三分量光弹波导光电集成加速度地震检波理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高石油天然气产量,石油地震勘探正朝着多波多分量的三维精细地震勘探发展,以寻找储藏在浅层、薄层的油气。因此,检波器作为地震勘探中地震反射波信号的拾取单元,必须满足三分量地震勘探对其频带、分量间串扰、灵敏度、野外施工适应性等各项性能的要求。
     本课题首次提出基于光弹效应的三分量混合集成加速度地震检波器,很好地结合了光波导技术和三分量地震加速度检波技术,与其他三分量检波器相比有频带更宽、分量间串扰低、灵敏度高的优点。同时由于光波导集成器件本身的特点,所研制的三分量加速度检波器体积小、适合在强电磁场和高温高寒等恶劣环境下稳定工作。论文的主要研究工作如下:
     1、首先建立三分量光弹波导混合集成加速度地震检波器动力学模型、微分运动方程,系统分析并计算加速度检波器的幅频特性、相频特性、阶跃响应以及其静态特性,为加速度检波器结构设计奠定振动力学理论基础。
     2、首次从单向力作用下晶体光弹效应出发,详细推导出在空间加速度作用下,LiNbO3晶体的三维光弹效应,采用坐标变换法推导出:通过LiNbO3晶体的光相位变化与三分量加速度变化的对应关系,为加速度检波器结构设计奠定光学理论基础。
     3、基于LiNbO3晶体的光弹效应,详细分析计算三分量光弹波导加速度检波器的极间耦合影响,结合对三分量检波器的振动力学和光学理论分析,最终确定分量间串扰值为零的加速度检波器结构设计。
     4、对三分量光弹波导混合集成加速度地震检波器的Mach-Zehnder光波导干涉仪系统进行了系统研究和优化设计。从导波的射线理论出发,根据波导单模条件,结合有效折射率法完成了单模波导的优化设计。结合有效折射率法,二维空间有限差分光传播法和透明边界条件,对S形反正弦波导构成的双Y分支波导光路传输进行深入分析研究,对波导传输损耗进行了计算分析,在此基础上设计的双马赫-曾德干涉仪具有良好的分光比和低损耗的优点。
     5、对波导干涉仪的制作工艺进行了详尽的理论和实验研究。通过大量的实验制定出了切实可行的工艺流程,获得了有参考价值的工艺参数。成功研制分支波导结构复杂、波导间隔小的干涉芯片并完成通光实验。
In order to improve the oil and gas reserves, people used 3-D seismic exploration to find the oil and gas storage in the shallow and thin layers. The multicomponent seismic exploration requires 3-component seismic signals, which are measured by 3-component geophone in an earthquake. 3-component geophone can measure back and forth horizontal motions in two directions. It is a important thing for 3-D seismic exploration to choose a 3-component geophone with suitable parameters, including nature frequency; cross-axis sensitivity; on-axis sensitivity and applicability for field exploration.
     In this dissertation, the three-component hybrid-integrated optical acceleration seismic geophone based on photoelastic waveguide is introduced for the first time, which contains the photoelastic waveguide technology and 3-component seismic signal detection technology. Compared with other 3-component geophones, this acceleration geophone has broad-band frequency; low cross-axis sensitivity; high on-axis sensitivity. It is also possible to overcome optical alignment ,long-term stable and handing of fiber in package process when optical fiber sensor is minimized and go into mass production.
     The research work of the dissertation mainly includes four aspects as follows:
     1 we model the three-component hybrid-integrated optical acceleration seismic geophone by the system consisting of masses; spring and dampers. The differential equation of motion for the system is found. The static characteristic and dynamic characteristic of 3-component hybrid-integrated optical acceleration seismic geophone (such as: frequency response; phase response; step response etc.) are studied, which are bases of the vibration theory for design the three-component hybrid-integrated optical acceleration seismic geophone
     2 based on the one-dimensional photoelasitcity when one-dimensional stress is applied on LiNbO3 crystal, we derive the 3-dimensional photoelasitcity when 3-dimensional stress is applied on LiNbO3 crystal. Applying the method of coordinate transform, we obtain the relationship between phase change of light and 3- component acceleration applied on LiNbO3 crystal. The relation is the theory base for designing the three-component hybrid-integrated optical acceleration seismic geophone.
