GSK-3β基因表达在抑郁障碍治疗前后行为模式中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     选取抑郁障碍建模成功的糖原合成酶激酶-3β(GSK-3β)过表达的转基因小鼠,按其是否给予慢性轻性不可预见性刺激(CMS)和选择性5-羟色胺再摄取抑制剂(SSRIs)进行分组,给予急性期和慢性期的干预,比较小鼠抑郁样行为的变化以及海马神经元细胞凋亡的情况,分析海马损伤指标的差异与抑郁样行为指标差异之间的相关性,初步探讨GSK-3β与抑郁障碍的发展及转归的关系。
     方法:
     1、按照随机分组的方法,将40只C57BL/6J小鼠(清华大学提供)按是否给予慢性轻性不可预见性刺激(CMS)和选择性5-羟色胺再摄取抑制剂(SSRI)随机分为5组,每组8只,分别为①正常对照组(control)②GSK3β过表达组(Lvx-GSK3β)、③GSK3β过表达+CMS组(Lvx-GSK3β+CMS)、④GSK3β过表达+氟西汀组(Lvx-GSK3β+fluoxetine)⑤GSK3β过表达+CMS+氟西汀组(Lvx-GSK3β+CMS+fluoxetine)。2.急性期干预:药物组按设计剂量20mg/kg的剂量,注射一次,非药物组不进行药物干预,其他处理同药物组,半小时后,通过强迫游泳实验和悬尾实验评估小鼠的抑郁行为。3.慢性期干预:药物组按设计剂量12mg/kg/d,干预时间14天。对照组不进行药物干预,其他处理同干预组。于第15天,评估其整体行为学指标。同时断头处死小鼠,取海马组织做冰冻切片,检测海马齿状回神经前体细胞凋亡情况。最后用SPSS16.0统计软件包进行数据分析。
     结果:
     1、单次给药30分钟后,强迫游泳实验及悬尾实验结果均显示:与正常组相比,过表达GSK-3β组(Lvx-GSK3β)和过表达GSK3β应激组(Lvx-GSK3β+CMS),相对于正常对照组(control),其不动时间明显增加,差别有统计学意义(P<0.05);Lvx-GSK3β+CMS组相对于Lvx-GSK3β组,其不动时间明显增加,差别有统计学意义(P<0.05);同时发现Lvx-GSK3β组及Lvx-GSK3β+CMS组与其相对应的给予氟西汀处理组(Lvx-GSK3β+fluoxetine组和Lvx-GSK3β+CMS+fluoxetine组)相比,差别无统计学差异(P>0.05)。
     2、连续给予氟西汀处理两周后,于次日行强迫游泳实验及悬尾实验,结果显示:与正常组相比,过表达GSK-3β组(Lvx-GSK3β)及过表达GSK3β应激组(Lvx-GSK3β+CMS),相对于正常对照组(control),其不动时间明显增加,差别有统计学意义(P<0.05);Lvx-GSK3β+CMS组相对于Lvx-GSK3β组,其不动时间明显增加,差别有统计学意义(P<0.05);同时发现Lvx-GSK3β组及Lvx-GSK3β+CMS组与其相对应的给予氟西汀处理组(Lvx-GSK3β+fluoxetine组和Lvx-GSK3β+CMS+fluoxetine组)相比,差别有统计学意义(P<0.01);Lvx-GSK3β+fluoxetine组与Lvx-GSK3β+CMS+fluoxetine组相比较,差别有统计学意义(P<0.05);Lvx-GSK3β+fluoxetine组和Lvx-GSK3β+CMS+fluoxetine组分别与control组比较,差别无统计学意义(P>0.05)。
     3、灌注处死小鼠,取其海马组织做冰冻切片,观察小鼠海马齿状回区神经前体细胞(NeuralprecursorcellsNPCs)的凋亡情况。
     TUNEL染色结果(绿色):Lvx-GSK3β小鼠海马齿状回区TUNEL阳性细胞较空白组数量多(P<0.01);Lvx-GSK3β+CMS组相对于Lvx-GSK3β组小鼠海马齿状回区TUNEL阳性细胞数量多(P<0.05);Lvx-GSK3β+fluoxetine组较Lvx-GSK3β组相比,TUNEL阳性细胞数量少(P<0.01);Lvx-GSK3β+CMS+fluoxetine组与Lvx-GSK3β+CMS组相比TUNEL阳性细胞数量少(P<0.01)。
     DAPI定位结果示(蓝色):Lvx-GSK3β小鼠海马齿状回区活性细胞较空白组数量少(P<0.01);Lvx-GSK3β+CMS组相对于Lvx-GSK3β组小鼠海马齿状回区活性细胞数量少(P<0.05);Lvx-GSK3β+fluoxetine组较Lvx-GSK3β组相比活性细胞数量多(P<0.01);Lvx-GSK3β+CMS+fluoxetine组与Lvx-GSK3β+CMS组相比活性细胞数量多(P<0.01)。
