鸡干扰素与干扰素受体重组蛋白的生物学特性及其相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰素是一种具有抗病毒、抑制细胞增殖和免疫调节活性的细胞因子,干扰素与干扰素受体结合后启动信号传导和干扰素基因的转录。本文克隆并表达了惠阳胡须鸡IFN-α、IFN-β、IFNAR1、IFNAR2基因;首次克隆了鸡IFNGR2全长cDNA;分析了干扰素受体在外周血淋巴细胞和各器官组织中的分布;并对IFN-α、IFN-β与其受体在体外的相互作用和重组蛋白的二级结构进行了研究。
     以肝脏DNA为模板,克隆了惠刚胡须鸡IFN-α基因,与Genbank上IFN-α的同源性为96.9%~97.9%,是一个新的亚型;克隆了惠阳胡须鸡IFN-β和AA肉鸡IFN-β基因,与白色来亨鸡IFN-β的核苷酸序列同源性分别为99.84%、100%,目前鸡IFN-β尚未发现亚型的存在。构建了鸡IFN-α/pGEX-6P-1和IFN-β/pGEX-6P-1重组质粒,在BL21中诱导表达,可溶性蛋白通过亲和层析得到纯化并采用Western-blot得到了鉴定。IFN-α、IFN-β重组蛋白具有较高的生物学活性,在CEF/VSV系统中的抗病毒活性为7.9×10~5U/mg和6.4×10~4U/mg。
     从惠阳胡须鸡肝脏总RNA中扩增了Ⅰ型干扰素受体的两个亚基:IFNAR1、IFNAR2。惠阳胡须鸡IFNAR1、IFNAR2分别与红色原鸡的IFNAR1、IFNAR2的氨基酸序列同源性为99.47%和98.82%,均为新的亚型。在IFNAR1氨基酸序列的35-133、134-237、240-319和341-447处有四个典型的干扰素受体家族的保守性motif:Fibronectin Ⅲ型分子,123-129和302-321处有两个典型的linker;在IFNAR2氨基酸序列的37-93处和129-240处有两个Fibronectin Ⅲ型分子,在94-105和157-166处有两个典型的linker。构建了鸡IFNAR1EC/pGEX-6P-1、IFNAR2EC/pGEX-6P-1重组质粒并转化到BL21中诱导表达,可溶性蛋白通过亲和层析得到纯化并采用Western-blot得到了鉴定。
     以惠阳胡须鸡脾脏总RNA为模板,采用5′RACE和3′RACE的方法首次克隆了IFN-γ受体β链全长cDNA序列,共2221bp。这一基因编码334个氨基酸,与小鼠、大鼠和人IFNGR2氨基酸的同源性分别为29%、28%和30%;在氨基酸序列的31-119和126-217处含有两个Fibronectin Ⅲ型分子,在96-115和115-131处有两个linker。将采用RACE克隆的这一基因命名为惠阳胡须鸡IFNGR2(HuiYang chicken IFNGR2)。Genome BLAST的结果显示IFNGR2与IFNAR1、IFNAR2、IL-10R2串联排列于鸡的1号染色体上。
     采用Northern杂交和RT-PCR的方法,分析了鸡IFN-α、IFN-β、IFNAR1EC、IFNAR2EC和IFNGR2EC基因在脾脏、胸腺、法式囊、胸肌、心肌、肾脏、肝脏、盲肠扁桃体、未刺激外周血淋巴细胞(PBL)和ConA刺激PBL中的表达水平。IFN-α、IFN-β基因在组织和未刺激的PBL中呈关闭状态,在ConA刺激的PBL中表达水平很高。未刺激的PBL中IFNAR1、IFNGR2的表达水平很高,IFNAR2的表达水平较低,ConA刺激后IFNAR1、IFNAR2和IFNGR2的表达水平没有明显上升。在脾脏、胸腺、法氏囊和盲肠扁桃体中均可检测到IFNAR1、IFNAR2和IFNGR2的表达;IFNGR2在胸肌、心肌、肝脏和肾脏中表达水平也较高。RT-PCR的结果与Northern杂交的结果基本一致。鸡IFNAR1、IFNAR2和IFNGR2在免疫器官中的表达量较高,表明其参与机体的抗病毒和免疫调节过程。
Interferon exert the biological activities such as antivirus activity, antiproliferative actions and immune response through binding to their receptors. Interferon receptor play a critical role in the signal transmission and activation of transcription of interferon genes. This paper cloned,expressed IFN-α , IFN- β ,IFNAR1,IFNAR2 genes, firstly cloned IFNGR2 gene of HuiYang chicken and detected their transcript levels in peripheral blood leukocyte and tissues; secondary structures and interactions of IFN- α / β and their receptors were analysed.IFN- α gene was cloned from liver genomic DNA of HuiYang chicken.The homologies were from 96.9% to 97.9% between HuiYang IFN- α and IFN- α s on Genbank, indicating this IFN- α gene was a new subtype.The genes of IFN- β were cloned from liver genomic DNA of HuiYang chicken and Arbor Acres respectively,exhibiting 99.84% and 100% identity to gene of IFN- P of white leghorn.IFN- β was a single copy gene without subtype until now. IFN- α ,IFN- β genes were subcloned into pGEX-6P-1, the recombinant plasmids were transformed into BL21 and expressed.The GST fusion proteins in the supernatant were purified using Glutathione Separose 4B column and examined using western-blot.Recombinant IFN- α ,IFN- β expressed in E.coli exert high antiviral activities as 7.9 × 10~5U/mg and 6.4 × 10~4 U/mg respectively.IFNARl and IFNAR2 genes of HuiYang chicken were cloned from liver total RNA.Comparison of HuiYang IFNARl with gallus gallus IFNAR1,the homology of amino acids sequences was 99.47%; there was 99.35% homology between amino acid sequence of Huiyang IFNAR2 and that of gallus.gallus. HuiYang IFNARl, IFNAR2 were new subtypes.The extracellular part of HuiYang IFNAR1 was composed of four tipical conserved motif of interferon receptor family(Fibronectin Ⅲ molecule ) on 35-133、 134-237、 240-319 and 341-447 of amino acid sequence,which connected by two linkers on 123-129 and 302-321.There were two Fibronectin Ⅲ molecules on 37-93 and 129-240 of IFNAR2 amino acid sequences,which connected by two