     3 After obtaining the 3-dimensional photoelasitcity of LiNbO3 crystal, we analyse the level of sensitivity to off-axis accelerations which is a very important parameter for3-axis accelerometer. Combining with the mechanical libration theory and photoelasitcity theory, we design the 3-component hybrid-integrated optical acceleration seismic geophone which cross-sensitivity is 0.
     4 The Mach-Zehnder waveguide interferometer of the three-component hybrid-integrated optical acceleration seismic geophone is researched detailedly. The optimization structure design of the accelerometer is accomplished. Based on the waveguide ray theory, the condition for single-mode waveguide is derived, and design of single-mode strip waveguide is accomplished with effective index method. Combining with the effective index method, FD-BPM and TBC method, the Y-branching waveguide composed of reflected S-bend is researched. The lightwave propagation in Y-branching waveguide is studied and the FD-BPM method employed to simulate. The Mach-Zehnder waveguide interferometer we designed has good splitting ratio and low-loss.
     5 In order to make a good Mach-Zehnder waveguide interferometer, Lots of theoretical and experimental researches on process craft of waveguide interferometer have been done. A feasible process flow is made and valuable technological parameters are obtained. The Mach-Zehnder waveguide interferometer is fabricated successfully and the optical measurement is executed.
引文
[1] J.A.coffeen, , PPC books, the petroleum publishing co. Tulsa, Oklahoma 1978
    [2] N.Bleistein, J.W.Stockwell, Mathematics of multidimensional seismic imaging, Migration, and inversion 2001 springer-Verlag new york, inc.
    [3] 刘仲一, 《地震勘探仪器原理》,石油工业出版社, 1986
    [4] 范伟粹。谢剑鸣,《地震勘探原理》,石油工业出版社,1981
    [5] Anstey N.A attacking the problems of the synthetic seismogram, geophy.prosp. 8.242-259
    [6] Clearbout .J.F synthesis of a layered medium from its acoustic transmission response, geophysics 33.264-269
    [7] P.R.gutowski, S.Treitel, generalized one-dimensional synthetic seismogram, geophysics V52,No.5, 589-605
    [8] Bil T l orguson j Palacios oil: 3-Dseimic exploration ,The LeadingEdge,Vo1.14,No.1 2,1995
    [9] Detection and analysis of naturally fractured gas reservoirs ,Blackhawk gemetrics. Inc.etal.2000
    [10] Burg J.B, Three –dirmensional filtering with an array of seismometers [J], geophysics, 1964,29(4), 693-713
    [11] Brown.A.R. Technologies of reservoir geophysics [M], Tulsa usa: society of exploration geophysicists, 1992
    [12] Pritchett.W.C, Acquiring better seismic data [M], London, chapman and hall 1990
    [13] Jame.D.Robertosom, pool manage using 3-D seismic data, EDGE,1989,No.2
    [14] C.Scoot, Burns, integrating 3-D seismic into the reservoir model-and its impalt on reservoir management, the leading EDGE, No.2 1999
    [15] Robert.E.Smyder, 3-Dseismic :proven applications, data management options. World oil, No.9,1996
    [16] Mario A. Gutierrez. 3-Dseismic interpretation of tectonic wrenching and faulting in La-cira-infantas , 石油物探译丛,2000,5,p12-15
    [17] Victor H 三维勘探在阿曼的 natih 油田开采应用 石油物探译丛,2001,6,p10-15
    [18] Winterstein D.F. and Meadows,M,A, shear-wave polarization and subsurface stress direction at lost hill field, geophysics, 56,1337-1348
    [19] Li, X.Y. and Grapin.S. Case studies of complex component analysis of shear-wave splitting: 60th Ann,. Interant. Mtg, soc.expl.geophys., expaned abstracts, 1427-1430
    [20] 冯太林,《勘探定向直立裂缝系的地面地震技术》,石油物探译丛,1995,3,p55-60
    [21] 唐建候,唐晓雪, 《地震波的偏振分析与应用》,石油地球物理勘探,1996,31(A02).-67-73
    [22] 孙大明 ,邵 维,《高分辨率三维地震采集技术研究》,吉林大学学报(地球科学版),Vo1.32 NO.4 Oct.2OO2 P394-395
    [23] 蒋连斌 唐建 李勤学 ,《高分辨率三维开发地震采集技术在太1 90区块的应用》,石油地球物理勘探,2002 ,35,4, 433-442
    [24] 赵殿栋,吕公河,《高精度三维地震采集技术及应用效果》,石油物探,2001,V40,No.1,p1-8
    [25] P.C.Wuenschel Removal of the detector-ground coupling in the vertical seismic profiling environment, geophysics, V53,No.3,1988,p359-364
    [26] Andrew Pap, criteria for selection of geophone parameters, hookups, phone spacing ,and low-cut instrument filters, Amoco Canada petroleum Co.Ltd.
