多波地震勘探中观测系统设计与数据处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用地震勘探原理、数理统计等理论知识对目前多波地震勘探采集设计与数据处理中存在的部分关键问题进行了剖析,指出其根本原因以及机理,并提出了相应的解决办法。同时对采集与处理一体化工作提出定量化工作方向。根据转换点分布具有两个周期和呈现出平行四边形的特点提出了转换波以及联合勘探观测系统设计方法。分析指出采集足痕产生的根本原因及机理是:由于不同炮检距上AVO系数不相等,然而在叠加过程中却实施等权叠加,从而产生了采集足痕。同时,由此提出了相应的压制方法,并将采集足痕发展成为观测系统设计和数据处理相关环节的定量评价指标。依据数理统计原理提出切实可行的观测系统属性校验方法,同时将确保观测系统属性校验达到可靠程度的最小样本容量转化为有效覆盖次数的定量评价指标。分析转换波速度分析和NMO动校过程中花费大量计算时间的主要原因,并分别提出了可行的快速算法。
Investigating some key questions about the acquisition planning and data processing in the multi-wave seismic prospecting based on the exploration seismology and mathematical statistics and other theories, fundamental reasons and mechanisms about these key problems are proposed and there corresponding solutions are introduced. Meanwhile, the quantifying work direction to consider the data acquisition and processing with integrative ways is indicated too. Based on converted-points distributing with two periods and representing a parallelogram, the strategy for planning converted-wave acquisition geometries and joint exploration is introduced. The fundamental causes and mechanisms proposed for the acquisition footprint are stacking seismic data with equal weights which are not equal due to uneven AVO coefficients with uneven offset distributions. The attenuation measure for acquisition footprint is introduced based on its causing mechanisms. Meanwhile, the acquisition footprint can be quantitatively assessed planning acquisition geometry and some data processing procedures. Otherwise, feasible ways for checking and correcting the acquisition geometry before loading datasets are proposed by mathematical statistics. The minimal sampling capacity to make sure the above checking ways are reliable and credible can be a new quantifying and assessing the efficient fold of the acquisition geometry. The paper analyzed the primary reasons for exhausting a great of computing time by converted-wave velocity analysis and NMO correction and proposed fast resolutions.
引文
1.彭苏萍.中国煤矿高产高效矿井地质保障系统[J]:河北煤炭,1999,增刊,1-4
    2.韩德馨,彭苏萍.我国煤矿高产高效矿井地质保障系统研究回顾及发展构想[J]:中国煤炭.2002.V(28),5-9.
    3. C.W. Horton. Secondary arrivals in a well velocity survey[J]:Geophysics,1943. V(8),290-298.
    4.黄绪德.杨文霞.转换波地震勘探[M]北京:石油工业出版社.2008.3
    5. R.N. Jolly. Investigation of shear waves[J]:Geophysics,1956. V(21).905-938.
    6. R. J. Garotta, and P. Marechal. Shear wave polarization survey using converted waves[C]:SEG Expanded Abstracts,1987,657-658.
    7. J. Gaiser, N. Moldoveanu, C. Macbeth, et al. Multicomponent technology: the players. problems, applications, and trends[J]:The Leading Edge,2001.974-977.
    8. H. Lynn, and S. Spitz. Pau 2005[J]:The Leading Edge.2006,950-953.
    9.葛瑞·马沃可.塔潘·木克基,杰克·德沃金岩石物理手册:孔隙介质中地震分析工具[M].徐海滨,戴建春译.合肥:中国科学技术大学出版社.2008.185
    10. De-hua Han. Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated seniments[D]:PhD dissertation. Stanford University,1986.
    11. Tosaya A.C.. and Nur A. Effects of diagenesis and clays on compressioanl velocities in rocks[J]:Geophys Res Lett,1992, V(9),5-8.
    12. J.P. Castagna, M.L. Batzle, and R.L. Eastwood. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks[J]:Geophysics,1985, V(50).571-581.
    13. R. Tatham. and P. Stoffa. Vp/Vs-A potential hydrocarbon indicator:Geophysics,1976, V(4).837-849.
    14. J.D. Robertson, and W.C. Pritchett利用纵波和横波地震剖面对比来验证亮点[C].S·诺曼·多门尼科横波勘探论文集[M]北京:石油工业出版社,1987:119-122.
    15. J.D. Robertson根据横波/纵波传播时间比率估算碳酸盐岩的孔隙度[C]S·诺曼·多门尼科横波勘探论文集[M].北京:石油工业出版社,1987:119-122.
    16. R.A. Ensley. Direct hydrocarbon detection with P and SH-wave seismic data[C]:SEG Expanded Abstracts, 1983,349-351.
    17. R.A. Ensley.通过纵波和横波地震资料对比评价直接烃类指示[C].S·诺曼·多门尼科.横波勘探论文集[D]北京:石油工业出版社,1987:123-150.
    18. Ensley R.A. Classified bibliography of shear-wave seismology. In:Danbom S.H., and Domenico S.N. (eds.) Shear-wave exploration[M]. SEG, Tulas, OK,1986,255-275.