     结论:
     1、GSK-3β可能与抑郁障碍的发展与转归有关;
     2、慢性应激性刺激可能是影响抑郁障碍预后的一个危险因素;
     3、GSK-3β可能参与了小鼠海马神经可塑性调节。
     目的:
     通过检测重性抑郁障碍患者(MDD)治疗前后以及正常对照外周血有核细胞糖原合成酶激酶-3β(GSK-3β)的表达水平,以及自身丝氨酸磷酸化GSK-3β(p-Ser9-GSK-3β)的活性,比较其差异,初步探讨GSK-3β与抑郁障碍发生发展以及转归的关系。
     方法:
     采用病例对照研究以及前瞻性追踪治疗研究设计的方法。以17例重性抑郁障碍患者(患者组)和与之性别年龄相匹配的17例健康志愿者(对照组)为研究对象,患者组给予8周选择性5-羟色胺再摄取抑制剂(SSRI)氟西汀分散片的治疗,采用免疫印迹法,检测重性抑郁障碍患者治疗前后以及正常对照组,外周血有核细胞中GSK-3β及p-Ser9-GSK-3β的表达水平,最后由SPSS16.0统计软件包进行数据的处理。
     结果:
     1、重性抑郁障碍患者的临床疗效:重性抑郁障碍患者治疗前,汉密顿焦抑郁量表(HAMD(17项)评分:26.12±1.73分,治疗后其评分为:10.06±2.59分。治疗前后差别有统计学意义。(P<0.001)。汉密顿焦抑郁量表减分比(治疗前-治疗后/治疗前)为67%±8.9%。重性抑郁障碍患者抑郁障碍状均明显好转(减分率≥50%)。
     2、通过蛋白免疫印迹(westernblotting)的方法,检测受试者外周血中GSK-3β的蛋白表达情况,结果示:
     三组间用单因素方差分析的方法检测其组间差异具有统计学意义(p=0.017);治疗前患者组外周血中GSK-3β的蛋白表达明显高于正常组差别有统计学意义(p=0.006);经过氟西汀分散片抗抑郁治疗后,其外周血中GSK-3β的蛋白表达与治疗前相比,差异有统计学意义(p=0.039);和正常对照组相比,差别无统计学意义(p>0.05)。
     3、通过蛋白免疫印迹(westernbloating)的方法,检测受试者外周血中p-Ser9-GSK-3β的蛋白表达情况,结果示:
     三组间用单因素方差分析的方法检测其组间差异具有统计学意义(p=0.046);治疗前患者外周血中p-Ser9-GSK-3β的蛋白表达明显高于正常对照组差别有统计学意义(p=0.038);经过氟西汀分散片抗抑郁治疗后,其外周血中p-Ser9-GSK-3β的蛋白表达与治疗前相比,差异有统计学意义(p=0.027);和正常对照组相比,差异亦有统计学意义(p=0.015)
     结论:
     1、GSK-3β可能参与了重性抑郁障碍的发生及发展;
     2、调节自身丝氨酸磷酸化的GSK-3β的信号传导通路可能参与了抑郁障碍的发展;
     3、氟西汀分散片可以通过磷酸化GSK-3β使其失活,进而发挥药理学作用。
Objective:
     To use animal models of depression, transgenic mice with the Glycogen synthase kinase-3β(GSK-3β) over-expressed,and they were grouped by chronic unpredictable mild stress (CMS) or fluoxetine or not.The acute phases of intervention and long term were undertaken on the basis of treatment allocation., to compare the difference between groups in depressed behavior, to find out the correlation between the damage of cells in mice hippocampal and depressed behavior, and to explore the relationship between GSK-3β and the development of depression.