    [27] 付清峰,周明,《地震检波器的进展》,石油仪器,VOL.14, No.2 p25-27
    [28] 李忠 《高分辨率地震勘探技术》, 中国大地出版社,1997
    [29] 付清峰,周明,《SN7系列超级检波器》,传感器世界,2002,No.2,p35-38
    [30] 罗福龙, 易碧金, 罗兰兵, 《地震检波器技术及应用》,物 探 装 备,2005,VOL.15,No.1,P6-14.
    [31] 刘光林,刘泰生,高中录,李 刚,姚光凯,《地震检波器的发展方向》,勘探地球物理进展,2003,Vo1.26.No.3,p178-185
    [32] 谭绍泉 ,余钦范,等,《新型陆用压电检波器在滩浅海地区地震勘探中的应用及效果》,石油物探,2004,Vol.43,No.2, p106-110.
    [33] 吴树奎,周明非,等,《数字检波器三分量地震勘探技术的应用》,石油物探,2004,Vol.34,No.6, p602-604.
    [34] 何仁汉, 《三分量地震检波器综述》,地学仪器,1995(2),p1-5.
    [35] 金抒辛,董世学,《OMNIPHONE检波器与OYO三分量检波器性能对比与试验资料分析》 长春科技大学学报,1999, Vo1.29 ,NO. l p387-389.
    [36] 石英,韩瑞民译,《井中随钻地震波三分量测量及使用三分量 VSP 法解释地下构造 ― 日本石油公司柏崎试验区实例研究》,国外油气勘探,Vol.9,No.6, p737-747.
    [37] 冯太林,张学工,李衍达,《三分量地震资料野外采集应遵守的重要原则》,物探与化探,2001,Vol.25,No.1,p70-74.
    [38] 师先进,何仁汉, 徐仲达,《三分量地震检波器的转换公式及误差分析》,上海地质,1992,No.3,p35-40.
    [39] 刘绘清、付清锋, 《用于地震勘探的三分量检波器》,传感器世界,2003.9
    [40] 何仁汉、唐宗璜,等,《Omniphone检波器性能分析及问题探讨》,石油地球物理勘探,1995.12,p171-176。
    [41] 贾 志 新, 《OMNIPHONE 三分量检波器分量之间串扰的测试》,世界地质,1999,VOL.28,NO.1 P86-88。
    [42] 董景新,等,著,《微惯性仪表---微机械加速度计》,清华大学出版社,2003。
    [43] Lynn michlle Roylance ,James,B,angel, “A batch-fabricated silicon accelerometer” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-26, NO. 12, DECEMBER, 1979,p1911-1917.
    [44] R.P. Van Kampen, R.F.Wolffenbuttle, “ Modeling the mechanical behavior of bulk-micromachined silicon accelerometers” , sensor and actuators, A(64),1998, P 137-150.
    [45] K Chau, S Lewis, Y Zhao, et al. “an integrated force-balanced capaitive accelerometer for low-g applications” the 8th international conference on solid state sensor and actuators, and Eurosensor IX, Stockholm, Sweden 1995.
    [46] Nagel D J, Zaghloul M E, “MEMES: micro technology. Mega impact IEEE Circuits and devices magazine, 2001,17(2): p14-25.
    [47] Jon Tessman, Bruce Reicher, Jim Marsh, Jeff Gannon, Howard Gold-berg. Input/output inc. Stafford texas, usa 2001.
    [48] Kijita.T, Un-Ku Moon, “A two-chip interface for a MEMS accelerometer” , IEEE Transactions on Instrumentation and Measurement, v 51, n 4, Aug. 2002, p 853-8
    [49] Tsuchiya.T, Funabashi. H, “A Z-axis differential capacitive SOI accelerometer with vertical comb electrodes”,17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest (IEEE Cat. No.04CH37517), 2004, p 524-7
    [50] Brandl M, Kempe V, “High performance accelerometer based on CMOS technologies with low cost add-ons.” Proceeding of the IEEE micro Electro mechanical system (MEMS), 2001.6-9.