    19. Crampin. S., R. Evans, B. Ucer, et al. Observations of dilatancy-induced polarization anomalies and earthquake prediction[J]:Nature,1980, V(286),874-877.
    20. M. Ando, Y. Ishikawa, and H. Wada. S-wave anisotropy in the upper-mantle under a volcanic area in Japan[J]: Nature,1980, V(286),43-46.
    21. Crampin, S. A review of wave motion in anisotropic and cracked elastic-media[J]:Wave Motion,1981, V(3), 343-391.
    22. Crampin, S. Evaluation of anisotropy by shear-wave splitting[J]:Geophysics,1985, V(50),142-152.
    23. Crampin, S. Evidence for aligned cracks in the Earth's crust[J]:First Break,1985, V(3),12-15.
    24. Alford R.M. Shear data in the presence of azimuthal anisotropy:Dilley, Texas[C]:SEG Expanded Abstracts, 1986.476-479.
    25. Lynn H.B., and Thomsen L. Shear-wave exploration along the principal axes[C]:SEG Expanded Abstracts, 1986,473-476.
    26. Martin M.A., Davis T.L., and O'Rourke T.J. An integrated three-component approach to fracture detection[C]: SEG Expanded Abstracts.1986.235-236.
    27. Navill, C. Detection of anisotropy using shear-wave splitting in VSP surveys:requirements and applications[C]:SEG Expanded Abstracts,1986,391-394.
    28. Rai C.S.. and Hanson K.E. Shear-wave birefringence:A laboratory study[C]:SEG Expanded Abstracts,1986. 471-473.
    29. Willis H., Rethford G., and Bielanski E. Azimuthal anisotropy:Occurrence and effect on shear wave data quality[C]:SEG Expanded Abstracts,1986,479-481.
    30. Thomsen L. Reflection seismology in azimuthally anisotropic media[C]:SEG Expanded Abstracts,1986, 468-470.
    31. Martin M.A.. and Davis T.L. Shear-wave birefringence:A new tool for evaluating fractured reseryoirs[J]:The Leading Edge.1987.22-28.
    32. Robert Garotta. and Pierre Yves Granger. Acquisition and processing of 3C3D data using converted waves[C]: SEG Expanded Abstracts.1988.995-998
    33. Leon Thomsen. Reflection seismology over azimuthally anisotropic media[J]:Geophysies.1988, V(53). 304-313.
    34. Chung W.Y., and Corrigan D., Gathering mode-converted shear waves:A model study[C]:SEG Expanded Abstracts,1985.602-604.
    35. Tessmer G., and Behle A. Common reflection point data stacking technique for converted waves[J]: Geophysical Prospecting,1988. V(36),671-688.
    36. Erasier C. and Winsterstein D. Analysis of conventional and converted mode reflections at Putah Sink, California using three-component data[J]:Geophysics, V(55),646-659.
    37. M.P. Harrison. Processing of P-SV surface-seismic data:Anisotropy analysis, dip moveout, and migration [D]. Ph.D. dissertation. University of Calgary,1992.
    38. P.W. Cary, and D.W.S. Eaton. A simple method for resolving large converted-wave (P-SV) statics[J]: Geophysics,1993, V(58),429-433.
    39. Aimin Xue. The estimation of large statics by using surface consistent difference of cross-correlation and stack power method[C]:SEG Expanded Abstracts,2003,630-633.
    40. Eaton D.W.S., and Lawton D. C. P-SV stacking charts and binning periodicity[J]:Geophysics,1992, V(57), 745-748.
    41. Lawton D.C. Optimum bin size for converted-wave 3-D asymptotic mapping[J/OL]:CREWES Research Report (University of Calgary),1993, http://www.crewes.org/Reports/1993/1993-28.pdf, 20073-03-10/2011-03-10.
    42. Lawton D.C. Acquisition design for 3-D converted waves[J/OL]:CREWES Research Report (University of Calgary),1994, http://www.crewes.org/Reports/1994/1994-23.pdf,2007-03-10/2011-03-10.
