基于时频谱特征的薄互层分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何用地震勘探更真实、更细致地刻画地下地质构造,寻找地下油气储层,一直是我们地球物理工作者坚持奋斗的目标。目前对薄层或薄互层储层研究成为热点,本文分析了几种提高地震勘探分辨率的方法,并应用于实际地震资料。
     首先从理论上分析了薄互地层的反射系数在时域和频域的特征,设计了几个反射系数序列模型,对其进行傅立叶变换得到其频谱。在反射系数个数比较少时,其频域特征是十分明显的,该振幅谱为一多极值的周期谱,可以通过陷频法求出其准确的时间厚度。研究表明:薄层反射波的振幅强弱由物性差异决定,振幅谱的形态、峰值频率与反射系数极性有关;反射波的频谱是由入射子波的频谱和反射系数序列频谱的乘积所决定。在反射系数序列个数比较多,组合比较复杂时,其频谱形态变化较大。
     时频分析法是非平稳信号分析的有效方法,在低频时获得较高的频率分辨率,在高频时获得较高的时间分辨率,将一维时间信号变换为二维时频谱。本文选取广义S变换作为时频分析工具,是因为其良好的时窗分辨能力和适应能力,其时窗的长度和大小都可以调节,对应于不同地震信号,只要改变时窗调节因子,即可获得其理想的时频谱,因此二维时频域滤波比常规的频率域滤波更具灵活性。在地震剖面上,由于地震信号的频率一般较低,所以通过时频分解后,我们可以提取较高单频剖面,薄层可以更较清晰地显示出来,复杂构造也可以刻画得更为精细。
     谱分解技术因为其准确的薄层厚度求取能力已被广泛使用,本文参考Ethan J. Nowak等(2008)提出的,从AVO响应谱中得包含纵、横波信息的截距项和梯度项地震记录,联合进行互谱分解。从楔形模型上看,其互能量谱剖面的周期个数明显增多,频率峰值、频率零点更加接近于楔形反射系数模型的频谱,这样就更加有利于反演其薄层的时间厚度。由于其包含了纵波和横波的信息,所以其对薄层的时间分辨率大大提高了,比以往仅仅靠纵波谱分解(自谱分解)的分辨率提高整整一倍。
     本文结合对薄互层反射系数的研究和广义S变换时频分析,对地震剖面进行高分辨重建。首先对地震剖面作频谱分析;其次对地震剖面作广义S变换,提取适合的单频剖面;然后对单频作频率补偿,即在时间域作两次微分(相当于在频率域乘以(i w )2),这样可以同时保留低频信息和突出高频的分辨率;最后对频谱作傅立叶逆变换,即得到高分辨重建后的剖面。通过人工模型和实际地震资料的检验,该方法在薄互层高分辨处理中得到较好效果。
     本文对薄层、薄互层反射模型的时、频特征作了深入研究,计算薄层模型厚度对,分析其时频谱特征,提高其地震分辨率取得较好效果。然单一方法存在其自身缺陷,只有结合多种方法优点,才能更好地提高地震薄互层的分辨率。
How to describe the subsurface geologic structure much more truly and meticulous by seismic exploration and look for underground reservoir is the insistent struggling goal of geophysicist. Now it is a hotspot to research thin-layer or thin interbed. We has analyzed several methods of improving the resolution of seismic exploration and apply them to seismic data.
     Firstly, we has analyzed the characteristics in time domain and frequency domain of the reflection coefficient of thin-layer in theory, and designed some reflection coefficient models, then obtained frequency spectrum by doing FT to these models. When there are few reflection coefficients, the characteristics of frequency are very clear. Its amplitude spectrum is a period spectrum with multi-extreme value and we can estimate the thickness accurately by notches-in-thin-bed. This study has proved that the amplitude of thin-layer reflection wave is determined by the difference of their properties. The form of amplitude spectrum and frequency-extreme relate with the polarity of reflection coefficient. The frequency spectrum of reflection wave is determined by product of frequency spectrum of incident wave and reflection coefficient. When the more reflection coefficients and the more complex combination, the larger change about frequency spectrum form.
     Time-Frequency analysis is a very effective way to analyze non-stationary signal, it can obtain high frequency resolution in low-frequency and high time resolution in high-frequency. It can transform one-dimension time signal to two-dimension time-frequency spectrum. This paper has selected Generalized S Transform (GST) as time-frequency analysis tool, for it has higher resolution and better adaptability time window, and its length and size can adjust. For the different seismic data, we can obtain their time-frequency spectrum only through changing the parameters of time window. So the two-dimension time-frequency domain filter is much more flexible than normal frequency domain filter. In seismic cross-section because the frequency of seismic data is lower, after we do time-frequency decomposition for them, we can extract higher single-frequency section, the thin-layer can display more clearly and the complex structure can depict more fine.