    [51] R.Puers, S.Reyntjens, “design and processing of a new miniaturized capacitive triaxial accelerometer”, sensor and actuators A 68 (1998) 324-328.
    [52] Mark A Lemkin, Berhard E, “A 3-axis force balance accelerometer using a single proof-mass” transducer’97,1997.
    [53] Maenaka K, Suqimoto H, “Fully digital controlled inertial sensing system for MEMS devices”, Pacific Rim Workshop on Transducers and Micro/Nano Technologies, 2002, p 549-52.
    [54] 陈非凡,殷玲,李云龙,微光机电系统(MOMEMS)的研究现状及展望,微细加工技术,2002.
    [55] F.Rudolf, A.Jornod, H.Leuthold, “precision accelerometers with μg resolution”, sensor and actuators, A 21-23[297], 302.1990.
    [56] G.A.Macdonald, “ a review of low cost accelerometers for vehicle dynamis”, sensor and actuators, A, 21-23, 281-287.1990.
    [57] N.Yazdi, F.Ayazi, K.Najafi, “micromachined inertial sensor”, proced.IEEE 86[8], 1640-1659,1998.
    [58] O.B.Degoni, “design and noise consideration of an accelerometer employing modulated integrative differential optical sensing”, sensor and actuators,84,53-64,2000.
    [59] J.Kalenik, “a cantilever optical-fiber accelerometer”, sensor and actuators, A 68,350-355, 1998.
    [60] M.A.Duguay, Y.Kokubun, T.L.Koch, “antiresonant reflecting optical waveguides in SIO2-SI multilayer structures”, Appl.Phys.Lett 49[1], 13-15, 1986.
    [61] T.Baba, Y.Kokubun, “dispersion and radiation loss characteristics of antiresonant reflecting optical waveguide-numerical results and analytical expressions”, IEEE J.Quant. elect. 28[7],1689-1700,1992.
    [62] Benaissa K, Nathan A, “silicon anti-resonant reflecting optical waveguide for sensor application”, sensor and actuators, A65, 33-34, 1998
    [63] Prietof, Liobera A, Lechugal M, “optimized silicon aniresonant reflecting optical waveguide for sensing applications”, journal of lightwave technology, 2001,19(1),75-83.
    [64] A.Liobera, J.A.Plaza, I.Salinas, “ARROW-Based optical accelerometer”, Sensors, 2002. Proceedings of IEEE,Volume 2, 12-14 June 2002 Page(s):1075
    [65] A.Liobera, J.A.Plaza, I.Salinas, “Technological aspects on the fabrication of silicon-based optical accelerometer with ARROW structures”, Sensors and Actuators A 110 ,395–400,2004
    [66] 泽田廉士,羽根一博,日暮荣治,《微光机电系统》,科学出版社,2005。
    [67] Alan D.Kersey.“A Review of Recent Developments in Fiber 0ptic Sensor Technology”.OPTICAI FIBER TECHN0I 0GY,1996(2):291~317。
    [68] A.M.Vengsarker,et a1.“Fiber optic technique for simultaneous measurement of temperature and strain”,Fiber Optic and Laser Sensors,vo1.1367,Ⅷ :249,1990
    [69] Nobuaki Takahashi et a1.“Development of an optical fiber hydrophone with fiber Bragg grating”.Ultrasonics,(38):581~ 585,2000
    [70] Ph.M.Nellen,et a1. “Reliability of fiber Bragg gratingbased sensors for downhole applications”, Sensors and Actuators,(A 103):364~376,2003
    [71] D.A.Jackson,et a1, “Simple multiplexing scheme for a fiber optic grating sensor network”,vo1.1 8:11 93, 1993
    [72] 刘云启,郭转运,刘志国等 “聚合物封装的高灵敏度光纤光栅压力传感”,中国激光,2000,2(3):211~214
    [73] 李文宏,杨振坤,夏建生等 “光纤布拉格光栅检测技术及其应用”, EJ3.中国测试技术.2003.(1):5~7
    [74] Torben Storgaard-Larsen, Siebe Bouwstra, Otto Leistiko, “Opto-Mechanical Accelerometer Based on Strain Sensing by a Bragg Grating in a Planer Waveguide”, The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX. Stockholm, Sweden, June 25-29, 1995
    [75] Ruluca Muller,Paula,Oberja, V.Banu, “silicon-compatible waveguides used for an integrated opto-mechanical pressure sensor”, optical materials 17 (2001) 255-258.
