01).
     4 GETO can regulate brain insulin/IGF signal transduction pathway, there was an insignificant decrease in IR, IGF-I, IRS-1 and IRS-2 in the GETO treated groups as compared to the Model(P<0.01), and GETO groups can up-regulate the expression of them (P<0.05/P<0.01).
     Conclusion:
     1 There was dysfunction in learning and memory ability, as well as insulin/IGF-I signal transduction pathway in ICV-STZ rats; this model can simulate the pathological features of AD.
     2 GETO can ameliorate phosphorylation extent at Ser199/202 sites, and thus prevent the formation and toxicity of hyperphosphorylation of tau protein; GETO can keep balance of protein kinase and phosphatase expression, to ensure normal level of tau protein phosphorylation in hippocampal neurons, protect structure of microtubule, and prevent axonal injury.
     3 GETO can regulate insulin/IGF-I signaling pathway, help insulin and IGF-I act on protecting neurons from damage and remarkably improving learning and memory function.
引文
1. Ferris, Steven H, Yan Bing. Differential Diagnosis and Clinical Assessment of Patients With Severe Alzheimer Disease. Alzheimer Disease & Associated Disorders. 2003,17: S92-S95
    2. Sharma M, Gupta YK. Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life Sciences 2000,68(9):1021-9
    3. 包新民,舒斯云.大鼠脑立体定向图谱[M].北京:人民卫生出版社,1991:12-18
    4. Gispen WH, Biessels GJ. Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci, 2000, 23: 542-9
    5. Sasaki N, Toki S, Chowei H, et al. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain, Res 2001, 12:256-62
    6. Lester-Coll N, Rivera EJ, Soscia SJ, et al. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimer’s Dis, 2006, 9(1): 13-33
    7. Peyrot M, Rubin RR. Levels and risks of depression and anxiety symptomatology among diabetic adults. Diabetes Care, 1997, 20:585-90
    8. Leibson, CL, Rocca WA, Hanson VA. et al. Risk of dementia among persons with diabetes mellitus: a population based cohort study. Am J Epidemiol, 1997, 145:301-308
    9. Ott A, Stolk RP, Hofman A,et al. Association of diabetes mellitus and dementia: the Rotterdam study. Diabetologia,1996, 39:1392-7
    10. Rasgon N, Jarvik L. Insulin resistance, affective disorders, and Alzheimer’s disease:review and hypothesis. J Gerontol A Biol Sci Med Sci, 2004, 59: 178-83
    11. Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs, 2003, 17:27-45
    12. Blokland A, Jolles J. Spatial learning deficit and reduced hippocampal ChAT activity in rats after an ICV injection of streptozotocin. Pharmacol Biochem Behav, 1993, 44:491-4
    13. Hoyer S,Hennenberg N,Knappet S, et al. Brain glucose metabolism is controlled by amplification and desensitization of the neuronal insulin receptor.Ann NY Acad Sci, 1996, 777:374-9
    14. Fr?lich L, Blum-Degen D, Bernstein HG, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm. 1998, 105(4-5):423-38
    15. Münch G, Schinzel R, Loske C, et al. Alzheimer’s disease-synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm, 1998, 105(4-5):439-61
    16. Hoyer S. Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis.J Neural Transm,1998,105:415- 22
    17. Veerendra Kumar MH, Gupta YK. Effect of centella Asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clinical and Experimental Pharmacology and Physiology, 2003, 30:336-42
    18. Shoham S, Bejar C, Kovalev E, et al. Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributes to spatial memory deficits in rats. Exp Neurol, 2003, 184:1043-52
    19. Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes? Journal of Alzheimer's Disease, 2005, 7 (1):63-80
    20. Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci, 1998, 112: 1199-208
    21. Junod A , Lamber AE Orci L , et al. Studies of the diabetogenic action of streptozotocin. PTOC Soc Exp Biol Med, 1967, 125:201-3
    22. Rackietan N , Rackietan ML , Nadkarni MR. Studies on diabetogenic action of strepto- zotocin.Cancer Chemotherapy Reports, 1993,29:91-5
    23. Sharma M, Gupta YK. Effect of chronic treatment of melatonin on learning, memory and oxidative deficiencies induced by intracerebroventricular streptozotocin in rats. Pharmacology, Biochemistry and Behavior, 2001, 70:325-31
    24. Weinstock M, Kirschbaum-Slager N, Lazarovici P, et al. Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Annals of the New York Academy of Sciences, 2001, 939:148-61
    25. Hoyer S, Nitsch R, Oesterreich K, et al. Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross- sectional comparison against advanced late-onset and incipient early onset cases. Journal of Neural Transmission 1991, 3 (1):1-14