linkers on 94-105 and 157-166. IFNAR1EC and IFNAR2EC genes were subcloned into pGEX-6P-l, the recombinant plasmids were transformed into BL21 and expressed.The soluble proteins were purified using Glutathione Separose 4B column and examined using western-blot.The full length cDNA of IFNGR2 was firstly cloned from HuiYang chicken spleen total RNA using 5' RACE and 3' RACE. This 2221bp gene encoded 334 aminoacids ,with 28, 29%, 30% identity with amino acids of rat, mouse, human IFNGR2 respectively and given name as HuiYang IFNGR2. Extracellular part of HuiYang IFNGR2 contained two FNⅢ domains on 31-119 ,126-21 of amino acid sequences and two linkers on 96-115,115-131. HuiYang IFNGR2 gene was localized on the chromosome1q26 of chicken in tandem with IFNARl, IL-10R2 and IFNAR2 through Genome BLAST.
    To analyse the expression of IFN- α , IFN- β ,IFNAR1,IFNAR2 and IFNGR2 in different organs and peripheral blood leukocyte (PBL) using Northern blot and RT-PCR, the total RNAs were extracted from spleen,thymus, muscle ,caecum tonsil,cardiac muscle,cloacal bursa,liver,kidney ,unstimulated PBL and stimulated PBL with ConA .IFN- α and IFN- β were detectable when PBL stimulated with ConA,but not detectable in the organs and unstimuted PBL IFNAR1 and IFNGR2 was highly expressed in unstimulated PBL,but IFNAR2 was lowly expressed.Expression of of IFNAR1,IFNAR2 and IFNGR2 did not increased after ConA activation.IFNARl,IFNAR2 and IFNGR2 transcripts were detectable in spleen, thymus, cloacal bursa and caecum tonsil and IFNGR2 was also also detected in muscle,cardiac muscle,cloacal bursa,liver,kidney.RT-PCR results consisted with the results of Nothern blot.The high expression of interferon receptor in immune organs indicated interferon receptor may play important role in antivirus and immue response.The Gel-filtration and GST interacting trials confirmed stalbe formation of binary complex of IFN- α -IFNAR2EC and IFN- β -IFNAR2EC in vitro;IFNARlEC did not bind to IFN- β , IFN- β or IFNAR2EC. IFN-α
引文
1. Aguet M, Dembic Z, Merlin G. Molecular cloning and expression of the human IFN-γ receptor. Cell, 1988, 55: 273~280
    2. Ahmed CM, Burkhart MA, Mustafa G et al. The role of IFN-γ nuclear localization sequence in intracellular function. Journal of Cell Science, 2003,116:3089~3098
    3. Altare F, Jouanguy E, Newport Met al. IFNgR1, a human mycobacterial susceptibility candidate gene. Bull Inst Pasteur, 1997, 95 :143~146
    4. Arduini RM, Strauch KL, Runkel LA et al. Characterization of a soluble ternary complex formed between human interferon-β-1a and its receptor chains.Protein Science,1999, 8: 1867~1877
    5. Bach EA. Ligand-induced assembly and activation of the gamma interferon in intact cells. Mol Cell Biol, 1996, 16:3214~3221
    6. Basu L, Yang CH, Murit Aet al. The antiviral action of interferon is potentiated by removal of the conserved IRTAM domain of the IFNAR1 chain of the interferon α/βreceptor: Effects on JAK-STAT activation and receptor down-regulation. Virology, 1998, 242: 14~21
    7. Bartunek Petr, Koritschoner NP, Brett D et al. Molecular cloning,expresion and evolutionary analysis of the avian tyrosine kinase JAK1.Gene, 1999, 230: 129~136
    8. Bazan JE Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA, 1990,87:6934~6938
    9. Bernabei P, Bosticardo M, Losana G et al. IGF-1 down-regulates IFN-γ R2 chain surface expression and desensitizes IFN-γ/STAT-1 signaling in human T lymphocytes. Blood, 2003, 102(8):2933~2939
    10. Bernard DJ, Teresa KW, Tony MP. Cloning of a novel inhibin alpha cDNA from rhesus monkey testis. Reproductive Biology and Endocrinology, 2004, 2: 1~10
    11. Bradley LM and Watson SR. Lymphocyte migration into tissue: the paradigm derived from CD4 subsets. Current Opinion in Immunology, 1996, 8:312~320