     Methods:
     1.40C57BL/6J mice were randomly divided into five groups, according to chronic unpredictable mild stress (CMS) or fluoxetine or not, normal group (contributor), GSK3β over-expression group (Lvx-GSK3β),over-expression GSK3β group with CMS (Lvx-GSK3β+CMS), over-expression GSK3β group with fluoxetine (Lvx-GSK3β+fluoxetine),over-expression GSK3β group with CMS and fluoxetine (Lvx-GSK3β+CMS+fluoxetine).2. The acute phases of intervention:the group with fluoxetine was injected only once with fluoxetine (20mg/kg), the group with non-fluoxetine was injected only once with saline wate (20mg/kg),30minutes later, the forced swimming test and tail suspension test were used to evaluate the depressed behavior.3. The long term intervention:the group with fluoxetine was injected with fluoxetine (12mg/kg/d), the group with non fluoxetine was injected with saline wate (12mg/kg/d),14days later, the forced swimming test and tail suspension test were also used to evaluate the depressed behavior, the mice were killed, brain tissues from the brain and hippocampal gyrus were sliced into frozen sections.the apoptosis and proliferation of neural precursor cells were observed by immunofluorescence.Then, all the collected data was analyzed by SPSS16.0for data statistics and analysis.
     Results:
     1. The acute phases of intervention,the immobility time of the forced swimming test and tail suspension test:LVX-GSK3β group and Lvx-GSK3β+CMS group showed obviously to be longer than normal control groups (P<0.05), Lvx-GSK3β+CMS group showed obviously to be longer than LVX-GSK3β group (P<0.05), But it is not found differences between GSK3β+CMS+fluoxetine group and LVX-GSK3β.(P>0.05), T test showed no corresponding difference between LVX-GSK3β+CMS+fluoxetine group and LVX-GSK3β+CMS (P>0.05)
     2. The long term intervention, the immobility time of the forced swimming test and tail suspension test:Lvx-GSK3β+fluoxetine group showed significantly to be shorter than LVX-GSK3β group (P<0.05),.LVX-GSK3β+CMS group show significantly to be shorter than LVX-GSK3β+CMS+fluoxetine group (P<0.01), LVX-GSK3β+CMS+fluoxetine group showed significantly to be longer than Lvx-GSK3β+fluoxetine group (P<0.01),But T test showed no corresponding difference between Lvx-GSK3β+fluoxetine and normal controls (P>0.05), it is not found differences between LVX-GSK3β+CMS+fluoxetine group and normal controls (P>0.05)
     3.The results from immunofluorescence:GFP (green),TUNEL positive cells in the hippocampal. gyrusdentatus zone was calculated under a fluorescent microscope:The number of apoptotic cells in LVX-GSK3β group was more than in normal controls,(P<0.01), The number of apoptotic cells in Lvx-GSK3β+CMS group was more than in LVX-GSK3β group (P <0.05), Lvx-GSK3β+fluoxetine group showed significantly to be less than LVX-GSK3β group (P<0.01),and the same result was showed between LVX-GSK3β+CMS+fluoxetine group and LVX-GSK3β+CMS group (P<0.01); The fluorescence intensity was observed in DAPI staining, a true measure of the viable cells. The number of the viable cells in LVX GSK3β group was less than in normal controls,(P<0.01), The number of the viable cells in Lvx-GSK3β+CMS group was less than in LVX-GSK3β group (P<0.05), Lvx-GSK3β+fluoxetine group showed significantly to be more than LVX-GSK3β group (P<0.01),and the same result was showed between LVX-GSK3β+CMS+fluoxetine group and LVX-GSK3p+CMS group (P<0.01)
     Conclusion:
     1. GSK-3β may be linked to the development of depression.2. CMS may be one of the important factors affecting prognosis.3. GSK-3β may be take part in the regulation of the hippocampal synaptic plasticity in mice.