    26. Kumar A, Schapiro MB, Grady C, et al. High-resolution PET studies in Alzheimer's disease. Neuropsychopharmacology, 1991, 4 (1):35-46
    27. Hoyer S. Oxidative energy metabolism in Alzheimer’s brain. Mol. Chem. Neuropathol. 1992, 16:207-24
    28. Sims NR, Bowen DM, Davison AN. [14C] Acetylcholine synthesis and [14C] carbondioxide production from[U-14C] glucose by tissue prisms from human neocortex. Biochem J,1981, 196:867-76
    29. Polidori MC, Mecocci P. Plasma susceptibility to free radical-induced antioxidant consumption and lipid peroxidation is increased in very old subjects with Alzheimer disease. Journal of Alzheimer's Disease, 2002, 4 (6): 517-22
    30. Hoyer S, Lannert H. Inhibition of the neuronal insulin receptor causes Alzheimer-like disturbances in oxidative/energy brain metabolism and in behavior in adult rats. Ann N Y Acad Sci, 1999,893: 301-3
    31. 盛树力·糖尿病脑病与老年性痴呆·中华内分泌代谢杂志,2001;17(1):58-59
    32. Duelli R, Schrock H. Kuschinsky W, Hoyer S. Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int.J. Dev. Nertosci, 1994, 12:737-43
    33. Nitsch R, Hoyer S. The intracerebroventricular streptozotocin treated rat: Impairment of cerebral glucose metabolism resembles the alterations of carbohydrate metabolism of the brain in Alzheimer’s disease. J. Neural Transm, 1989, 1:109-10
    34. Nitsch R, Hoyer S. Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat rain cortex. Neurosci, Lett. 1991, 128:199-202
    35. Braakman I, Helenius J, Helenius A. Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature, 1992, 356:260-2
    36. Gething MJ, Sambrook J. Protien folding in the cell. Nature, 1992, 355:33-45
    37. Rothman JE, Orci L. Molecular dissection of the secretary pathway. Nature, 1992, 355: 409-415
    38. Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science, 1996, 272: 227-234
    39. Rothman JE, The protein machinery of vesicle budding and fusion. Protein Sci, 1996, 5:
    185-94
    40. Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci USA, 1985, 82:6010-3
    41. Hirschberg CB, Snider MD. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Ann Rev Biochem, 1987, 56:63-87
    42. Lannert H, Bunning C, Jeckel D, Wieland FT. Lactosylceramide is synthesized in the lumen of the Golgi-Apparatus. FEBS Lett, 1994, 342:91-6
    43. Wiegandt H. The chemical constitution of gangliosides of the vertebrate nervous system. Behav Brain Res. 1995, 66:85-97
    44. Shoham S, Bejar C, Kovalev E, et al. Ladostigil prevents gliosis, oxidative-nitrative stress and memory deficits induced by intracerebroventricular injection of streptozoto- cin in rats. Neuropharmacology, 2007, 52:836-843
    45. Tuppo EE, Arias HR.The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol, 2005, 37:289-305
    46. Finch CE. Neurons, glia, and plasticity in normal brain aging. Neurobiol Aging, 2003, (Suppl1):S123-S127
    47. Prickaerts J, Fahrig T, Blokland A. Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: a correlation analysis. Behav. Brain Res, 1999, 102:73-88
    48. Winters BD, Forwood SE, Cowell RA, et al. Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J. Neurosci, 2004, 24: 5901-8
    49. Plaschke K, Hoyer S. Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. International Journal of Developmental Neuroscience, 1993, 11 (4): 477-83
    50. Blokland A, Jolles J. Behavioral and biochemical effects of an ICV injection streptozotocin in old Lewis rats. Pharmacology, Biochemistry and Behavior 1994, 47(4): 833-7
    51. Hellweg R, Nitsch R, Hock C, et al. Nerve growth factor and choline acetyltranferase activity levels in the rat brain following experimental impairment of cerebral glucose and energy metabolism. J Neurosci Res. 1992, 31:479-86
    52. Terwel D, Prickaerts J, Meng F, et al. Brain enzyme activities after intracerebro- ventricular injection of streptozotocin in rats receiving acetyl-L-carnitine. Eur J Pharmacol. 1995,287: 65-71
    53. Morris RG, Garrud P, Rawlins JN, et al. Place navigation impaired in rats with hippocampal lesions.Nature, 1982, 297(5868):681-3
    54. Squire LR, Zola-Morgan S. Memory: brain systems and behavior. Trend Neurosci, 1988, 11(4):170-5
    55. 田金洲 ,朱爱华 ,钟剑 .金思维治疗社区轻度认知损害老年患者记忆减退症状的 1年随访[J].中国中药杂志.2003,28(10):987-991
    56. 李小黎.金思维提取物对 Aβ 致类 AD 模型神经元突触的保护作用及其机制研究.北京中医药大学博士研究生学位论文.2004
    57. 徐意.金思维提取物对 AD 模型鼠脑内 β 淀粉样肽及神经可塑性的影响. 北京中医药大学博士研究生学位论文.2005