    12. Brierley MM,Fish EN. IFN-α/βreceptor interactions to biologic outcomes:understanding the circuity. J Interferon Cytokine Re, 2002, 22:835~845
    13. Chill JH, Quadt SR, Levy R et al. The human type Ⅰinterferon receptor:NMR structure reveals the molecular basis of ligand binding. Structure, 2003, 11:791~802
    14. Chow D, Brevnova L, He X et al. A structural template for gp130-cytokine signling assemblies. Biochimica et Biophysica Acta, 2002, 1592:225~235
    15. Cook JR, Jung V, Schwartz B et al. Structure analysis of human interferon gamma receptor:a small segment of the intracellular domain is specifically required for class Ⅰmajor histocompatibility complex antign induction and antiviral activity. Proc Natl Acad Sci USA,1992,89(23): 11317~11321
    16. Cruz M, Hernaindez JM, Calder6n J. Surface Redistribution of Interferon-γ-Receptor and its Colocalization with the Actin Cytoskeleton. Archives of Medical Research. 1999,30: 97~105
    17.Cutrone EC, Langer JA.Contributions of cloned type I interferon receptor subunits to differential ligand binding.FEBS Letters,1997,404:197~202
    18. David LE , Wang X , Huang ES. Cellular stress and signal transduction responses to human cytomegalovirus infection. Microbes and Infection, 2004,6:1084~1093
    19. Digby MR and Lowenthal JW. Cloning and expression of the chicken interferon- Y gene. Journal of interferon and cytokine research, 1995,15: 939~945
    20. Eduard RK, Lieve V, Marc E et al. Internalization of the chicken growth hormone receptor complex and its effect on biological functions. Comp Biochem Physiology Part B, 2002,132 :299~308
    21. Farrar MA, Campbell JD, Schreiber RD. Identification of a functionally important sequence in the C terminus of the interferon- y receptor. Proc Natl Acad Sci USA, 1992,89,11706~ 11710
    22. Foss DL, Bennaars AM, Pennell CA et al. Differentiation of porcine dendritic cells by granulocyte-macrophage colony-stimulating factor expressed in pichia pastoris. Veterinary Immunology and Immunopathology, 2003,91:205~215
    23. Gibbs VC and Pennica D. CRF2-4:isolation of cDNA clones encoding the human and mouse proteins. Gene, 1997,186:97~101
    24. Green MM, Larkin J, Subramaniam PS et al. Human IFN-γ Receptor Cytoplasmic domain:expression and interaction with huIFN-γ . Biochem Biophys Res Comm, 1998, 243(1): 170~175
    25. Griggs ND, Jarpe MA, Pace JL et al.The N-terminus and C-terminus of IFN-γ are binding domains for cloned soluble IFN- Y receptor. J Immunol, 1992,149 :517~520
    26. Grotzinger J. Molecular mechanisms of cytokine receptor activation. Biochimica et Biophysica Acta, 2002,1592,215~223
    27. Groux H, Sornasse T.Cottrez F et al. Induction of human T helper cell type 1 differentiation results in loss of IFN- γ receptor β chain expression. The journal of Immunology,1997(158): 5627~ 5631
    28. Han CH, Chen YZ, Ezashi T et al. Antiviral activities of the soluable extracellular domains of the type I interferon receptors. Proc Natl Acad Sci USA ,2001,98(11): 6238~6243
    29. Herrero C, Sebastian C, Marques L et al. Immunosenescence of macrophages reduced MHC class II gene expression. Experimental Gerontology, 2002, 37: 389~394
    30. Horvath BV, Szalai C, Mandi Y et al. Histamine and histamine-receptor antagonists modify gene expression and biosynthesis of interferon g in peripheral human blood mononuclear cells and in CD19-depleted cell subsets. Immunology Letters, 1999, 70: 95~99
    31. Hui Z, Gary HT, Sandra SR. Molecular cloning and genomic structure of an interleukin-8 receptor-like gene from homozygous clones of rainbow trout(Oncorhynchus mykiss). Fish and Shellfish Immunology,2002,13 :251~258