     Objective:
     Major depressive disorder has been linked to alterations in the multifunctional enzyme glycogen synthase kinase-3β (GSK-3β). The antidepressant medicines inhibit GSK-3β in vitro and in mice brain,we tested whether fluoxetine modified GSK-3β in vivo in peripheral blood mononuclear cells (PBMCs) from healthy control and major depressive disorder subjects, and to explore the relationship between GSK-3β and the development of depressive disorder.
     Methods:
     1. A case control study and prospective study were conducted., the PBMCs were obtained from17major depressive disorder subjects and17healthy control subjects matched for age and sex, major depressive disorder subjects were treated with fluoxetine therapy for8weeks.2.Immunoblot analyses were used to measure GSK-3β and the inhibited, serine9-phosphorylated GSK-3p.
     Results:
     1. The level of GSK-3β was increased in major depressive disorder subjects, compared to healthy controls (p=0.006), the level of GSK-3β was decreased by in vivo fluoxetine treatment.(p=0.039), but GSK-3β levels between fluoxetine treatment group and healthy controls was no corresponding difference (p>0.05)
     2. Phos-pho-Ser9-GSK3β levels were higher in PBMCs from fluoxetine-treated major depressive disorder subjects than before the treatment (p=0.027) and healthy controls (p=0.015).
     Conclusion:
     1.GSK-3β may be linked to the development of depressive disorder.
     2.Signaling pathways regulating serine9-phosphorylation of GSK-3β is associated with depressive disorder.
     3.fluoxetine treatment is associated with a large increase in phospho-Ser9-GSK-3β in PBMCs,the inhibitory serine9-phosphorylation of GSK-3β in human PBMCs may provide a biochemical marker to evaluate the association between GSK-3β inhibition and therapeutic responses to fluoxetine treatment.
引文
[1]张亚林.高级精神病学.长沙:中南大学出版社,2007.
    [2]Irwin MR, Miller AH. Depressive disorders and immunity:20years of progress and discovery.Brain Behav Immu,2007,21:374-383.
    [3]Spiessl H, Hubner-Liebermann B, Hajak G. Depression, a widespread disease. Epidemiology, care situation, diagnosis, therapy and prevention. Dtsch Med Wochenschr.2006,131:35-40.
    [4]Shyn SI, Hamilton SP. The genetics of major depression:moving beyond the monoamine hypothesis. Psychiatr Clin North Am,2010,33:125-140.
    [5]Patpaoutian A, Reichardt LF. Trk receptor:mediators of neurotrophin action. Curt Opin Neurobiol,2001,11(3):272-280.
    [6]Fuehs E, Czeh B, Michaelis T, et al. Synaptic Plasticity and tianePtine:structural regulation. Eur Psyehiatry,2002,17:311-317.
    [7]Levinson DF. Thegenetics of depression:a review. Biol Psychiatry,2006,60(2):84-92.
    [8]Huezo-Diaz P, Tandon K, Aitchison KJ. The genetics of depression and related traits. Curt Psychiatry Rep,2005,7(2):117-124.
    [9]Pae CU, Yu HS, Kim JJ, et al. Banl polymorphism of the cytosolic phospholipase A2gene and mood disorders in the Korean population. Neuropsychobiology.2004,49(4):185-188.
    [10]Mertz K, Koscheck T, Schilling K. Brain-derived neutmphic factor modulates dendritic morphology of cerebellar basket and stellate cells:an in vitro tudy. Neuroscience,2000,97(2):303-310.
    [11]Liu YF,Chen HI, Yu L.et al. Upregulation of hippocampal TrkB and synaptotagmin is involved in treadmill exercise-enhanced aversive memory in mice. Neurobiol Learn Mem,2008,90(1):81-89.
    [12]Zhang KR, Yang CX, Xu Y,etal. Genetic association of the interaction between BDNF and GSK3β gene and major depressive disorder in Chinese population.2010,117:393-401.