    58. Kasa P, Papp, Kasa PJ. Donepezil dose dependently inhibits acetylcholinesterase activity in various areas an d in the presynaptic cholinergic and the postsynaptic cholinoceptive enzyme positive structures in the human and rat brain. Neuroscience, 2000, 101:89-100
    59. Whitlock JA. Brain injury, cognitive impairment, and donepezil. J Head Trauma Rehabil, 1999, 14:424-7
    60. Rogers SL, Farlow MR, Doody RS, et al. A 24-week, double blinded Placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology, 1998, 50:136-45
    1. Wickelgren I. Tracking insulin to the mind. Science, 1998,280 :517-9
    2. Zhao W, Chen H, Xu H, et al. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem, 1999,274:34893-34902
    3. Banks WA. The source of cerebral insulin. Eur J Pharmacol, 2004,490: 5-12
    4. Gasparini L, Gouras GK, Wang R, et al. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen- activated protein kinase signaling. J Neurosci, 2001,8: 2561-70
    5. Gasparini L, Netzer WJ, Greengard P, et al. Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci, 2002,6:288-93
    6. Furukawa k, Sopher BL, Rydel RE, et al. Increased activity regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin2binding domain.J Neurochem, 1996, 67: 1882-96
    7. Schhubert M, Gautam D, Surjo D, et al. Role for neuronal insulin resistance in neurodegenerative disease. Proc Natl Acad Sci USA, 2004,101(9):3100-5
    8. Craft S. Insulin resistance syndrome and Alzheimer’s disease: Age-and obesity-related effects on memory, amyloid, and inflammation. Neurobiol Aging, 2005, 26 Supp 1:65-9
    9. Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol, 2004, 490:115-25
    10. Lee J, Pilch PE. The insulin receptor: structure, function, and signaling. Am J Physiol, 1994, 266:C319-C334
    11. 刘瑞,白怀,刘秉文. 胰岛素受体信号传递.生理科学进展.2001,32(3):254-256
    12. White MF. The insulin signaling system and the IRS proteins. Diabetologia, 1997, 40: S2-S17
    13. Dhand R, Hiles I, Panayotou G, et al. PI3-kinase is a dual specificity enzyme: auto- regulation by an intrinsic protein serine kinase activity. Embo J, 1994, 13 ∶ 522-533
    14. Ballou LM, Cross ME, Huang S, et al. Differential regulation of the phosphatidy- linositol 3-kinase/Akt and p70S6 kinase pathways by the alpha (1A)-adrenergic receptor in rat 1fibroblasts. J Biol Chem, 2000,275:4803-9
    15. Cohen P, Alessi DR, Cross DA. PDK1, one of the missing links in insulin signal transduction? Febs Lett, 1997,410:3-10
    16. Cross DAE, Alessi DR , Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995,378:785-9
    17. Duan C, Bauchat JR , Hsieh T. Phosphatidylinositol 3-kinase is required for insulin like growth factor-I induced vascular smooth muscle cell proliferation and migration. Circ Res, 2000, 86:15-23
    18. Cusi K, Maezon K, Osman A, et al. Insulin resistance differentially affects the PI3 Kinase and MAP Kinase-mediated signaling in human muscle[J]. J Clin Invest, 2000,
    105 (3):311-20
    19. Lima MH, Ueno M, Thirone AC et al. Regulation of IRS-1/SHP2 interaction and AKT phosphorylation in animal models of insulin resistance. Endocrine, 2002,18:1-12
    20. 盛树力.糖尿病脑病与老年性痴呆.中华内分泌代谢杂志,2001,17:58-9
    21. Carro E, Trejo JL, Gomez-Isla T, et al. Serum insulin-like growth factor I regulates brain amyloid-β levels. Nat Med, 2002, 8:1390-7
    22. Phiel CJ, Wilson CA, Lee VM, et al. GSK-3alpha of Alzheimer’s disease amyloid-beta peptides. Nature,2003,423:435-9
    23. McDermot JR, Gibson AM. Degradation of Alzheimer’s beta amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme. Neurochem Res, 1997,22: 49-56
    24. Zhao L, Teter B, Morihara T, et al. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade; implications for Alzheimer's disease intervention. J Neurosci, 2004,24:11120-6
    25. Xie L, Helmerhorst E, Taddei K, et al. Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci,2002, 22: RC221
    26. Lee VM. Biomedicine. Tauists and beta-aptists united-well almost! Science, 2001, 293: 1446-7
    27. Hong M, Lee VM. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem, 1997, 272: 19547-53.
    28. Schubert M, Brazil DP, Burks DJ, et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation.J Neurosci, 2003,23:7084-92
    29. Doble BW, Woodget JR. GSK-3: tricks of the trade for a multitasking kinase. Cell Sci,2003,116:1175-86
    30. Pei JJ, Grundke-Igbal I, Igbal K, et al. Accumulation of cyclin dependent kinase5 (cdk5) in neurons with early stages of Alzheimer's disease neurofibrilary degeneration. Brain Res,1998,797: 267-77
    31. de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimer’s Dis, 2005, 7:45-61.