    [76] P.Obreja, R.Muller, E.Manea, “silicon elastomer as protective layer in 3D microfabrication of MOEMS”, sensors and actuators, 74 (1999) 24.
    [77] I.Pavelescu, R.Muller, V.Moagar-Poladian, “analysis and modeling of a silicon micro- Machined M-Z interferometer for pressure sensing”, J. Micromech. Microeng. (1997) 214.
    [78] Applied MEMS INC. an extremely low-noise micromachined accelerometer with custom ASIC, 2002.
    [79] 李淑清,陶知非, “未来地震检波器理论分析”, 物探设备2003,13(3):152~156.
    [80] 朱力 ,“超小型精密三分量地震传感器”, 地质装备,2004,6,13-14。
    [81] Ding guilan, Liu zhenfu, Chen caihe, " All-fiberoptic accelerometer based on compliant cylinders”, Guangxue Xuebao/Acta Optica Sinica, v 22, n 3, March, 2002, p 340-343
    [82] Shindo Yuqo, Yoshikawa Takashi, Mikada Hitoshi, “A Large Scale Seismic Sensing Array on the Seafloor with Fiber Optic Accelerometers”, Proceedings of IEEE Sensors, v 1, n 2, 2002, p 1767-1770.
    [83] Li dong-sheng, Li Hong-nan, Ren liang, “Experiments on an offshore platform model by FBG sensors”, Proceedings of SPIE - The International Society for Optical Engineering, v 5391, Smart Structures and Materials 2004 - Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2004, p 100-106.
    [84] 宁 靖 王文争 刘世海 冯跃军, “光纤布拉格光栅传感器在石油勘探领域应用展望”,物探装备,2004,V14,No.4 p225-228.
    [85] 杜振辉 李志刚 高 华 李淑清 蒋诚志, “光栅多普勒效应新型地震检波器”, 天津大学学报, 2005,Vol.38, No.5, p391-394.
    [86] 宁 靖 吕公河 吴学兵 汪济昌 姚广楷 崔洪亮, “布拉格光栅检波器在地震勘探中的应用前景”, 勘探地球物理进展, Vo1.27,No.6,2004, p440-443.
    [87] A. Llobera, V. Seidemann, J. A. Plaza, V. J. Cadarso, and S. Büttgenbach, “Integrated Polymer Optical Accelerometer”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 6, JUNE 2005. p1262-1264.
    [88] Chen caihe, Zhang Delong, Ding guilan, Cui yuiming, “Broadband Michelson fiber-optic accelerometer”, Applied Optics, v 38, n 4, Feb 1, 1999, p 628-630.
    [89] Wu Bo, Chen caihe, Ding guilan, Zhang Delong, Cui yuming, “Hybrid-integrated Michelson fiber optic accelerometer”, Optical Engineering, v 43, n 2, February, 2004, p 313-318
    [90] 吴波,《硅微光机械加速度地震检波器理论与实验研究》天津大学博士论文,2004。
    [91] 丁桂兰,刘振富,“三分量全光纤加速度地震检波器的设计”, 光电子。激光, 2002,13(1).p 50-52
    [92] Isaak Isaevich Stezinger, “pizeo-optic measuring transducer and accelerometer ,pressure gauge, dynamometer, and thermometer based thereon”, US patent, 3950987.
    [93] W.B.Spillman Jr, “multimode fiber-optic accelerometer based on the photoelastic effect”, applied optics 1982, Vol.21 No.15 p2653-2655.
    [94] Shuichi Tai, Kazuo Kyuma, and Masahiro Nunoshita. “Fiber-optic acceleration sensor based on the photoelastic effect” Applied Optics, 1983,Vol. 22 No.11 :1771-1774
    [95] Wei Su and John A. Gilbert. “General-Purpose photoelastic fiber optic accelerometer” Opt.Eng., 1997,36(1): 22-28.