     Spectral-decomposition technique was used widely for its capability of accurate thin-layer thickness estimate. This paper has referenced the theory which Ethan. J. Nowak etc. (2008) put forward and combined the P and G section which contain s-wave and p-wave information from the spectral response of AVO to carry on cross-spectral decomposition. For the wedge model, the number of periods of cross-spectral has increased obviously, its frequency-extrema and frequency-notch are more close to the frequency spectrum of reflection coefficient, which becomes more helpful to inversion the thickness of thin-layer. The time resolution of thin-layer has been improved largely for the cross-spectral contained the information of p-wave and s-wave and it was nearly double times than auto-spectral decomposition’s resolution. When we process cross-spectral decomposition using real seismic data, it is the first step to inversion the P-section and G-section from the AVO.
     This article has combined the study of thin-layer reflection coefficient with GST time-frequency analysis, reconstructed the high resolution seismic cross-section. At first, analyze the frequency spectrum of the seismic cross-section; secondly, do GST to this seismic data and choose suitable single-frequency sections; thirdly, compensate frequency to these single-frequency sections, that is, derivate these sections in time domain(equal to multiply (i w )2), in this way, it can keep the continuity of low-frequency and highlight the resolution of high-frequency; The last, do inverse Fourier transform to these frequency spectrum and then we can obtain the high resolution reconstruction section. The effect of this method in high resolution processing is clear after tested by artificial model and real seismic data.
     This paper has studied thin-layer and thin interbed. We get some good effect on improving the resolution of seismic and estimating the thickness of thin-layer. However, single method is not more real and suitable for processing seismic data, only by combining these advantages of several methods, can we reconstruct high resolution seismic cross-section and get satisfactory result.
引文
[1]贺振华.反射地震资料偏移处理与反演方法[M].重庆:重庆大学出版社,1989.
    [2]陈学华,贺振华,黄德济.广义S变换及其时频滤波[J].信号处理,2008,2:28-31.
    [3]陈学华,贺振华,黄德济.时频域高分辨地震层序识别[J].吉林大学学报,2008,1:152-155
    [4]陈学华,贺振华,黄德济.基于广义S变换的信号提取于抑噪[J].成都理工大学学报, 2006,8:331-335.
    [5]熊晓军,贺振华,黄德济.广义S变换在地震高分辨处理中的应用[J].勘探地球物理进展, 2006,12:415-418.
    [6]陈学华,贺振华.改进的S变换及在地震信号处理中的应用[J].数据采集与处理,2005,12(20):449-453.
    [7]贺锡雷,黄德济,贺振华.薄互层反射系数序列时、频特征研究[J].2009,4
    [8]汪恩华,贺振华,李庆忠.基于薄层的反射系数谱理论与模型正演[J].成都理工学院学报, 2001,1
    [9]邹文,陈爱萍,贺振华.基于S变换的地震相分析技术[J].石油物探,2006,1:48-51
    [10]邵治龙.薄储层模型特征及反演研究[D].博士学位论文成都理工大学1998
    [11]高静怀,陈文超,李幼铭,田芳.广义S变换与薄互层地震响应分析[J].地球物理学报,2003,7:526-532.
    [12]高静怀,汪文秉,朱光明,彭玉华,王玉贵.地震资料处理中小波函数的选取研究[J].地球物理学报,1996(39):392-400
    [13]黄绪德.薄层陷频法[J].勘探地球物理进展,2002,10:1-6
    [14]蔡希玲,闫忠,崔全章,吴清龙.砂泥岩薄互层分辨率的理论分析[J].石油物探,2004,5:229-233
    [15]周志才,何樵登,金抒辛,李崇灿.运用自相关谱计算薄互层砂岩厚度[J].吉林大学学报(地球科学版),2003,1:96-100
    [16]田景文,高美娟.基于改进的模拟退火人工神经网络的薄互储层参数预测[J].信息与控制, 2002,4:180-188
    [17]赵淑红,王璇.S变换时频滤波与其他滤波方法的比较.西北地震学报,2007,9:224-229
    [18]张玉芬,熊维纲.石油地震勘探中薄互层的反射系数序列振幅谱特征分析[J].地球科学—地质大学学报,1994,9:685-693
    [19]张玉芬,熊维纲.一种提高薄互层储集层分辨率的新方法[J].河北地质学院学报,1995,1:38-45
    [20]张玉芬.薄互层地震反射特征研究[M].武汉:中国地质大学出版社,2002.