    32. Nelson TJ, Alkon DL. Insulin and cholesterol pathways in neuronal function, memory and neurodegeneration. Biochem Soc Trans, 2005,33: 1033-6
    33. Skeberdis VA, Lan J, Zheng X, et al. Insulin promotes delivery of N-methyl- D-aspartate receptors exocytosis. Proc Natl Acad Sci USA, 2001, 98:3561-6
    34. Songyun Z, Xiaoguang Y, Qingjiu Z, et al.Effect of insulin on changes of nit ric oxide synthase (NOS) positive cells in hippocampus of diabetic rats. Basic Medical Sciences and Clinics, 2002,22(6): 562-5
    35. De Leon MJ, Convit A, Wolf OT. Prediction of cognitive decline in normal elderly subjects with2-[(18)F] fluoro-2-deoxy-D-glucose/poitron-emission tomography(FDG/ PET). Proc Natl Acad Sci USA, 2001,98: 10966-71
    36. 盛树力. 老年性痴呆发病机理的假设.老年医学与保健,2005,11(4):199-201
    37. 盛树力,王霄虹. 多肽激素的当代理论和应用[M]. 北京:科学技术文献出版社, 1998: 258-260
    38. 徐杰,单国兵,姚志彬.脑内胰岛素研究进展[J].解剖科学进展,1995,1(2):183-8
    39. Aizenman Y, Vellis de J. Brain neurons develop in a serum and glial free environment: effects of transferring, insulin, insulin-like growth factor-1 and thyroid hormone on neuronal survival, growth and differentiation. Brain Research, 1987, 406:32-42
    40. Galli C, Meucci O, Scorziello A, et al. Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci,1995,15:1172-9
    41. Granerus M, Schofield P, Bierke P, et al. Growth factors and apoptosis in development. The role of insulin like growth factor I and TGFβ1 in regulating cell growth and cell death in a human teratocarcinoma derived cellline. Int J DevBiol,1995,39:759-764
    42. Sell C, Baserga R, Rubin R. Insulin-like growth factor I (IGF-I) and the IGF-I receptor prevent etoposide-induced apoptosis. Cancer Res, 1995, 55: 303-6
    43. Singleton JR, Randolph AE, Feldman EL. Insulin-like growth factor I receptor prevents apoptosis and enhances neuroblastoma tumorigenesis. Cancer Res, 1996, 56:4522-9
    44. Craft S, Dagogo-Jack SE, Wiethop BV, et al. Effects of hyperglycemia on memory and hormone levels in dementia of the Alzheimer type: a longitudinal study. Behave Neuroscience, 1993,107: 926-40
    45. Hoyer S. Brain glucose and energy metabolism abnormalities in sporadic Alzheimer’s disease. Exp Gerontol, 2000,35:1363-72
    46. Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs, 2003, 17:27-45
    47. Gispen WH, Biessels GL. Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci, 2000, 23:542-9
    48. Lester-Coll N, Rivera EJ, Soscia SJ,et al. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimers Dis, 2006, 9(1): 13-33
    1. Arriagada PV, Growdon JH ,Hedley-Whyte ET , et al. Neurofibrillary Tangles but Not Senile Plaques Parallel Duration and Severity of Alzheimer’s Disease [J]. Neurology, 1992, 42:631-9
    2. Riley KP, Snowdon DA, Markesbery WR. Alzheimer’s Neurofibrillary Pathology and the Spectrum of Cognitive Function: Findings from the Nun Study [J].Ann Neurol, 2002, 51:567-77
    3. Goedert M, Klug A. Tau protein and the paired helical filament of Alzheimer’s disease [J] Brain Res Bull, 1997, 50 (510)∶469-70
    4. Glenner GG, Wong W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein [J]. Biochem Biophys Res Commun, 1984, 120:885-97
    5. Grundle-Iqbal I, Iqbal K, Tung, et al. Abnormal phosphorylation of microtubule- associated protein tau in Alzheimer cytoskeletal pathology [J]. Proc Natl Acad Dci USA, 1986,83:4913-17
    6. Goedert M, Wischik, CM, et al. Cloning and sequencing of the cDNA encoding a core protein of the paired tau: sequencesand localization in neurofibrillary tangles of Alzheimer’s disease[J]. Neuron, 1998, 3:519-26
    7. Goedert M, Spillantini MG, et al. Cloning and sequencing an isofoam microtubule- associated protein tau containing four tandem repeats: differential expression of tauprotein mRNA in human brain[J]. EMBO J, 1989, 8:393-9
    8. Fellous A, Francon J, Lennon AM, et al .Microtubule assembly in vitro[J]. J. Biochem, 1997, 78:167-74
    9. Kopke E, Tung YC, Shaikh S, et al. Microtubule-associated protein tau: abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease [J]. J Biol Chem, 1993, 268:24374-84