    [1] 唐东林、陈才和、崔宇明、王金海 三分量光弹波导混合集成加速度传感器, 光子学报,Vol.34, No.7, p1062-1065
    [2] 金篆芷、王明时 主编,《现代传感技术》,电子工业出版社,1995
    [3] 陈纲、廖理几 编著,《晶体物理学基础》, 科学出版社,1992
    [4] W.B.Spillman, multimode fiber-optic accelerometer based on the photoelastic effected, appled optics, 1982,Vol.21,No.15,p2653-2655.
    [5] 袁希光 主编,《传感器技术手册》,国防工业出版社,1986
    [6] 季文美 主编,《机械振动》,科学出版社,1985
    [7] 孙慷 张福学, 《压电学》,国防工业出版社,1984
    [8] 小川智哉 著, 《应用晶体物理学》, 科学出版社,1985
    [9] 李家泽、朱宝亮、魏光辉 编著, 《晶体光学》,北京理工大学出版社,1989
    [1] 西原浩 集成光路 科学出版社,2004
    [2] P.R.Dederson,J.L.Nightingale,B.E.Kincaid,Vrhel,and R.A.Becker, “A high-speed 4x4 Ti:LiNbO3 integrated optic switch at 1.5μm” J.Lightwave Technol.,Vol.8,PP618-622,April 1990.
    [3] K.Kawano,T.Kitoh,O.Mitomi,T.Nozawa, and H.Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optic waveguide at 1.5μm wavelength” IEEE Photonics Technol. Lett, Vol.1, PP.33-34, Feb.1989
    [4] Fischer U, Schuppert B,Petermann K. “Integrated optical switches in silicon based on SiGe-waveguide” IEEE Photon. Technology Lett., 1993,5(7);785-787
    [5] J.L.Jackel,V.Ramaswamy and S.P.Lyman, “elimination of out-diffused surface guiding in titanium-diffused LiNbO3” Appl.Phys.lett., vol.38, No.7, pp.509-511, Apr.1981.
    [6] E.Strake,G.P.Bava, and I.Montrosset: modes of channel waveguides: a novel quasi-analytical technique in comparison with scalar finite-element method, J.Light.Technol.6,(1988):1126-1135
    [7] Hobden M V, Warner J. Phys Lett, 1966, 22(3):243-247
    [8] J.Crank: the mathematics of diffusion. Oxford university press, New York,(1975)
    [9] G.B.Hocker and W.K.Bums “mode dispersion in diffused channel waveguides by the effective index method”,Appl.Opt.16(1977):113-118
    [10] 陈福深 集成电光调制理论与技术 国防工业出版社 1995
    [11] E.A.J.Marcatili, “dielectric rectangular waveguide and directional coupler for integrated optic”, Bell Syst.Tech. J., 48,PP.2071-2102,1969.
    [12] R.M.Knox, and P.P.Toulios, “integrated circuits for the millimeter through optical frequency range”, Proc. M.R.I.Symp. Submillimeter waves, Fox J.,Ed.Brooklyn, N.Y.: Polytechnic Press, pp.497-516,1970
    [13] K.S.Chiang, “review of numerical and approximate methods fort he analysis of general optical dielectric waveguide”, Optical and quantum electronics, 26,pp.s113-s134,1994
    [14] K.S.Chiang, “dual effective index method for the analysis of rectangular dielectric waveguide”, Appl.opt.25,pp.2169-2174, 1986
    [15] J.J.G.M.Van Der Tol, N.H.G.Baken, “correction to effective index method for rectangular dielectric waveguide”, electron.lett.,24,pp.207-208.1988
    [16] K.S.Chiang, “analysis of rectangular dielectric waveguide: effective-index method with built-in perturbation correction”, electron.lett.,28,pp.388-390,1992.
    [17] T.M.Benson, R.J.Bozeat, P.C.Kendall, “rigorous EI method for semiconductor optical rib waveguide”, IEE Proc.J., 139, pp.67-70,1992.
    [18] P.W.A.Mcilroy, “spectral index method: single rib waveguide”, chapter 5 of “rib waveguide theory by the spectral index method”, ed.robson, P.N.Kendall, P.C.John Wiley and Sons Inc.,1990.