    32. Ishihara K and Hirano T. Molecular basis of the cell specifity of cytokine action. Biochimica et Biophysica Acta, 2002,1592: 281~296
    33. Jokhi PP, King A, Loke YW. Cytokine production and cytokine receptor expresion by cells of the human first trimester. Placental uterine interface. Cytokine, 1997, 9(2), 126~137
    34. Juliger S, Bongartz M, Luty AJF et al. Functional analysis of a promoter variant of the gene encoding the interferon-gamma receptor chain I. Immunogenetics, 2003, 54: 675γ680
    35. Kaiser P, Wain HM, Rothwell L. Structure of the chicken interferon-γ gene,and comparison to mammalian homologues. Gene, 1998,207:25~32
    36. Karpusas M, Nolte M, Benton CB. The crystal structure of human interferon β at 2.2-A resolution. Proc Natl Acad Sci USA, 1997, 94:11813~11818
    37. Kenji O, Paul K, Cai Z et.al. Type Ⅰinterferon and limitin:a comparison of structure,receptors,and functions. Cytokine and growth factor review, 2001,12:337~348
    38. Khoja H, Wang G, Lee Ng C, Tucker J et al. Cloning of CCR1, an organ seven transmembrance receptor related to chemokine receptors, expressed abundantly in the heart.Gene,2000,246,229~238
    39. Kim SH, Cohen B, Novick D et al. Mammalian type Ⅰinterferon receptors consists of two subunits: IFNaR1 and IFNaR2. Gene,1997,196:279~286
    40. Klaus W, Gsell B, Labhardt AM et al. The three-dimensional high resolution structure of human interferon α-2a determined by heteronuclear NMR spectrpscopy in solution. J Mol Biol, 1997, 274:661~675
    41. Konteskova E, Liptakova H, Mucha V et al. Structural and functional heterogeneity of amino-terminal receptor-binding domain of human interferon-alpha 2. International Journal of Biological Maromolecules. 1999(24): 11~14
    42. Kumar CS, Muthukumaran G, Frost LJ et al..Molecular characterization of the murine interferon-γ receptor cDNA. J Biol Chem, 1989, 264(30): 17939~7946
    43. Kumar KG, Krolewski JJ, Fuchs SY et al. Phosphorylation and specific ubiquitin-acceptor sites are required for ubiquitination and degradation of the IFNAR1 subunit of type Ⅰinterferon receptor. JBC Papers in Press, 2004
    44. Kumar KG, Weigang T, Abhilash K et al.SCF~(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-αreceptor. The EMBO Journal, 2003,22((20):5480~5490
    45. Lambrent B, Gonze M,Morales D et.al. Comparison of biological activities of natural and recombinant chicken interferon-gamma. Vet Immunol Immunopathol, 1999, 70:257~267
    46. Lamken P, Lata S, Gavutis M et al. Ligand-induced assembling of the type Ⅰinterferon receptor on supported lipid bilayers. J Mol Biol, 2004, 341:303~318
    47. Lammas DA, Casanova JL, Kumararatne DS. Clinical consequences of defects in the IL-12-dependent interferon-gamma (IFN-gamma) pathway. Clin Exp Immunol, 2000, 121,417~425
    48. Landar A, Curry B, Parker MH et al. Design,characterization, and structure of a biologically active single-chain mutant of human IFN-γ. J Biol Chem.2000(299):169~179
    49. Landolfo S, Gribaudo G, Angeretti A et al. Mechanisms of viral inhibition by interferons. Pharmac Ther. 1995,65:415~442
    50. Langer JA, Cutrone EC, Kotenko S. The class II cytokine receptor(CRF2) family: overview and patterns of receptor -ligand interactions.cytokine and growth factor reviews, 2004,15:33~48
    51. Langer JA, Yang J,Carmillo P et al. Bovine type I interferon receptor protein BoIFNARl has high affinity and broad specifity for human type I interferons.FEBS Letters, 1998,421: 131~135
    52. Lewerenz M, Mogensen KE, Uze G. Shared receptor components but distinct complexes for α and β intrferons. J Mol Biol, 1998, 282:585~599
    53. Li QJ, Lu S, Ye RD et al. Isolation and characterization of a new chemokine receptor gene, the putative chicken CXCR1. Gene, 2000,257:307~317