    10. Hirokawa N, Shiomura Y, Okabe S, et al. Tau proteins: the molecular structure and mode of binding on microtubules [J].J Cell Biol,1988, 107(4):1449-59
    11. Ennulat DJ, Liem RK, Hasim GA, et al. Two separate 18-amino acid domains of tau promote the polymerization of tubulin[J].J Biol Chem,1989,264: 5327-30
    12. Butner KA , Kirschner MW. Tau protein binds to microtubules through a flexible array of distributed weak sites[J].J Cell Biol, 1991 , 115 : 717-30
    13. 裴进京.阿尔茨海默病神经原纤维缠结退行性变性及缠结的形成机制.于盛树力主编,老年性痴呆:从分子生物学到临床诊治,1995: 205-13
    14. Goedert M, Spilantini MG. Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer’s disease[J], Biochim Biophys Acta, 2000,1502:110-21
    15. Kenessey A, Yen SH. The extent of phosphorylation of fetal tau is comparable to that of PHF-tau from Alzheimer paired helical filaments[J]. Brain Res, 1993, 629:40-6
    16. Ksiezak Reding H , Liu WK, Yen SH. Phosphate analysis and dephosphorylation of modified tau associated with paired helical filaments[J]. Brain Res,1992 ,597:209-19
    17. Gorath M, Stahnke T, Mronga T et al. Developmental changes of tau protein and mRNA in cultured rat brain oligodendrocytes[J].Glia, 2001, 36: 89-101
    18. Klein CE, Kramer M, Cardine AM et al. Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau[J]. J Neurosci, 2002, 22:698-707
    19. Tzivion G, Shen YH, Zhu J, et al. 14-3-3 proteins: bringing new definitions to scaffolding [J]. Oncogene, 2001, 21:6331-8
    20. 王建枝. 微管相关蛋白 tau 与 Alzheimer 病神经元纤维退变[J].中华神经科杂志,1999;32(3):180-182
    21. 刘英华,王建枝.tau 蛋白异常与阿尔茨海默病的关系.生命的化学[J].2006,26(2):
    108-110
    22. Morishima-Kawashima M,Hasegawa M,Tako K, et al.Proline-directed and non-proline- derected phosphorylation of PHF-tau[J]. J Biol Chem, 1995, 270:823-9
    23. Iqbal K, Aonso, A, Gong CX, et al. Alzheimer neurofibrillary degeneration: Importance, Mechanism and Therapeutic Appoaches In: Iqbal K, Mclachlan DRC, Winblad B, Wisniewski HM. Eds: Alzheimer Disease: Basic Mechanism, Diagnosis and Therapeutic Strategies. New York: John Wiley and Sons Ltd, 1995, 513-22
    24. Gordon-Krajcer W, Yang L, Ksiezak-Reding H. Conformation of paired helical filaments blocks dephosphorylation of epitopes shared with fetal tau except Ser199 /202 and Ser199 /Thr205[J]. Brain Res, 2000,856(122): 163-75
    25. 王建枝 , 刘进杰 . 神经 退行性 疾 病神经 细 胞死亡 机 理 [J].国外 医学 ,分子 生物学分册,2003,25(1):41-44
    26. Iqbal K, Alonso Adel C, E1-Akkad E, et al. Alzheimer neurofibrillary degeneration: therapeutic targets and high-throughput assays. J Mol Neurosci. 2003,20(3):425-9
    27. Gong CX , Liu F, Grundke-Iqbal I , et al. Post-translational Modifications of Tau Protein in Alzheimer’s Disease [J] . J Neural Transm (S0300-9564), 2005, 112 (6): 813- 38
    28. Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats[J].Behav Neurosci, 1998, 112(5): 1199-208
    29. Shoham S, Bejar C, Kovalev E, et al. Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributes to spatial memory deficits in rats[J]. Exp Neurol, 2003,184(2):1043-52
    30. 褚文政,钱采韻.侧脑室注射链脲霉素引起大鼠脑Aβ1-40、Aβ1-42、tau202、tau396、tau404表达增加[J].第一军医大学学报,2005, 25(2):168-170
    1. Alafuzoff I, Iqbal K, Friden H,et al . Histopathological criteria for progressive dementia disorders: Clinical-pathological correlation and classification by multivariate data analysis. Acta Neuropathol(Berl), 1987,74 :209-25
    2. Iqbal K, Alonso A, Gong CX, et al. T phosphatase. In: Kosik K, Avila J eds.Brain Microtubule Associated Proteins: Modifications and Diseases. New York: Harwood Academic Publishers, 1997: 95-111
    3. Wang JZ, Wu Q, Smith A, et al. Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A2 kinase. FEBS Lett, 1998, 436 (1): 28-34
    4. 许绍芬.神经生物学[M]上海:上海科技大学出版社,1990:202
    5. 魏群,于大禹,吴和珍. 阿尔茨海默病与tau蛋白的磷酸化及去磷酸化.中国航天医药杂志.2004,6(2):1-5
    6. 王建枝. 微管相关蛋白 tau 与 Alzheimer 病神经原纤维退变.中华神经科杂志,1999,32(3):180-182
    7. Morishima-Kawashima M, Hasegawa M, Takio K, et al. Proline-directed and non- proline-directed phosphorylation of PHF-tau. J Biol Chem, 1995,270:823-9