    43. Lawton D.C., Stewart R.R., Cordsen A., et al. Advances in 3C-3D design for converted waves[J/OL]: CREWES Research Report (University of Calgary),1995, http://www.crewes.org/Reports/1995/1995-43.pdf, 2007-03-10/2011-03-10.
    44. Kendall R.R., Gray S.H., and Murphy G.E. Subsalt imaging using prestack depth migration of converted waves[C]:SEG Expanded Abstracts,1998,2052-2055.
    45. Hoffe B.H., and Lines L.R. Depth imaging by elastic waves-Where P meets S[J]:The Leading Edge,1999, V(18),370-372.
    46. Van Dok R.R., Gaiser J.E., Jackson A.R., et al.3-D converted-wave processing:Wind River Basin case history [C]:SEG Expanded Abstracts.1997,1206-1209.
    47. Stewart R.R., Gaiser J.E., Brown R.J., et al. Converted-wave seismic exploration:Methods[J]:Geophysics, 2002, V(67),1348-1363.
    48.赵邦六等.多分量地震勘探技术理论与实践[M].北京:石油工业出版社,2007,2.
    49.唐建侯.P-SV转换波与各向异性研究[D].博士论文,成都理工大学,2003.
    50.金抒辛.转换波静校正模糊技术[D].博士论文,吉林大学,2005.
    51.何兵寿.P-SV转换波技术研究.博士后出站报告,中国矿业大学(北京),2005.
    52.苑春方.P-SV转换波成像及三参数AVO反演理论和应用研究[D].博士后出站报告,中国矿业大学(北京),2005
    53.潘树林P-SV转换波静校正方法研究[D].博士论文,成都理工大学,2008.
    54.张丽艳.基于虚拟偏移距方法的转换波保幅叠前时间偏移研究[D]博士论文,中国石油大学,2008.
    55.杜文凤.煤田转换波解释和反演方法研究及其应用[D].博士论文.中国矿业大学(北京).1008.
    56.唐建明.转换波三维三分量地震勘探方法技术研究[D].博士论文,成都理工大学,2010.
    57. Cordsen A., and Peirce J.W.著.陆上三维地震勘探的设计与施工[M].俞寿朋等译.河北:石油地球物理勘探局.1996,16.
    58. Gijs J.O. Vcrmeer著.三维地震勘探设计[M].李培明,何永清译.北京:石油工业出版社,2008.20.
    59. Eaton D.W.S.. and Lawton D.C. P-SV stacking charts and binning periodicity[J/OL]:CREWES Research Report (University of Calgary).1990. http.//www.crewes.org/Reports/1990/1990-03.pdf, 2007-03-10/2011-03-10.
    60. Cordsen A., and Lawton D C. Designing 3-component 3D seismic surveys[C]:SEG Expanded Abstracts. 1996.
    61.何登科.转换波观测系统设计与评价方法的研究[D].硕士论文.中国矿业大学(北京),2007.
    62.彭苏萍.何登科,勾精为,等观测系统的面元划分与覆盖次数计算[J]:煤炭学报,2008,(33),55-58.
    63. D.k. He, S.P. Peng, J.W. Gou. et al. How to acquire even fold distribution in a converted-wave seismic geometry[C]:EAGE Developments in Land Seismic Acquisition for Exploration,2010,73-77.
    64.王辉.转换波静校正及基于ProMAX系统的应用模块开发[D].博士后出站报告.中国矿业大学(北京校区),2003.
    65. J.E. Gaiser. Applications for vector coordinate systems of 3-D converted-wave data[J]:The Leading Edge, 1999,1290-1300.
    66.周建新.姚姚.海上多波地震勘探检波器方位误差校正[J]:中国海上油气(地质),1999,Ⅴ(13),355-358.
    67.傅旦丹,刘一峰,温书亮,等海上多分量地震勘探水平分量方位校正[J]:石油物探,2003,Ⅴ(42),460-463,468.
    68.温书亮.牛滨华,傅旦丹.等.渤海三维多分量地震勘探水平分量方位校正[J],吉林大学学报(地球科学版),2004,Ⅴ(34),142-145.
    69.黎咸威.转换波检测含煤地层裂隙处理方法研究[D].硕士论文,中国矿业大学(北京),2006.
    70. Dave Monk. Pitfalls in seismic acquisition[J]:The Leading Edge,1999,1080-1083.
    71. Stephen K.C., and Robert S. Applications of 3-D data mapping-azimuth moveout and acquisition-footprint reduction[C]:SEG Expanded Abstracts,2002,2134-2137.