    54. Liptakova H, Kontsekova E, Alcaml T et al. Analysis of an interaction between the soluble vaccinia virus-coded type 1 interferon (IFN)-receptor and human IFN- α l and IFN- α 2. Virology, 1997, 232:86~90
    55. Lohman BL and Weish R. Apoptotic regulation of T cells and absence of immune dificiency in virus-infected gamma interferon receptor knonkout mice.Journal of virology. 1998,72(10):7815— 7821
    56. Lowenthal JW, Digby MR, York JJ. Production of interferon- Y by chicken T cells. Journal of interferon and cytokine research.l995(15): 933~938
    57. Lowenthal JW, Lambrecht B, Berg TP et al. Avian cytokines —the natural approach to therapeutics.Developmental and Comparative Immunology 24 (2000) 355~365
    58. Lutfalla G, Gardiner K, Proudhon D et al. The structure of the human interferon α / β receptor gene J Biol Chem,1992,276(4):2802~2809
    59. Lutfalla G, Hugues RC.Nicole S et al. Comparative genomic analysis reveals independent expansion of a lineage-specific gene family in vertebrates: The class II cytokine receptors and their ligands in mammals and fish. BMC Genomics.2003, (4):29:1186~1191
    60. Marsters SA, Pennica D, Bach E et al.Interferon Y signals via a high~affinity multisubnit receptor complex that contains two types of polypeptide chain. Proc Natl Acad Sci USA, 1995,92:5401 — 5405
    61. Meager A. Biological assays for interferons J Immunological methods.2002,261:21~36
    62. Min W, Lillehoj HS, Fetterer RH. Identication of an alternatively spliced isoform of the common cytokine receptor Y c chain in chickens. Biochem Biophys Res Comm,2002,299:321~327
    63. Mukamoto M, Kodama H, Baba T.Effects of cytokines from thymocytes and thymic stromal cells on chicken intrathymic T cell development. Veterinary Immunol Immunopathol, 1999, 67, 223~ 233
    64. Munro S, Maniatis T. Expression cloning of the murine interferon Y receptor cDNA. Proc Natl Acad Sci USA, 1989,86:9248~9252
    65. Nishida Y, Maeda Y, Hara A et al. Adenovirus-meddiated murine interferon Y receptor transfer enhances the efficacy of interferon y in vivo. Biochem Biophys Res Comm,2002,290:1042~1047
    66. Novelli F, Bernabei P, Ozmen L et al. Switching on of the proliferation or appptpsis of activated human T lymphocytes by IFN-γ is correlated with the differential expression of the α-and β-chains of its receptor. J Immunol, 1996:1935~1943
    67. Novelli F, D' Elios MM, Bernabei. P. et. al. Expression and role in apoptosis of the α-and β-chains of the IFN-γ receptor on human Thl and Th2 clones. The journal of Immunology. 1997(159):206~213
    68. Nunez R. Revision of the functional analysis and structural features of immortalized dendritic cell lines derived from mice lacking both type Ⅰand type Ⅱ interferon receptors. Immunology letters. 1999, 68:173~186
    69. Nunez R. Revision of the functional analysis and structural features of immortalized dendritic cell lines derived from mice lacking both type Ⅰand type Ⅱ interferon receptors.Immunology Letters, 1999, 68:173~186
    70. Oritani K, Kincade PW, Zhang C et.al.Type 1 interferons and limitin: a comparison of structures,receptors,and functions. Cytokine growth factor rev, 2001, 12:337~348
    71. Otsuji W, Tanase S, Yoshida S et al The immunohistochemical localization of the interferon-g and granulocyte colony-stimulating factor receptors during early amelogenesis in rat molars. Archives of Oral Biology.1999, 44: 173~181
    72. Ozaki T, Takahashi K, Kanasaki H et al. Expression of the type I interferon receptor and the interferon-induced Mx protein in human endometrium during the menstrual cycle.Fertility and Sterility. 2005, 83(1),:163~170