    [13]Kunugi H, Hashimoto R, Yoshida M。etal. A missense polymorphism(S205L)of the low-affinity neumtmphin receptor p75NTR gene is associated with depressive disorder and attempted suicide. Am J Med Genet B Neuropsychiatr Genet,2004,129(1):44-46.
    [14]Coyle JT, Duman RS. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron,2003,38:157-160.
    [15]Iga J, Ueno S, Yamauchi K, et al. Serotonin transporter mRNA expression in peripheral leukocytes of patients with major depression before and after treatment with paroxetine. Neurosci Lett,2005,389(1):12-16.
    [16]Leory K, Brion J-P. Developmental expression and loealization of glyeogen synthase kinase-3βin rat brain. J.Chem. Neuoranat,1999,16:279-293.
    [17]Ougolkov AV, B illadeau DD. Targeting GSK-3:a promising approach for cancer therapy? Future Oncol,2006,2(1):91-100.
    [18]Hooper C et al. Glycogen synthase kinase-3inhibition is integral to long-term potentiation. Eur J Neurosci,2007,25:81-86.
    [19]Peineau S et al. LTP inhibits LTD in the hippocampus via regulation of GSK-β. Neuron,2007,53:703-717.
    [20]Bhat RV, Budd Haeberlein SL, Avila J. Glycogen synthase kinase3:a drug target for CNS therapies. J Neuroehem,2004,89:1313-1317.
    [21]左明新,陈晓光.糖原合成酶激酶-3及其抑制剂研究进展.国际药学研究杂志,2007,34(4):259-262.
    [22]Balaraman Y, L imaye AR, Levey A I, et al. Glycogen synthase kinase3βand A lzheimer's disease:pathophysiological and therapeutic significance. Cell Mol Life Sci,2006,63(11):1226-1235.
    [23]Sanchez-Fueyo A, Tian J, Picarella D, et al. Tim23inhibits Thelper type Ⅰ-mediated auto-and alloimmune responses and p romotes immunological tolerance. N at Imm unol,2003,4(11):1093-111.
    [24]Frame,S. GSK3takes centre stage more than20years after its discovery. Biochem.J,2001,
    359:1-16.
    [25]Kim Y et al. Calcineurin dephosphorylates glycogen synthase kinase-3β at serine-9in neuroblast-derived cells. J Neurochem,2009,111:344-354.
    [26]Anderson AC, Anderson DE. TIM23in autoimmunity. Curr Opin Immunol,2006,18(6):665-669.
    [27]Zhu C, Anderson AC, Schubart A, et al. The Tim-3ligand galectin-9negatively regulates Thelper type1immunity. N atImm unol,2005,6(12):1245-1252.
    [28]Bjiur, G.N., Jope, R.S.Opposing actions of phosphatidylinositol3-kinase and glyeogen synthase kinase-3β in the regulation of HSF-1activity.J.Neuorehem,2000,75:2401-2408.
    [29]Goni-Oliver P et al. Calpain-mediated truncation of GSK-3in post-mortem brain samples. J Neurosci Res,2009,87:1156-1161.
    [30]Silva R, Mesquita AR, Bessa J, etal. Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate:the role of glycogen-synthase-kinase-3β. Neuroscience.2008,152:656-669.
    [31]Citri A, Malenka RC. Synaptic plasticity:multiple forms,functions, and mechanisms. Neuropsychopharmacology,2008,33(1):18-41.
    [32]Schloesser RJ, Huang J, Klein PS,et al. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder.Neuropsychopharmacology,2008,33(1):110-133.
    [33]Li YC, Xi D, Roman J, Huang YQ, et al. Activation of glycogen synthase kinase-3β is required for hyperdopamine and D2receptor-mediated inhibition of synaptic NMDA receptor function in the rat prefrontal cortex. J Neurosci,2009,29(49):15551-15563.
    [34]Peineau S et al. LTP inhibits LTD in the hippocampus via regulation of GSK-3β. Neuron,2007,53:703-717.
    [35]Chen P et al. Glycogen synthase kinase3regulates N-methyl-D-aspartate receptor channel trafficking and function in cortical neurons. Mol Pharmacol,2007,72:40-45.