    [19] P.C.Kendall, P.Mcilroy, M.S.Sterm, “spectral index method for rid waveguide analysis”, electronics lett.,25,pp.107-108,1989.
    [20] P.Mcilroy, M.S.Stern, P.C.Kendall, “fast and accurate method for calculation of polarized mode in semiconductor rib waveguides”, electronics lett., 25,pp.1586-1587,1989.
    [21] P.Mcilroy, M.S.Stern, P.C.Kendall, “spectral index method for polarized modes in semiconductor rib waveguides”, J.Lightwave Tech.,8,pp.113-117,1990.
    [22] M.S.Stern, “discrete spectral index method for rib waveguide”, chapter 6 of “rib waveguide theory by the spectral index method”, ed.robson,P.N.Kendall,P.C., john Wilry and Sons Inc.,1990.
    [23] Burke S.V., “spectral index method applied to coupled rib waveguide”, electronics lett., 25, pp.605-606,1989.
    [24] S.V.Burke, “spectral index method applied to two nonidentical closely separatedwaveguides”, IEEE Proc., Pt.J.,137, pp.289-292,1990.
    [25] G.M.Berry, S..V.Burke, J.M.Heaton, D.R.Wight, “analysis of mulilayer semiconductor rib waveguide with high refractive index substrates”, electron.lett.,29.pp.1941-1942,1993.
    [26] C.J.Smarrt, T.M.Benson, P.C.Kendall, “free space radiation mode method for the analysis of propagation in optical waveguide devices ”, IEE Proc.J.140, pp.56-61,1993.
    [27] C.J.Smartt, T.M.Benson, P.C.Kendall, “exact analysis of waveguide discontinuities: junctions and laser facets”, electron.lett.,29,pp.1352-1353,1993.
    [28] M.Reed, T.M.Benson, P. Sewell, P.C.Kendall, G.M.Berry, S.V.Dewar, “free face radiation mode analysis of rectangular dielectric waveguide”, optical and quantum electr.,28,pp.1175-1179,1996
    [29] M.Reed, “the free space radiation mode in integrated optic”, PhD thesis, Nottingham university, may 1998.
    [30] P.Sewell, T.M.Benson, M.Reed, P.C.Kendall, “transcendental equation for the vectorial modes of buried optical waveguide”, IEEE Phot.tech lett.,9,pp.70-72,1997.
    [31] M.Reed, P.Sewell,T.M.Benson, P.C.Kendall, M.Noureddine, “computationally efficient analysis of buried rectangular and rib waveguides with applications to semiconductor lasers”, IEEE PROC.-Optoelectron.,144,p14-18,1997.
    [32] 赵策洲 半导体硅基材料及其光波导[M]。 电子工业出版社,1997,225-226.
    [33] 方俊鑫 光波导技术物理基础 上海交通大学出版社,1987,29-38
    [34] 金锋,范俊清 《集成光学》 国防工业出版社,1981
    [35]H.Yajima, “Dielectric thin film optical branching waveguide”, appl. Phys. Lett. Vol.22, pp647(1973)
    [36] J.D.Love, “application of a low-loss criterion to optical waveguides and devices”, IEE proc., vol.136.pt.J.pp.225-228. aug.1989
    [37] H.Sasaki and N.Mikoshiba, “normalized power transmission in single mode optical branching waveguide” electron. Lett.vol.17.pp.136-138,feb.1981
    [38] H.P.Chan, S.Y.Cheng and P.S.Chung, “low loss wide-angle symmetric Y-branch waveguide”, electronics lett.,vol.32 No.7, pp.652-654.
    [39] Z.Weissman, E.Marom and A.Hardy, “very low-loss Y-junction power divider”, optics lett., vol.14, NO.5, pp:293-295.
    [40] W.Y.Hung, “novel of wide-angle single-mode symmetric Y-junctions”, electronics lett., vol 24 No.18 pp.1184-1185.
    [41] Han-bin lin, “wide-angle low-loss single-mode symmetric Y-junctions”, IEEE photonics tech. lett., vol.6, no.7, pp:825-827.