    73. Park K and Kang HM. Cloning and circadian expression of rat cryl. Mol cells, 2004,18(2):256~260.
    74. Pernis A, Gupta S, Gollob KJ et al. Lack of interferon-γ receptor β chain and the prevention of interferon γ signaling in T_H1 cells. Science, 1995, 269:245~247
    75. Pestka S, Kotenko SV, Muthukumaran G et al. The interferon gammma(IFN-γ) receptor:a paradigm for the multichain cytokine receptor. Cytokine growth factor rev, 1997, 8(3): 189~206
    76. Peter Lamken, Suman Lata, Martynas Gavutis et al. Ligand-induced Assembling of the Type I Interferon Receptor on Supported Lipid Bilayers. J Mol Biol, 2004,341,303~318
    77. Piehler J and Schreiber G. Mutational and structural analysis of the binding interface between type Ⅰinterferons and their receptor ifnar2.J Mol Biol,1999, 294:223~237
    78. Piehler J, Schreiber G. Fast transient cytokine-receptor interactions monitored in real time by reflectometric interference spectroscopy. Analytical Biochemistry, 2001,289: 173~186
    79. Piehler P, Gideon S. Biophysical analysis of the interaction of human ifnar2 expressed in E.coli with IFN-α 2. J Mol Biol,1999, 289: 57~67
    80. Plachy J, Weining KC, Kremmer E et al. Protective effects of TypeⅠand Type Ⅱinterferons toward rous sarcoma virus-induced tumors in chickens.Virology, 1999, 256:85~91
    81. Platanias LC. The p38 mitogen-activated protein kinase pathway and its role in interferon signaling. Pharmacology & Therapeutics ,2003, 98, 129~142
    82. Preffer LM, Basu L, Preffer SR et al. The short form of interferon-α/β receptor chain 2 acts as a dominant negative for type I interferon action. J Biol Chem,1997,272(17):l 1002~ 11005
    83. Prejean C and Colamonici OR. Role of the cytoplasmic domains of the type I interferon receptor subunits in signaling.Cancer Biol,2000,10: 83~92
    84. Puehler F, Schwarz H, Waidner B et al. An Interferon- Y -binding protein of novel structure encoded by the fowlpox virus. J Bio Chem, 2003, 278(9):6905~6911
    85. Radhakrishnan R, Walter LJ, Hruza A et al. Zinc mediated dimmer of human interferon- α2b revealed by X-ray crystallography. Structure, 1996,4 : 1453~1463
    86. Radhakrishnan R, Walter LJ, Subramaniam PS et al.Crystal structure of ovine interferon- τ at 2.1A resolution. J Mol Biol, 1999,286 :151~162
    87. Ragimbeau J, Ariotti S, Losana G et al. Surface expression of the IFN- γ R2 chain is regulated by intracellular trafficking in human T lynphocytes. The journal of Immunology, 2000,164 :201~207
    88. Ragimbeau J, Dondi E, Alcover A et al.The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J, 2003,22(3):537~547
    89. Randal M,Kossiakoff AA.The structure and activity of a monomeric interferon γ : α chain receptor signaling complex. Structure, 2001,9 :155~163
    90. Reboul J, Gardiner K, Monneron D et al. Comparative genomic analysis of the interferon/interleukin-10 receptor gene cluster. Genome Res ,1999, 9:242~250
    91. Ren F, Hino K, Yamaguchi Y et al.Hepatitis C virus infection upregulates expression of the type I interferon receptor in human peripheral blood mononuclear cells. Hepatology research, 2003,26,15~22
    92. Rhee S, Ebensperger C, Dembic Z et al.The structure of the gene for the second chain of the human interferon Y receptor. J Biol Chem,1996,271(46):28947~28952
    93. Rigamonti L, Aritti S, Losana G et al. Surface expression of the IFN- Y R2 chains is regulated by intracellular trafficking in human T lymphocytes. The American Association of Immunologists, 2000,201~207
    94. Rong H, Jun XM, Kai KW et al. Mutation of loopAB in huIFN a lc/86D and enhancement of antiviral activity. Chinese J Exp Clin Virol, 2002,16(2):133~136
    95. Rosenfeld CS, Han CS, Alexenko AP et al. Expression of interferon receptor subunits,IFNARl and IFNAR2,in the ovine uterus. Biology of Reproduction,2002,67(3):847~ 853