    [36]熊涛,屈艺,母得志.糖原合成酶3与神经生理.生命的化学,2010,30(3):484-488.
    [37]Etienne-Manneville S,. Hall A. Cd4c2regulates GSK-3β and adenomatous PolyPosis eoli to eontol cell polarity. Natuer,2003,421:753-756
    [38]Salinas PC. Wnt factors in axonal remodelling and synaptogenesis. Biochem Soc Symp,1999,65:101-109.
    [39]Li XH, Friedman AB, Zhu W,etal.Lithium Regulates Glycogen Synthase Kinase-3β in Human Peripheral Blood Mononuclear Cells:Implication in the Treatment of Bipolar Disorder. Biol Psychiatry,2007,61(2):216-222.
    [40]Kempermann G, Kronenberg G. Depressed New Neurons--Adult Hippocampal Neurogenesis and a Cellular Plasticity Hypothesis of Major DePression. Biol Psychiatry,2003,54(5):499-503.
    [41]Coyle JT, Duxman RS. Finding the Intracellular Signaling Pathways Affected by Mood Disorder Treatments. Neuron,2003,38:157-160.
    [42]Camp NJ, Lowry MR, Riehards RL, et al. Genome-wide linkage analyses of extended Utah pedigrees identifies loci that influence recurrent, early-onset major depression and anxiety disorders. Am J Med Genet B Neuropsychiatr Genet,2005,135(1):85-93.
    [43]Zubenko GS, Maher B, Hughes HB, et al. Genome-wide linkage SHrVev for genetic loci that influence the development of depressive disorders in families with recurrent, early—onset, major depression. Am J Med Genet B Neuropsychiatr Genet,2003,123(1):1-18.
    [44]刘晓华.抑郁症遗传模式及其CREB1、BDNF基因的关联和表达研究.上海:复旦大学博士论文,2006.
    [45]Duman RS, MalbergJ, Nakagawa S, et al. Neuomal plasticity and survival in mood disorders. Biol Psychiatry,2000,48(8):732-739.
    [46]Jacobs BL, Praag H, Gage FH. Adult brain neurogenesis and psychiatry:A novel theories of major depression. Mol Psychiatry,2000,5(3):262-269.
    [47]Egashira N, Iwasaki K, Takashima A,et al. Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice. Brain Res,2005,1059:7-12.
    [48]Nishi K, Kanemaru K, Diksic M. A genetic rat model of depression, Flinders sensitive line, has a lower density of5-HT(1A) receptors, but a higher density of5-HT(1B) receptors, compared to control rats. Neurochem Int,2009,54(5-6):299-307.
    [49]Kanemaru K, Nishi K, Diksic M. AGN-2979, an inhibitor of tryptophan hydroxylase activation, does not affect serotonin synthesis in Flinders Sensitive Line rats, a rat model of depression, but produces a significant effect in Flinders Resistant Line rats. Neurochem Int,2009,55:529-535.
    [50]Sibille E, Arango V, Galfal W HC, et al. Gene expression profiling of depression and suicide in human prefrontal cortex. Neuropsychopharmacology.2004,29(2):51-361.
    [51]Joper S, Johnson G V.The glamour and gloom of glycogen synthase kinase-3. Trends B iochem Sci,2004,29(2):95-102.
    [52]Bianch IM, Delucchin IS, Marin O, et all.Regulation of FAK Ser-722phosphorylation and kinase activity by GSK3and PP1during cell sp reading and m igration.1B iochem J,2005,391(2):359-3701.
    [53]Beaulieu JM, Zhang X, Rodriguiz RM, et al. Role of GSK3beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci U S A,2008,105:1333-1338.
    [54]Li X, Zhu W, Roh MS,et al. In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology,200429:1426-1431.
    [55]Alyssa M. Picchini, Husseini K. Manji, Todd D. Gould.GSK-3and neurotrophic signaling: novel targets underlying the pathophysiology and treatment of mood disorders? Drug Discovery Today:Disease Mechanisms,2004,1:419-428.