    8. Singh T, Grundke-Iqbal K. Phosphorylation of tau protein by casein kinase-1 converts it to an abnormal Alzheimer-like atate.J Neurochem, 1995,64:1420-3
    9. Singh T, Wang JZ, Novak M, et al. Calcium/Calcineurin-dependent protein kinase Ⅱ phosphorylates tau at Ser-262 but only partially inhibits its binding to microtubules. FEBS Lett, 1996, 3768:145-8
    10. Biemat J, Mandelkow EM, Schroter C, et al. The switch of tau protein to an Alzheimer- like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region. EMBO J, 1992, 11:1593-7
    11. Drewes G, Trinczek,Illenberger S, et al. Microtubule-associated Protein/ Microtubule Affinity-regulating Kinase (pi 10mark). J Biol Chem, 1995,270: 7679-88
    12. Illenberger S. The Endogenous and Cell Cycle-dependent Phosphorylation of tau Protein in Living Cells: Implications for Alzheimer’s Disease. Mol. Biol. Cell, 1998, 9:1495- 1512
    13. Gong CX,Liu F,Grundke-Iqbal I,et al. Post-translational modifications of tau protein in Alzheimer’s disease. Neural Transm,2005,112(6): 813-38
    14. Pei JJ, Braa KE, Braak H, et al. Distribution of active glycogen synthase kinase-3 beta (gsk-3 beta) in brain staged for Alzheimer’s disease neurofibrillary changes[J]. J Neuropathol, 1999,58:1010-9
    15. 张开基,李万成.GSK-3:一个在信号转导中的关键酶.国际呼吸杂志,2007, 27(2): 130- 132
    16. Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3 /factor A. EMBO J, 1990, 9: 2431-8
    17. Shaw PC, Davies AF, Lau KF, et al. Isolation and chromosomal mapping of human glycogen synthase kinase-3α and -3β encoding genes. Genome, 1998, 41:720-727
    18. Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-kB activation. Nature, 406: 86-90
    19. Fiol CJ, Mahrenholz AM, Wang YH, et al. Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J Biol Chem, 1987, 262: 14042-8
    20. 丁绍红,施建华,尹晓敏等.PKA、GSK-3β和cdk5 对微管相关蛋白tau 的位点特异性磷酸化[J].南通大学学报,2006,26(4):235-8
    21. Abraha A,Ghoshal N,Gamblin TC,et al. C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. Cell Sci,2000,113(21): 3737-45
    22. Cross D A E, Alessi DR, Cohen P. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995, 378: 785-9
    23. 盛树力.糖尿病脑病与老年性痴呆.中华内分泌代谢杂志,2001,17(1):58-60
    24. Lee G, Thangavel R, Sharma VM, et al. Phosphorylation of tau by fyn: implications forAlzheimer's disease. J Neurosci, 2004, 24(9):2304-12
    25. Cohen P. The structure and regulation of protein phosphatases. Annu. Rev. Biochem, 1989, 58:453-508
    26. DombradiV. Comparative analysis of Ser/Thr protein phosphatases. Trends Comparative Biochem. Physiol, 1997,3:23-48
    27. Bennecib M,Gong CX, Grundke-Iqbal I,et al.Inhibition of PP-2A up-regulates CaMKII in rat forebrain and induces hyperphosphorylation of tau at Ser 262/356. FEBS Lett, 2001, 490:15-22
    28. Li L, Sengupta A, Haque N, et al. Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett, 2004,566:261-9
    29. Iqbal K, Grundke-Iqbal I. Pharmacological approaches of neurofibrillary degeneration. Curr Alzheimer Res, 2005,2:335-341
    30. Kopke E, Tung YC, Shaikh S, et al. Microtubule-associated protein tau: abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem, 1993, 268:24374-84.
    31. Wang JZ, Grundke-Iqbal, Iqbal K. Restoration of biological activity of Alzheimer abnormal phosphatase-2A,-2B and -1. Mol Brain Res, 1996,38: 200-8
    32. Cheng-Xin Gong, Theodore Lidsky, Jerzy Wegie, et al. Phosphorylation of Microtubule- associated protein tau is regulated by protein Phosphatase 2A in Mammalian Brain J Biol. Chem, 2000, 275:5535-44
    33. Liu F, Grundke-Iqbal I, Iqbal K, et al. Contribution of protein Phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci,2005,22:1942- 50
    34. 王建枝,I Grundke Iqbal, K Iqbal. 蛋白磷酸酯酶在Alzheimer氏病tau蛋白异常磷酸化中的作用[J]. 基础医学与临床,1999,19(4):74-8
    35. Wang JZ , Gong CX , Zaidi T,et al .Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and 2B[J]. J Biol Chem, 1995, 270: 4854-60
    36. Iqbal K, Alonso AD, Gongal JA, et al. Inhibition of neurofibrillary degeneration: A rational and promising therapeutic target. Alzheimer’s disease and Related disorders, 1999:269-79
    37. 盛树力主编.老年性痴呆及相关疾病[M],北京:科学技术文献出版社.2006,275-6.