    96. Russell-Harde D.Wagner TC,Perez D et al. Formation of a uniquely stable type I interferon receptor complex by interferon β and its receptor and independent of tyrosine phosphorylation.Biochem Biophys Comm,1999,255:539~544
    97. Schultz U, Rinderle C, Sekellick M et al. Recombinant chicken interferon from Escherichia coli and transfected COS cells is biologically active. Eur J Biochem.l995(229):73~76
    98. Sekellick MJ, Ferrandino AF, Hopkins DA et al. Chicken interferon gene:cloning,expression,and analysis. J interferon research, 1994(14):71~79
    99. Senda T, saitonS,mitsui Y et.al. Refined crystal structure of recombinant murine interferon β at 2.15-A resolution. J Mol Biol, 1995,253:187~207
    100. Shimizu K, Shichiri M, Libby P et al. Th2-predominant inflammation and blockade of IFN-γ signaling induce aneurysms in allografled aortas. The Journal of Clinical Investigation, 2004, 114(2):300~308
    101. Shulman TP, Roisman LC, Zupkovitz G et al.Optimizing the binding affinity of a carrier protein. J Biol Chem, 2004, 297(17):18046~18053
    102. Sick C, Schultz U, Staeheli PA. family of genes coding for two serologically distinct chicken interferons. J Bio Chem,1996,271(13):7635~7639
    103. Skrenta H, Yang Y, Pestka S et al. Ligand-independent down-regulation of IFN-γreceptor 1 following TCR engagement. The journal of Immunology, 2000: 3506~3511
    104. Sogabe S, Stuart F, Henke C et al..Neutralizing epitopes on the extracellular interferon γ receptor a chain characterized by homolog scanning mutagenesis and X-ray crystal structure of the A6 Fab-IFN γR1-108 complex. J Mol Biol, 1997,273:882~897
    105. Song KD, Lillehoj HS, Choi KD et al. Expression and functional charactarization of recombinant chicken interferon-gamma. Vet Immunol Immunopathol, 1997, 58:321~333
    106. Schultz U and Chisari F.Recombinat duck interferon gamma inhibits duck hepatitis B virus replication in primary Hepatocyte. Journal of virology,1999,73(4), 3162~3168
    107. Tochizawa S, Akamatsu S, Sugiyama Y et al. A flow cytometric method for determination of the interferon receptor IFNAR2 subunit in peripheral blood leukocyte subsets. Journal of Pharmacological and Toxicological Methods .2004, 50, 59~6
    108. Uddin S, Majchrzak B, Wang PC et al. Interferon-dependent activation of the serine kinase PI 3~1-kinase requires engagement of the IRS pathway but not the stat pathway. Biochemical and Biophysical Research Communications, 2000, 270:158~162
    109. Uze G, Di Marco S, Mouchel-Vielh E et al. Domains of interaction between alpha interferon and its receptor components. J Mol Biol, 1994, 243(2),245~257
    110. Vadiveloo PK, Vairo G, Hertzog P et al..Role of type I interferons during macrophage activation by lipopolysaccharide. Cytokine, 2000, 12(11): 1639~1646
    111. Velichko S, Wagner TC, Turkson J et al. STAT3 activation by type I interferons is dependent on specific tyrosines located in the cytoplasmic domain of interferon receptor chain 2c. J Biol Chem, 2002,277(38), 35635~35641
    112. Walter MR, Windsor WT, Nagabhushan TL et al. Crystal structure of a complex between interferon-γ and its soluble high-affinity receptor. Nature, 1995,376(20):230~235
    113. Watanabe S and Arai K. Roles of the JAK-STAT system in signal transduction via cytokine receptors. Current Opinion in Genetics & Development,1996,6:587~596
    114. Yao J, Sun X,Tang K. Molecular cloning of lectin gene from pinellia ternate. Journal of Fudan University(Natural Science) ,2001,4,461~464
    115. Yu T, Xiao Y, Bai Y et al. Human interferon-b inhibits binding of HIV-1 gp41 to lymphocyte and monocyte cells and binds the potential receptor protein P50 for HIV-1 gp41. Immunology Letters, 2000,73,19~22