    72. Bill Kamps. Amplitudes:reducing acquisition footprint for prestack migration[J]:First Break,2006, V(24), 85-88.
    73.麻三怀.消除采集脚印的处理方法研究[D].博士论文,中国科学院地质与地球物理研究所,2008.
    74. A. Canning, and G.H.F. Gardner. Reducing 3-D acquisition footprint for 3-D DMO and 3-D prestack migration[J]:Geophysics,1998. V(63).1177-1183.
    75. Xiongwen Wang, Huazliong Wang, and Jiexiong Cai. Reducing the acquisition footprint using coordinate transformation[C]:SEG Expanded Abstracts,2009,3015-3019.
    76. K.J. Marfurt, R.M. Scheet, J.A. Sharp, et al. Suppression of the acquisition footprint for seismic sequence attribute mapping[J]:Geophysics,1998, V(63),1024-1035.
    77. S. Chopra, and G. Larsen. Acquisition footprint-its detection and removal[J]:CSEG Recorder,2000(8). 16-18.20.
    78. Drummond J.M., Arthur J.L., and Ryan J.W. Adapting to noisy 3D data-attenuating the acquisition footprint[C]:SEG Expanded Abstracts,2000,9-12.
    79. N. Gulunay.3D acquisition footprint removal[C]:EAGE 62nd Conference and Technical Exhibition,2000.
    80. M. Cvetkovic, N. Pralica, S. Falconer, et al. Comparison of some algorithms for acquisition footprint suppression and their effect on attribute analysis[C]:SEG Expanded Abstracts,2008,2637-2641.
    81. R.E. Sheriff. Encyclopedic dictionary of applied geophysics (fourth edition)[M]:Society of Exploration Geophysicists. Tulsa, Oklahoma, U.S.A.,2002.
    82. S. Hill, M. Shultz, and J. Brewer. Acquisition footprint and fold-of-stack plots[J]:The Leading Edge,1999, 686-695.
    83. Andreas Cordsen. Acquisition footprint can confuse[C]:AAPG Explorer.2004.26-27.
    84.侯成福.蒋连斌.高邓琴.三维观测系统与采集脚印[J]:石油地球物理勘探,2007,V(42),611-615
    85.麻三怀.杨长春,韩晓丽,等.采集脚印分析和处理方法综述[J]:地球物理学进展,2008,V(23),500-507
    86. M.T. Taner, and F. Koehler. Velocity spectra-digital computer derivation and applications of velocity functions[J]:Geophysics.1969,34(6),859-881.
    87. Neidell. N. S. and Taner, M. T. Semblance and other coherency measures for multichannel data[J]: Geophysics,1971.36(3),482-497.
    88. G.G. Taylor. The point of P-S mode-converted reflection:An exact determination[J]:Geophysics,1989,54(8). 1060-1063.
    89.苑春方,彭苏萍,杨良梁.水平界面上P-SV转换波转换点的精确解[J]:地球物理学报,2005,48(5).1179-1184.
    90.刘洋,魏修成,王长春,等.三维三分量地震勘探观测系统设计方法[J]:石油地球物理勘探.2002,37(6),549-555.
    91.唐建明,马昭军.宽方位三维三分量地震资料采集观测系统设计[J]:石油物探,2007,46(3),310-318.
    92. Yilmaz,O. Seismic data processing[M]:Soc. Expl. Geophys.,1987.
    93.芦俊,王资,孟召平,等.优化P-P、P-SV波联合采集观测系统设计方法[J]:地球物理学进展.2003,18(4),715-723.
    94张永刚,王贇.王妙月.目前多分量地震勘探中的几个关键问题[J]:地球物理学报,2004,47(1),151-155.
    95刘洋,魏修成转换波地震勘探中的最大炮检距设计[J]:勘探地球物理进展,2005,28(3),178-182,211
    96陆基孟.地震勘探原理[M].山东东营:石油大学出版社.1993,193
    97.朱广生等勘探地震学教程[M].湖北武汉:武汉大学出版社,2005,89.
    98. C. Hewitt Dix. Seismic velocities from surface measurements[J]:Geophysics,1955.10(1),68-86.
    99. R. Garotta, and P.Y. Granger. Some requirements for PS-mode acquisition[J]:The Leading Eage,2003, V(4), 106-112.
    100.霍全明.三维三分量地震勘探采集设计和评价方法的研究[D]北京:中国矿业大学(北京校区),博士论文,2002,86-89
    101. Slawson S., Monk D., Woran J. Survey geometries that achieve more uniform offset and azimuth sampling[C]: SEG Expanded Abstracts,1997,39-42.