    [56]Rosa AO, Kaster MP, Binfare RW, Morales S, Martin-Aparicio E, Navarro-Rico ML, Martinez A, Medina M, Garcia AG, Lopez MG, Rodrigues AL. Antidepressant-like effect of the novel thiadiazolidinone NP031115in mice. Prog Neuropsychopharmacol Biol Psychiatry,2008,32:1549-1556.
    [57]Moran Shapira, Avetal Licht, Anat Milman, et al. Role of glycogen synthase kinase-3β in early depressive behavior induced by mild traumatic brain injury. Mol Cell Neurosci,2007,34:571-577.
    [58]Klaus P, Hoeflich, Juan Luo, et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-kB activation. Nature,2000,406(6):86-90.
    [59]宋喜.慢病毒介导的过表达GSK3p小鼠与抑郁障碍发生的研究.山西:山西医科大学硕士论文,2011.
    [60]徐意.金思维提取物对AD模型鼠脑内p淀粉样肽及神经可塑性的影响.北京:北京中医药大学博士论文,2006.
    [61]Martinowich K, Schloesser RJ, Manji HK. Bipolar disorder:from genes to behavior pathways.J Clin Inves,2009,19:727-736.
    [62]Roth KA, Katz RJ:Futher studies on a novel animal model of depression:Therapeutic effects of a tricyclic antidepressant. Neurosci Biobehav Rev,1982,169(6):969-972.
    [63]Willner P, Towell A, Sampson D, et al. Reduction of sucrose preference by chronic mild unpredictable stress and its restoration by a tricyclic antidepressant. Psychopharmacology,1987,93:358-364.
    [64]Kaidanovich-Beilin O, Milman A, Weizman A,et al. Rapid Antideperssive-Like Activity of Specific Glyeogen Synthase Kinase-3Inhibitor and Its Eeffet on β-Catenin in Mouse Hippocampus. Biol Psychiatry,2004,55:781-784.
    [65]Manji HK, Dumna RS. Impaimrents of neuroplasticity and cellular resilienee in sever mood disodresr:impliciations of the development of novel thear-peutics.Psychophmaracol Bull.2001,35(2):5-49.
    [66]Frodl T, Meisenzahl EM, Zetzsche T, et al. Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry,2002,159:1112-1118.
    [67]MacQueen GM, Campbell S, McEwen BS, et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA.2003,100:1387-1392.
    [68]Airan RD, Mehzer LA, Roy M, et al. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science,2007,317:819-823.
    [69]杨荣.超顺磁性氧化铁和DAPI双标记骨髓间充质干细胞.山西:山西医科大学硕士论文,2011.
    [70]Michael B, Spitzer, Robert L, Gibbon, et al "Structured Clinical Interview for DSM-Ⅳ-TR Axis I Disorders-Patient Edition (SCID-I/P,11/2002revision)"
    [71]张明园.精神科评定量表手册[M].长沙:湖南科学技术出版社,2003:121-126.
    [72]Jope RS, Johnson GVW. The glamour and gloom of glyeogen synthase kinase-3. Trends Biochem Sci,2004,29:95-102.
    [1]Irwin MR, Miller AH. Depressive disorders and immunity:20years of progress and discovery.Brain Behav Immu,2007,21:374-383.
    [2]Shyn SI, Hamilton SP. The genetics of major depression:moving beyond the monoamine hypothesis. Psychiatr Clin North Am,2010,33:125-140.
    [3]Natsuaki MN, Ge X, Leve LD, et al. Genetic liability, environment, and the development of fussiness in toddlers:the roles of maternal depression and parental responsiveness.Dev Psychol,2010,46:1147-1158.
    [4]Martinowich K, Schloesser RJ, Manji HK. Bipolar disorder:from genes to behavior pathways.J Clin Inves,2009,19:727-736.
    [5]Bechtholt AJ, Smith K, Gaughan S, et al. Sucrose intake and fasting glucose levels in5-HT(1A) and5-HT(1B) receptor mutant mice.Physiol Behav,2008,93(4-5):659-665.
    [6]Perona MT, Waters S, Hall FS,et al, Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice:prominent effects of dopamine transporter deletions. Behav Pharmacol,2008,19(5-6):566-574.