    116. Zhang P, Chen Z, Chen F et al. Expression of IFN-γ and its receptor alpha in the peripheral biood of patients with chronic hepatitis C. Chin Med J, 2004, 117(1):79~82
    117. Zheng Y and Connor JR. cDNA Cloning by Amplification of Circularized FirstStrand c DNAs RevealNon-IRE-Regulated iron-Responsive mRNAs. Biochem Biophys Res Commun, 2000 (275): 223~227
    118.邬王君超,蒋滢.cDNA末端快速扩增技术的研究进展.氨基酸和生物资源,2003,25(1):25~31
    119.朱迅主编.免疫学新进展.人民卫生出版社.2002.401~421
    120.蔡中华,宋林生,高春萍等.真鲷肿瘤坏死因子α(TNFα)cDNA的克隆与表达生物化学与生物物理学报,2003,35(2):1111~1116
    121.单幼兰,黄爱龙,Jilbert A, Kotlarski L.鸭γ-干扰素活性体外检测方法的建立.重庆医科大学学报,2001,26(4):429~431
    122.樊龙江.生物信息学札记.http://www.cab.zju.edu.cn/cab/xueyuanxiashubumen/nx/bioinplant.htm.浙江大学生物信息学研究所:50~60
    123.黄爱龙,Jilbert A,Kotlarski L.鸭子α-干扰素基因表达及多样性分析.中国免疫学杂志,2000,16:644~646
    124.金晓琳,胡福泉.利用3′RACE法扩增到钙通道基因的3′端片段.细胞与分子免疫学杂志,1999,15(3):210~212
    125.明洪,黄秉仁.RACE:cDNA末端快速扩增技术进展.生物工程进展,1997,17(5):7~13
    126.邱为民.张思仲,武辉等.一种新的cDNK末端快速扩增获取全长cDNA的方法.遗传,2001,23(5):480~482
    127.萨姆布鲁克,EF 弗李奇,T 曼尼阿蒂斯著,黄培堂译.分子克隆实验指南(第三版).北京:科技出版社,2002,26~137,597~701,1428~1539
    128.史喜菊.牛IFN-α/γ基因的克隆、表达及重组蛋白的应用研究.中国农业大学博士学位论文.2004
    129.孙志宏,赵慧英,胡格吉乐图等.IFN-C在大鼠脑内定位分布的免疫组织化学研究.中国兽医学报,2002,22(1):59~60
    130.王春霞,王林川,鄢志强等.番鸭IFN-α基因在毕赤酵母中的分泌表达.中国兽医科技,2003,33(7):44~48
    131.王锋超,高京生,粟永萍等.由EST到全长cDNA—RACE及相关技术进展.生命的化学,2002,22(3):294~297
    132.王少丽,盛承发,乔传令等.cDNA末端快速扩增技术及其应用.遗传,2004,26(3):419~423
    133.王晓佳.副粘病毒入侵宿主细胞的机制研究.中国农业大学博士学位论文,2004
    134.吴志光.鸡γ干扰素cDNA的克隆、表达及重组蛋白的应用研究.中国农业大学博士学位论文,2002
    135.夏春,刘津,杨琪等.猪干扰素β基因的分子克隆与测序.中国兽医杂志,2000,26(6): 6~7
    136.夏春,万建青,吴志光等.北京鸭Ⅰ型干扰素基因分子克隆与序列分析.畜牧兽医学报,2000,31(6):567~570
    137.夏春,汪明,杨琪等.丝羽乌骨鸡干扰素基因的克隆与序列分析.中国免疫学杂志,2000(9):508~509,513
    138.叶霜,庞海,顾越英等.利用谷胱甘肽S转移酶表达标签捕获系统性红斑狼疮相关基因IFIT1的相关作用蛋白质.中华医学杂志,2003,83(9):770~773
    139.张纪岩.细胞因子受体超家族的结构保守性及生物学意义.国外医学分子生物学分册,1997,19(5):193~196
    140.张一折,刘照惠,关晓峰等.应用pET系统表达rhIFN-α2b基因的研究.中国生物制品学杂志,2003,16(3):147~150
    141.曹永长,吕英姿,毕英佐.鸡α干扰素基因的克隆和鉴定.中国预防兽医学报,2001,23(4):259~262
    142.杜占文,刘立仁,张俊武用cDNA文库筛选的方法获取新的锌指蛋白基因.遗传,2002,24(3):329~331
    143.高晋华,高文华.单向聚合酶链式反应扩增法研究科技情报开发与经济,2000,10(3):35~36
    144.胡荣,马学军,魏开坤等.新型基因工程干扰素受体结合域的改造及其生物活性测定.中华实验和临床病毒学杂志,2002,16(2):13
    145.李关荣,鲁成,夏庆友等.cDNA末端快速扩增技术(RACE)的优化与改良.生命科学研究,2003,7(3):189~197
    146.李杰,史继新,王汉东等.干扰素及其受体在垂体腺瘤的表达及意义.医学研究生学报,2002,15(4):324~326
    147.梁国栋.可溶性细胞素受体.中华实验和临床病毒学杂志,1997,11(1):93~96
    148.梁晓嫒,龚瑶琴.PCR技术在cDNA文库构建中的应用.国外医学遗传学分册,2001,24(1):1~5
    149.刘胜旺,孔宪刚,陈洪岩等.鸡Th1样淋巴因子mRNA的体外表达.中国兽医学报,2001,21(2):137~140
    150.吕英姿,毕英佐,曹永长.石歧杂鸡γ-干扰素基因的克隆与序列分析.华南农业大学学报,2002(4):61~63
    151.卢光莹,温小刚,颜岩等.抗菌多肽LC1的圆二色性和二级结构预测以及初步晶体学研究.生物物理学报.1994,10(2),193~197
    152.阮小飞,林常有,杨天耀等.北京鸭干扰素-α基因的分子克隆与表达.中国兽医杂志,2004,40(12):11~13
    153.沈洁,郭连英,金成刚.新基因TMBP-1的全长cDNA克隆.大连医科大学学报,2000,22(4),241~244
    154.石胜军,夏照帆.严重烧伤F344大鼠免疫细胞中一个EST全长序列的扩增.中国病理生理杂志,2003,19(2):176~179
    155.孙卫民,王惠琴.细胞因子研究方法学.人民卫生出版社.1999:13-161 153~155
    156.唐克轩,开国银,张磊等.RACE的研究及其在植物基因克隆上的应用.复旦学报(自然科学版),2002,41(6),704~709
    157.汪明,吴志光,夏春.肉鸡IFN-alpha基因的克隆、序列分析以及在大肠杆菌中的表达.农业生物技术学报,2000,8(4):377~381
    158.吴志光,夏春,汪明.北京鸭Ⅱ型干扰素基因分子克隆与序列分析.中国兽医科技,2001,31(3):7-10
    159.夏春,汪明,朱凌云等.惠阳胡须鸡IFN-α基因克隆和序列分析.惠阳胡须鸡IFN-α基因克隆和序列分析.畜牧兽医学报,2000,31(6),563~566
    160.邢桂春,张成岗,魏汉东等.采用RACE技术获得全长人新基因MAGE-D1.中国生物化学与分子生物学报,2001.17(2):203~208
    161.张成岗,贺福初.生物信息学方法与实践.科学出版社.2002:110~143,186~196;267~281
    162.张成岗,贺福初.生物信息学在新基因全长cDNA序列分析及功能预测中的应用.生物化学与生物物理进展,2000,30(1):159~163
    163.张玲玲,孟祥伟.干扰素受体研究进展.吉林医学,2003,24(6):492~493
    164.张新海,李德敏,欧阳为明等.小鼠CD226(PTA1)的基因克隆及其异型.中国免疫学杂志,2002,18(6):371~375
    165.钟涛,吴瑞英.cDNA末端快速扩增技术新进.国外医学分子生物学分册,2002,24(1):7~11
    166.周庆丰.鸡干扰素在毕赤酵母中的分泌表达.华南农业大学硕士学位论文,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700