基于MEMS的地震检波器研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于地震勘探提出高分辨率、高保真度等要求,多年来国内外许多技术公司和研究机构一直在探索和寻找新的地震信号检测技术的设备,并进行了许多试验,推出了一些利用如压电陶瓷、涡流、激光等原理的试验产品,但在上述的关键技术性能上始终没有重大突破。
     基于MEMS加速度传感器的地震检波器在频带、动态范围和轴向抗干扰性等性能指标上优于传统动圈式检波器。针对高分辨率、高保真、高精度地震勘探这一应用需求,需要进一步提高MEMS加速度传感器的性能。因此,本论文选择了MEMS电容加速度型传感器。
     本论文工作安排如下:
     首先,介绍了MEMS传感器和地震检波器的国内外研究现状和发展前景,提出了本课题的研究内容和研究意义;
     其次,简要说明了地震检波器的分类方式,主要介绍了常规检波器、超级检波器、数字检波器的结构和性能特点以及地震检波器的选用原则;
     然后,系统设计,其内容主要有:MEMS加速度计的工作原理和结构模型,推导出加速度计的输入与输出之间的比例关系,单片机的种类和选用原则,本论文所选择的主要器件及其技术参数和特点。之后详细设计了系统的电路原理图,对三路AD采样与单片机之间的通信,利用了CPLD芯片EPM7032S,扩展I/O口,通过对EPM7032S对其编程以达到8分频器的作用,对三路AD进行片选。另外,利用MAX485转换芯片进行单片机和PC机串口通信的电平转换。设计出了三路AD、EPM7032S和单片机三者的原理图、单片机和外部RAM的原理图,并给出了定时器中断框图、AD中断框图、和串口发送接收框图,并对检波器的动态范围进行了详细分析。
     最后,进行全文总结和展望,指出了下一步的工作。
As the proposed high-resolution seismic exploration, high-fidelity, etc. over the years many domestic and foreign technology companies and research institutions have been exploring and finding new seismic signal detection devices, and conducted many tests, such as the introduction of some use pressure ceramics, eddy current, laser and other principles of test products, but the key technology in the performance never a major breakthrough.
     Acceleration Sensor Based on MEMS geophones in the band, dynamic range and axial interference and other performance indicators is better than the traditional moving coil detector. For high-resolution, high fidelity, high-precision, seismic exploration of this application, it needs to further improve the performance of MEMS acceleration sensor. Therefore, this paper selects the MEMS capacitive acceleration sensor.
     This paper is as follows:
     First, the preface introduces the MEMS sensor research status and development prospects, and brings forward the research content and the meaning of this issue.
     Second, a brief description of the classification of seismic detectors, mainly introduces regular, super, digital geophone characteristics of the structure and properties of the selection principle of the earthquake detector;
     Then, System design, its contents are mainly:the working principle of MEMS accelerometer and the structural model, deriving accelerometer the ratio between input and output relationship, the types and selection of SCM principles, the main selected devices of this paper and their technical parameters and characteristics. After the detailed design of the system circuit,diagrams three-way AD sampling and communication between the microcontroller, using EPM7032S of CPLD chip expands I/O ports, through EPM7032S its programming to meet the 8-crossover effect on AD to film three-way election. In addition, the use of microcontroller and MAX485 converter chip serial communication PC-level translation. It designs a three-way AD, EPM7032S and three schematic microcontroller, microprocessor and an external RAM in the schematic diagram, block diagram is given for timer interrupt, AD interrupt block diagram, and the serial port receiver block diagram. And the dynamic range of detector is analyzed in detail.