    1. Goedert M, Wischik, CM, et al. Cloning and sequencing of the cDNA encoding a core protein of the paired tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease[J]. Neuron, 1998,3: 519-526
    2. Goedert M, Spillantini MG, et al. Cloning and sequencing an isofoam microtubule- associated protein tau containing four tandem repeats: differential expression of tau protein mRNA in human brain[J]. EMBO J,1989,8:393-9
    3. Fellous A, Francon J, Lennon AM, et al .Microtubule assembly in vitro[J]. J Biochem, 1997, 78:167-174
    4. Kopke E, Tung YC, Shaikh S, et al. Microtubule-associated protein tau: abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease[J]. J Biol Chem, 1993,268:24374-84
    5. Hirokawa N, Shiomura Y, Okabe S, et al. Tau proteins: the molecular structure and mode of binding on microtubules[J].J Cell Biol, 1988, 107(4):1449-1459
    6. Spilantini MG, Goedert M. Tau protein pathology in neurodegenerative disease[J]. TINS,1998,21:428-433
    7. Goedert M, Spilantini MG. Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer’s disease[J], Biochim Biophys Acta. 2000,1502:110-121
    8. Morishima-Kawashima M, hesagawa M, Takio K, et al. Ubiquitin is conjugated with amino terminally processed tau in paired helical filament [J]. Neuron, 1993, 10: 1151- 1160
    9. Wang JZ, Gong CX, Zaidi T, et al .Dephosphorylation of Alzheimer paired helical filaments with protein phosphatase-2A and-2B and-1[J]. J Biol Chem, 1995, 270: 4854- 4860
    10. Malchiodi-Albedi F , petrucci TC, Piccono B , et al. Protein phosphatase inhibitors induce modification of synapse structure and tau hyperphosphorylation in cultured rat hippocampal neurons[J]. J Neurosci Res,1997, 48:425-438
    11. Gispen WH ,Biessels GL. Cognition and synaptic plasticity in diabetes mellitus[J]. Trends Neurosci, 2000, 23:542-9
    12. Steen E, Terry BM, Rivera EJ,et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease-is this type 3 diabetes? [J].J Alzheimer's Dis,2005,7: 63-80
    13. Lester-Coll N, Rivera EJ, Soscia SJ,et al. Intracerebral streptozotocin model of type 3 diabetes; relevance to sporadic Alzheimer's disease[J]. J Alzheimer’s Dis, 2006,1: 13-33
    14. Sternberger NH , Sternberger LA , Ulrich J . Aberrant neurofilament phosphorylation in Alzheimer disease[J]. Proc Natl Acad Sci USA, 1985, 82 (12): 4274-6
    15. Phiel CJ, Wilson CA, Lee VM,et al. Gsk-3 regulates production of Alzheimer's disease amyloid-β peptides[J]. Nature, 2003, 423(6938): 435-8
    16. Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule- associated protein tau in Alzheimer cytoskeleton pathology[J]. Proc Natl Acad Sci USA, 1986, 83(13): 4913-7
    17. Sun W, Qureshi HY, Cafferty PW, et al. Glycogen synthase kinase-3 beta is complexed with tau protein in brain microtubules[J]. J Biol Chem, 2002, 277(14): 11933-40
    18. Leroy K, Boutajangout A , Authelet M, et al. The active form of glycogen synthasekinase-3 beta is associated with granulovacuolar degeneration in neurons in Alzheimer’s disease[J] . Acta Neuropathol, 2002,103(2):91-9
    19. Busciglio J, Lorenzo A, Yeh J, et al. beta-Amyloid fibrils induce Tau phosphorylation and loss of microtubule binding, Neuron. 1995,14:879-888
    20. Selkoe DJ, Alzheimer's disease: genes, proteins, and therapy, Physiol. Rev. 2001, 81: 741-766
    21. Pigino G, Pelsman A, Mori H, et a1 .Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J. Neurosci. 2001, 21:834-842
    22. Xu G, Gonzales V, Borchelt DR, Abeta deposition does not cause the aggregation of endogenous Tau in transgenic mice, Alzheimer Dis. Assoc. Disord. 2002,16:196-201
    23. Tomidokoro Y, Harigaya H, Matsubara E, et al. Brain Abeta amyloidosis in APPsw mice induces accumulation of presenilin-1 and Tau. J Pathol. 2001, 194:500-6
    24. Kurt MA, Davies DC, Kidd M, Hyperphosphorylated tau and paired helical filament-like structures in the brains of mice carrying mutant amyloid precursor protein and mutant presenilin-1 transgenes Neurobiol. Dis. 2003, 14:89-97
    25. Blanchard V, Moussaoui S, Czech C, et al. Time sequence of maturation of dystrophic neurites associated with Abeta deposit in APP/PS1 transgenic mice. Exp Neurol. 2003, 184:1247-63
    26. Pigino G, Morfmi G, Pelsman A, et al. Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport, J Neurosci. 2003, 23:4499-4508
    27. Lewis J, Dickson DW, Lin WL, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant Tau and APP, Science 2001,293: 1487-91
    28. Oddo S, Caccamo A, Shepherd JD, et al .Tripletransgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction, Neuron 2003, 39:409-421
    29. Boutajangout A, Authelet M, Blanchard V, et al.Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human Tau and familial Alzheimer's disease mutants of APP and presenilin-1,Neurobiol.Dis. 2004,15:47-60.