    [42] amu Hanaizumi, Mitsunobu miyagi, Shojiro Kawakami, “Wide Y-junctions with low losses in three-dimensional dielectric optical waveguides”, IEEE Journal of Quantum Electronics. 1985, QE-21(2):168-173
    [43]amid Hatami-Hanza, Max J.Lederer, Pak L.Chu, et al, “ A novel wide-Anglelow-loss Dielectric slab waveguide Y-branch”, Journal of Lightwave Technology. 1994, 12(2): 209-215
    [44] Tetsuro Yabu, “new design for low-loss Y-branch waveguide”, Journal of Lightwave Technology Vol.19, no.9, pp:1376-1384.
    [45] Minford, W.J., Korotky, S.K., and Alferness,R.C, “low-loss Ti:LiNbO3 waveguide bends at λ-1.3μm”, IEEE J.Quantum electron. 1982,QE-18, pp.1802-1806.
    [46] G.A.Bogert, “low-loss Y-branch power dividers”, electronics lett., vol 25 No.25 pp.1712-1714.
    [47] Qian Wang, “optimal design of a low-loss broadband Y branch with a multimode waveguide section”, applied optics, vol.41, no.36,pp.7644-7649.
    [48] 孟庆超,FOG 用退火质子交换 LiNbO3 Y 分支波导传输特性的研究,长春理工大学硕士论文
    [49] E.A.J.Marcatili, and S.E.Miller, “improved relations describing directional control in electromagnetic wave guidance”, Bell Syst. Tech.J., 1969, Vol.48(9), pp:2161-2188
    [50] M.D.Fiet, J.A.Fleck, Jr., “computation of mode eigenfunctions in graded-index optical fibers by the beam propagation method” appl.optics, 19, pp.2240-2246
    [51] H.A.Haus, “waves and fields in optoelectronics”, Englewood cliffs, NJ:prentice Hall,pp.99-103,1984.
    [52] J.Saijonmann, D.Yevick, “beam propagation analysis of loss in bent optical waveguides and fibers”, J.OSA, 1983,pp.1785-1791
    [53] T.B.Koch, J.B.Davies, D.Wickramasinghe, “finite element finite difference propagation algorithm for integrated optical device”, electronics lett., 25, pp.514-516, 1989.
    [54] M.N.O.Sadiku, “numerical techniques in electromagnetics”, CRC press inc., 1992
    [55] J.B.Davies, C.A.Muliwyk, “numerical solution of uniform hollow waveguides with boundaries of arbitrary shape”, proc.IEEE, 113,pp.277, 1996.
    [56] M.S.Stern, “semivectorial polarized finite difference method for optical waveguide with arbitrary index profiles”, IEE proc., 135,pt.j., pp.56-63, 1988.
    [57] M.S.Stern, “semivectorial polarized H field solution for dielectric waveguide with arbitrary index profiles” IEE proc., 135,pt.j., pp.333-338, 1988.
    [58] K.Bierwirth, N.Schulz, F.Arndt, “finite difference analysis of rectangular dielectric waveguide structures”, IEEE Trans. Microwave Theory Tech., 34, pp.1104-1114, 1986.
    [59] C.M.Kim, R.V.Ramaswamy, “modeling of graded-index channel waveguide using nonuniform finite difference method”, Journal of lightwave Tech., 7, pp.1581-1589, 1989.
    [60] W.Heinrich, K.Beilenhoff, P.Mezzanotte, L.Roselli, “optimum mesh grading for finite difference method”, IEEE Trans. Microwave theory tech., 44, pp.1569-1574,1996.
    [61] Youngchui Chung, Nadir Dagli, “an assessment of finite difference beam propagation method”, IEEE J.Quqntum electron., 1990,vol QE-26(8), pp.1335-1339.
    [62] S.T.Hendow, S.A.Shakir, “recursive numerical solution for nonlinear wave propagation in fibers and cylindrically symmetric systems”, appl.optics, 25, pp.1759-1764,1986.
    [63] “BPM technical background and tutorials”, Optiwave corporation 2003
    [64] J.Berenger, “a perfectly matched layer for the absorption of electromagnetic wave”, J.Comput. phys.,vol.114,pp:185-200(1994).
    [65] O.M.Ramahi, “complementary boundary operators for wave propagation problems” J.Comput.phys.,vol.133,pp:113-128, 1997.
    [66] G.R.Hadley “transparent boundary condition for beam propagation”, opt.lett. Vol.16(9),pp:624-626,1991
    [1] 蒋欣荣编著,微细加工技术,北京:电子工业出版社 1990.6, 102-320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700