    [7]Solich J, Faron-Gorecka A, Kusmider M, et al Norepinephrine transporter (NET) knock-out upregulates dopamine and serotonin transporters in the mouse brain. Neurochem Int,2011,59:185-191.
    [8]Lira A, Zhou M, Castanon N, et al. Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry,2003,54:960-971.
    [9]Haenisch B, Bonisch H. Depression and antidepressants:insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacol Ther,2011,129:352-368.
    [10]Liu GX, Cai GQ, Cai YQ,et al. Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype1. Neuropsychopharmacology,2007,32:1531-1539.
    [11]Wultsch T, Chourbaji S, Fritzen S, et al. Behavioural and expressional phenotyping of nitric oxide synthase-I knockdown animals. J Neural Transm Suppl,2007,(72):69-85.
    [12]Chourbaji S, Vogt MA, Fumagalli F,et al. AMPA receptor subunit1(GluR-A) knockout mice model the glutamate hypothesis of depression FASEB J,2008,22:3129-3134.
    [13]Beaulieu JM, Zhang X, Rodriguiz RM, et al. Role of GSK3beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci U S A,2008,105:1333-1338.
    [14]Tizabi Y, Getachew B, Rezvani AH,et al. Antidepressant-like effects of nicotine and reduced nicotinic receptor binding in the Fawn-Hooded rat, an animal model of co-morbid depression and alcoholism. Prog Neuropsychopharmacol Biol Psychiatry,2009,33:398-402.
    [15]Egashira N, Iwasaki K, Takashima A,et al. Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice. Brain Res,2005,1059:7-12.
    [16]Nishi K, Kanemaru K, Diksic M. A genetic rat model of depression, Flinders sensitive line, has a lower density of5-HT(1A) receptors, but a higher density of5-HT(1B) receptors, compared to control rats. Neurochem Int,2009,54(5-6):299-307.
    [17]Kanemaru K, Nishi K, Diksic M. AGN-2979, an inhibitor of tryptophan hydroxylase activation, does not affect serotonin synthesis in Flinders Sensitive Line rats, a rat model of depression, but produces a significant effect in Flinders Resistant Line rats. Neurochem Int,2009,55:529-535.
    [18]Molteni R, Cattaneo A, Calabrese F, et al. Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans. Neurobiol Dis,2010,37:747-755.
    [19]Kalueff AV, Olivier JD, Nonkes LJ,et al. Controlserved role for the serotonin transporter gene in rat and mouse neurobehavioral endophenotypes. Neurosci Biobehav Rev,2010,34:373-386.
    [20]Calabrese F, Molteni R, Cattaneo A, et al. Long-Term duloxetine treatment normalizes altered brain-derived neurotrophic factor expression in serotonin transporter knockout rats through the modulation of specific neurotrophin isoforms. Mol Pharmacol,2010,77:846-853.
    [21]Li X, Zhu W, Roh MS,et al. In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology,200429:1426-1431.
    [22]Mombereau C, Gur TL, Onksen J,et al. Differential effects of acute and repeated citalopram in mouse models of anxiety and depression Int J Neuropsychopharmacol,2010,13:321-334.
    [23]Gould TD, Einat H, O'Donnell KC, et al. β-Catenin Over expression in the Mouse Brain Phenocopies Lithium-Sensitive Behaviors. Neuropsychopharmacology,2007,32:2173-2183.
    [24]Vreeburg SA, Hartman CA, Hoogendijk WJ, et al. Parental history of depression or anxiety and the cortisol awakening response. Br J Psychiatry,2010,197:180-185.
    [25]Chourbaji S, Gass P. Glucocorticoid receptor transgenic mice as models for depression. Brain Res Rev,2008,57:554-560.
    [26]Allard JS, Tizabi Y, Shaffery JP,et al. Effects of rapid eye movement sleep deprivation on hypocretin neurons in the hypothalamus of a rat model of depression.Neuropeptides,2007,41:329-337.
    [27]Singh M, Zimmerman MB, Beltz TG,et al. Affect-related behaviors in mice misexpressing the RNA editing enzyme ADAR2. Physiol Behav,2009,97(3-4):446-454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700