     Finally, summary and outlook for the full text. Proposes the next step
引文
[1]H..J Luinge, P.H.Veltink, C.T.M.Baten. Estimation of orientation with gyroscope and accelerometer. IEEE Proceedings of the first joint BMES/EMBS conference serving humanity 1999:844
    [2]李栓庆.下世纪微电子机械系统的发展.半导体情报.2003,34(2):11-12
    [3]刘危,解旭辉,李圣怡.微机械惯性传感器的技术现状及展望.光学精密工程.2003,11(5):425~431
    [4]Per Ohlckers, Raider Holm, Henrik Jakobsen.An Integrated Resonant Accelerometer Microsystems for Automotive Applications. Sensors and Actuators.1998, A66:99-104
    [5]G.A. Macdonald. A Review of Low Cast Accelerometers For Vehicle Dynamics. Sensor and Actuators,1990, A21-23:303-307
    [6]J.C.Greenwood. Silicon in mechanical Sensors.J.Phys.E.1988,21:1114-1128
    [7]Maxwell P W, Burch D N, Crises C J.Principles behind vector acquisition. Expanded Abstracts of 74th Annual Internet SEG Mtg,2004,1-4
    [8]王辉明,宋志明,马国庆MEMS加速度传感器开发及在地球物理勘探中的应用.勘探地球物理进展.2005,6(5):223
    [9]刘光林,刘泰生,高中录等.地震检波器的发展方向.勘探地球物理进展,2003,26(3):178-185
    [10]宁靖,吕公河,吴学兵,等.布拉格光栅检波器在地震勘探中的应用前景.勘探地球物理进展,2004,27(6):440~443
    [11]贾志新,李勤学,金抒辛.新型正交型三分量检波器的研制及现场试验.长春科技大学学报,2001,31(4):412~414
    [12]刘凯,韩光平.微电子机械系统力学性能及尺寸效应.北京:机械工业出版社,2009.1-5
    [13]徐泰然.MEMS和微系统—设计与制造.王晓浩,冯焱颖,熊继军,等译.北京:机械工业出版社,2004.1-32
    [14]韩晓泉,穆群英,易碧金.地震勘探仪器-现状与未来.技术创新,2008,(5):36
    [15]韩晓泉,穆群英,易碧金.地震勘探仪器的现状及发展趋势.物探装备,2008,18(1)5- 6
    [16]付清锋,周明.地震检波器的进展.石油仪器,2000,14(2):25~27
    [17]李淑清,陶知非.未来地震检波器理论分析.物探装备,2003,13(3):151~155
    [18]罗兰兵.陆地地震检波器应用研究:[硕士论文].长春:吉林大学地球探测与信息技术,2005年
    [19]周兆英,王中林,林立伟.微系统和纳米技术.北京:科学出版社,2007.271-276
    [20]付清锋.地震检波器新技术发展方向.石油仪器,2005,19(6):2-4
    [21]罗福龙,易碧金,罗兰兵.地震检波器技术及应用.物探装备.2005,15(1):10-12
    [22]吴敏,李明春,陈涵实,巩庆钢,韩文刚.谈检波器测试仪的校准和使用.物探装备.2004,14(3):159~160
    [23]付小宁,石金成,冯旭东,严正国.超级地震检波器测试仪理论初探.石油仪器.1999,13(2):19
    [24]薛立武,马延芒,黄峰,程博.浅谈稀土磁体地震检波器的发展.石油仪器.2000,14(6):9-10
    [25]汉泽西,李彪,邵媛,郭正虹.地震检波器发展初探.石油仪器.2006,20(6):3
    [26]王喜双,董世泰,王梅生.全数字地震勘探技术应用效果及展望.中国石油勘探.2007,(6):32~36
    [27]徐小云,颜国正,丁国清.微电子机械系统(MEMS)及其应用的研究.测控技术,2002,21(8):1-5
    [28]董世学.地震检波器的性能与精确地震勘探.石油物探.2000,39(2):125
    [29]林玉池,曾周末。现代传感技术与系统.北京:机械工业出版社,2009.335~338
    [30]刘晓明,朱钟淦.微机电系统设计与制造.北京:国防工业出版社,2006.8-11、323-335
    [31]孔令纲MEMS传感器原理与结构简析.国外油田工程.2005,21(10):36
    [32]肯·吉列奥MEMS/MOEMS封装技术-概念、设计、材料及工艺.中国电子学会电子封装专委会,中国封装技术丛书编辑委员会组织译.北京:化学工业出版社,2008.39-40
    [33]高钟毓,赵长德,张嵘,董景新.微机械加速度计的研究.清华大学自然学报.1998,38(11):4~8
    [34]张莉,解文荣,李秀荣.基于微电子系统(MEMS)加速度地震勘探三分量数字检波器简介.中国煤田地质.2006,18(2):57-58
    [35]达新宇,陈树新,王瑜,林家薇.通信原理教程.北京:邮电大学出版社,2005.188-189
    [36]戴佳,戴卫恒,刘博文.51单片机C语言应用程序设计实例精讲.北京:电子工业出版社,2008.130-133
    [37]吴汉清.从实例看怎样选用单片机.无线电.54~55
    [38]刘晓明,王录涛.MEMS加速度传感器的引信数据采集系统设计.电子科技大学学报.2008,37(2):310~312
    [39]王东霞,夏庆观.基于DSP技术的微震实时监测系统.微型机与应用.2005,(3)14~17
    [40]石坤,魏锋涛.一种基于P89C51RB2的振动主动控制系统.机电工程技术.2008,37(1):61-63
    [41]王冠雅.李淑清.基于FPGA的光栅地震检波器信号处理研究.自动化与仪表.2008,(4):17~19
    [42]严志刚.三分量全光纤加速度地震检波器数字信号处理系统的研制:[硕士论文].天津:天津大学光学工程,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700