    102.Berkhout A.J., Pushing the limits of seismic imaging.part Ⅰ:prestack migration in terms of double dynamic focusing[J]. Geophysics,1997.62(1):973-953.
    103.Berkhout A.J., Pushing the limits of seismic imaging,part 2:integration of prestack migration, velocity estimation, and AVO analysis[J]. Geophysics,1997,62(1):954~969.
    104.Berkhout A.J.. Ongkiehong L., Volker A.W.F., et al. Comprehensive assessment of seismic acquisition geometries by focal beams—Part Ⅰ:Theoretical considerations[J], GEOPHYSICS,2001,66(3):911-917.
    105. Volker A.W.F.. Blacquiere G.. Berkhout A.J., et al. Comprehensive assessment of seismic acquisition geometries by focal beams—Part Ⅱ:Practical aspects and examples[J]. GEOPHYSICS.2001.66(3):918-931.
    106.Volker A.W.F. Assessment of 3-D seismic acquisition geometries by focal beam analysis[D]. The Nether lands[D]:Delft University of Technology. PhD-thesis.2002:44.
    107. S.P. Peng, D.K. He, J.W. Gou, et al. Quantitative evaluating offset and azimuth uniformity based on entropy[C]:EAGE Developments in Land Seismic Acquisition for Exploration,2010,129-133.
    108.Quinlan J.R.1979, Discovering rules by induction from large collections of examples. In Michie D. (Ed.) Expert Systems in the Micro Electronic Age. Edinburgh[M]:Edinburgh University Press,1979.168-201.
    109. Shannon, C. E., [1948] A mathematical theory of communication[J]. The Bell System Technical Journal.27, 379-423.
    110.E.A. Robinson地球物理数据偏移[M]汪贤驯,误晖译.北京:石油工业出版社,1985.85
    111《现代应用数学手册》编委会现代应用数学手册——概率统计与随机过程卷[M].北京:清华大学出版社,1999.425.
    112.杜子芳.抽样技术及其应用[M].北京:清华大学出版社.2005.204
    113.何仁汉.徐件达,孙波,等三分量检波器埋置误差分析[J]:石油地球物理勘探.1995.30(3),405-416.
    114.熊金良,狄帮让.岳英.等基于地震物理模拟的采集脚印分析[J]:石油地球物理勘探.2006,41(5),493-497.
    115殷八斤.AVO技术的理论与实践[M].北京:石油工业出版社,1995.309-310
    116.G.H.F. Gardner, L.W. Gardner, and A.R. Gregory. Formation velocity and density-The diagnostic basic for strati graphic traps[J]:Geophysics,1974,39(6).770-780.
    117. Mike Cox反射地震勘探静校正技术[M]李培明,柯本喜等译北京:石油工业出版社,2004,158.
    118高磊.地震初至波自动拾取和折射波表层调查方法研究[D]四川:成都理工大学,博士论文,2008,13.
    119.N. Ricker. The form and laws of propagation of seismic wavelets[J]:Geophysics,1953, V(18),10-40.
    120.肖明耀实验误差估计于数据处理[M].北京:科学出版社,1984,142-150.
    121. F. Coppens. First arrival picking on common-offset trace collections for automatic estimation of seismic corrections[J]:Geophysical Prospecting,1985, V(33),1212-1231.
    122.左国平,王彦春,隋荣亮.利用能量比法拾取地震初至的一种改进方法[J]:石油物探,2004,43(4),345-347.
    123.L. Yalcinoglu. An integral geometric method for automatic first arrival detection[C].72nd EAGE Conference & Exhibition incorporating SPE EUROPEC,2010.
    124.P.J. Hatherly. A computer method for determining seismic first arrival times[J]:Geophysics,1982,47(10), 1431-1436.
    125.刘连升.约束初至拾取与初至波剩余静校正[J]:石油地球物理勘探,1998,33(5),604-610
    126.《数学手册》编写组.数学手册[M].北京:高等教育出版社,2005,333.
    127.Fromm, G., Krey, T., and Wiest, B. Static and dynamic corrections. In:Dohr, G. (Ed.) Seismic shear waves: Handbook of geophysical exploration[M]. Geophysical Press,1985,15A,191-225.
    128.周宏伟,谢和平,左建平,等.赋存深度对岩石力学参数影响的实验研究[J]:科学通报,2010,55(34),3276-3284.
    129.咸海龙.利用转换波数据检测煤层裂隙信息的研究[D].北京:中国矿业大学(北京).硕士论文,2011
    130.李洪强.差分技术在转换波方位时差校正中的应用[D].北京:中国矿业大学(北京),硕士论文,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700