    30. Oddo S, Caccamo A, Kitazawa M, et al .Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer's disease, Neurobiol. Aging, 2003, 24:1063-
    70
    31. Rapoport M , Dawson HN , Binder LI et al. Tau is essential to beta-amyloid-induced neurotoxicity [J]. Proc Natl Acad Sci USA, 2002, 99 (9):6364-9
    32. Lewis J, Dickson DW, Lin WL et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP[J].Science,2001,293(5534): 1487-91
    33. G?tz J, Chen F, Dorpe J et al. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils[J]. Science , 2001,293 (5534):1491-5
    34. Stefan Kins, Konrad Beyreuther. Teasing out the tangles[J]. Nature Medicine, 2006, 12(7):764-5
    35. Martin Ramsden, Linda Kotilinek, Colleen Forster,et al. Age-Dependent Neurofibrillary Tangle Formation, Neuron Loss, and Memory Impairment in a Mouse Model of Human Tauopathy (P301L)[J]. The Journal of Neuroscience, 2005,25(46):10637-47
    36. SantaCruz K, Lewis J, Spires T,et al. Tau Suppression in a Neuro-degenerative Mouse Model Improves Memory Function[J]. Science,2005, 309: 476-481
    37. Spires TL, Orne JD, Santacruz, K. et al. Region-specific Dissociation of Neuronal Loss and Neurofibrillary Pathology in a Mouse Model of Tauopathy [J], Am J Pathol. 2006, 168: 1598-1607
    38. Gold M. Tau therapeutics for Alzheimer’s disease: the promise and the challenges [J].J Mol Neurosci, 2002, 19(3):331-4
    1. 于海宁,加速基础研究向临床应用的转化——记第10届国际阿尔茨海默病会议[J]. 中华医药信息导报,2006,21(16):4-6
    2. 吴昭怡,马斌,王振宁.老年性痴呆症致病机理研究进展[J].世界健康杂志, 2007,4 (10):9-11
    3. Gispen WH, Biessels GJ. Cognition and synaptic plasticity in diabetes mellitus [J]. TrendsNeurosci, 2000,23: 542-9
    4. Sasaki N, Toki S, Chowei H, et al. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease [J]. Brain Res, 2001,12:256-62
    5. Lester-Coll N, Rivera EJ, Soscia SJ, et al. Intracerebral streptozo- tocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimer’s Dis. 2006,9(1): 13- 33
    6. Luchsinger JA, Tang MX, Stern Y. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort [J]. Am J Epidemiol, 2001,154:635-41
    7. Logroscino G, Kang JH, Grodstein F. Prospective study of type 2 diabetes and cognitive decline in women aged 70-81 years [J].BMJ, 2004,328:548
    8. Ott A, Stolk RP, van Harskamp F, et al. Diabetes mellitus and risk of dementia: The Rotterdam study [J]. Neurology, 1999,53:1937-42
    9. Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment [J]. CNS Drugs, 2003,17:27-45
    10. Watson GS, Peskind ER, Asthana S, et al. Insulin increases CSF Aβ42 levels in normal older adults[J]. Neurology, 2003,60:1899-1903
    11. Peila R, Rodriguez BL, White LR, et al. Fasting insulin and incident dementia in an elderly population of Japanese-American men [J]. Neurology, 2004,63:228-33
    12. 赵咏梅,姬志娟,赵志炜,等. 糖尿病小鼠脑组织超磷酸化及其机制研究[J]. 中华内分泌代谢杂志,1999,15 (1):38-40
    13. Biessels GL, Heide LP, Amer K, et al. Aging and diabetes: implications for brain function [J]. Eur J Pharmacology, 2002,441:12-4
    14. 冀瑞俊 ,贾建平 .糖尿病患者总体认知功能和认知功能域的研究 [J].中国临床康复,2004,8(21):4133-34
    15. Okamura N, Arai H, Higuchi M, et al. Cerebrospinal fluid levels of amyloid beta-peptide 1-42. but not tau have positive correlation with brain glucose metabolism in humans[J]. Neurosci Lett, 1999,273:203-7
    16. Craft S, Asthana S, Mewcomer JW, et al. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose [J]. Arch Gen Psychiatry, 1999,56:1135- 40
    17. 朱德发,闫晓河,刘红艳.2型糖尿病对认知功能的影响[J].临床中老年保健. 2003,6(2):90-92
    18. Gregg EW.老年妇女的认知功能损害和减退与糖尿病有关[J].国外医学内科学分册,2000,160 (2):12174-80
    19. Craft S, Asthana S, Schellenberg G, et al. Insulin metabolism in Alzheimer’s disease differs according to apolipoprotein E genotype and gender [J]. Neuroendocrinology, 1999, 70: 146-52
    20. Frolich L, Blum Degen D, Riederer P, et al. A disturbance in the neuronal insulin receptor signal transduction in sporadic Alzheimer’s disease[J]. Ann NY Acad Sci, 1999, 893:290-3
    21. 张钦传,袁泉,林水淼等. 胰岛素在阿尔茨海默病中的作用[J]. 中华内分泌代谢杂志,2004,20:176-177
    22. 盛树力.糖尿病脑病与老年性痴呆[J].中华内分泌代谢志,2001,17(1):58-59
    23. 张建,华琦.代谢综合征[M].第 1 版.北京:人民卫生出版社, 2003:58-86
    24. Phiel CJP, Wilson CAP, Lee VMP, et al. Gsk-3 regulates production of Alzheimer's disease amyloid-βpeptides [J]. Nature, 2003, 423:435-8
    25. 左晓虹,姬志娟,艾厚喜,等. DM大鼠海马神经元信号传导途径的异常及APP17对此途径的激活作用[J] .中国糖尿病杂志,2002,10(2): 85-88
    26. Kamal A, Biessels GJ, Duis SEG. Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing [J]. Diabetologia, 2000, 43:500-6
    27. Mohamed AK, Bierhaus A, Schiekofer S, et al. The role of oxidative stress and NF-kappab activation in late diabetic complications [J]. Biofactors, 1999, 10:157-67
    28. Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature. 1996,382:685-91
    29. Wickelgren I. Tracking insulin to the mind. Science, 1998, 280: 517-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700