    [21]胡学红,李长文,余春昊.用声波全波列评价薄互储集层[J].江汉石油学院学报,1999,12:85-87
    [22]张军华,陆文志,王月英.薄层地球物理特征再认识[J].石油物探,2004,11:541-546
    [23]云美厚,丁伟.地震子波频率浅析[J].石油物探,2005,11:578-581
    [24]陈雨红,杨长春,曹齐放.几种时频分析方法比较[J].地球物理学进展,2006,12:1180-1185
    [25]张宏.地震谱分解算法对比及不确定性分析[J].天然气工业,2007,9,增刊A:328-332
    [26]高君,云美厚,王晓红.针对薄互层储集特点的地震属性优化技术及应用效果[J].大庆石油地质与开发,2006,6:91-93
    [27]杨思通,孙建孟,李玉泉,张振城.沃尔什函数薄层评价技术在乌南油田的应用[J].石油物探,005,3:150-153
    [28]彭真明,梁国胜,王纬,樊振现.砂、泥岩互层透镜体模型正演及分析[J].物探化探计算技术,2001,5:101-104
    [29]易宗富.地震资料的保幅宽频高分辨率处理[J].油气地球物理,2006,7:13-18
    [30]刘丽薇,郝兴国,赵伟.多属性分析技术在薄互层条件下识别古河道的应用[J].大庆石油学院学报,2006,8:4-6
    [31]王洪艳,夏连军,等.复杂地区薄互层属性应用技术研究[J].石油物探,2004,4:51-52
    [32]蔡瑞.谱分解技术在储层预测中的应用[J].CT理论与应用研究,2003,5:22-25
    [33]赵伟,陈小宏,李景叶.薄互层调谐效应对AVO的影响[J].石油物探.2006,11:570-573
    [34]张海燕,李庆忠.几种常用解析子波的特征分析[J].石油地球物理勘探.2007,12:651-657
    [35]胡水清,韩大匡,刘文岭.应用谱分解技术预测河道砂体[J].新疆石油地质.2008,6:370-372
    [36]俞寿朋.高分辨率地震勘探[M],北京:石油工业出版社,1993.
    [37]张忠伟,马劲风,等译.频谱分解在油藏描述中的解释性应用[J].国外油气勘探.2000,1,94-101
    [38]赵波,俞寿朋,聂勋碧,等.谱模拟反褶积方法及其应用[J].石油地球物理勘探探.1996,31(1):101-116
    [39]陈必远,马在田.优势频率约束下的递推f-x去噪和谱均衡方法[J].石油地球物理勘探.1997,4:575-582
    [40]唐建人,李勤学.高分辨率地震勘探理论于实践[M].北京:石油工业出版社,2001.
    [41] Norman.S, Neidell,等(著),牛毓荃(译).褶积模型[M].北京:石油工业出版社,1986.
    [42]张亚志.薄互层储层地震反射特征识别方法研究[D].硕士学位论文.大庆:大庆石油学院,2003.
    [43]邱睿.用砂泥岩互层模型检验地震垂向分辨率[D].硕士学位论文.青岛:中国海洋大学,2004.
    [44]徐庆丽.地震层序界面检测中的高分辨率时频分析方法研究[D].硕士学位论文.吉林:吉林大学, 2006.
    [45]蒋龙聪.薄互层储层地震响应时频分析研究[D].硕士学位论文.武汉:中国地质大学,2008.
    [46]曹令敏.砂、泥、煤薄互层反演技术应用研究[D].硕士学位论文.北京:中国地质大学,2008.
    [47] Lien Bian,Zhenhua He and Deji Huang.Hydrocarbon reservoir identification technology and its application based on low frequency shadow.CPS/SEG Beijing 2009 International Geophysical Conference & Exposition,2009 5
    [48] Widess M.B.How thin is a thin bed.Geophysics,1973. 38 . 1176-1180
    [49] Brown.A.Interpretation of three-dimensional seismic data:AAPG. 1991
    [50] Stockwell.R.G, L.Mansinha, Lowe.R.P.Localization of the complex spectum::The S transform:IEEE Transacations on Signal Processing.1996,44: 998-1001
    [51] S Mallat, A wavelet tour of signal processing. New York:Academic Press 1998
    [52] Partyka.G,J.Gridley and J.Lopez.Interpretational application of spetral decomposition in reservoir characterization.The Leading Edge 1999,18:353-360
    [53] Partyka.G.Spectral decomposition :SEG Distinguished Leeture. 2005 http://ce.seg.org/dl/spring2005/partykaabstract.shtml
    [54] Ethan J. Nowak,Herbert W. Swan,Dave Lane.Quantitative thickness estimates from the spectral of AVO measurements Geophysics.2008. No.1
    [55] Charies I. Puryear, John P. Castagna, Layer-thickness determination and atratigraphic intertation using spectral inversion:Theory and application.Geophysics,2008. No. 2
    [56] Puryear C. I.Modeling and application of spectral inversion for determination of layer properties.M.S. thesis.University of Houston,2006
    [57] Puryear C. I and J.P.Castagna.Analgorithm for calculation of bed thickness and reflection coefficients from amplitude spectrum:76th Annual International Meeting. SEG. Expanded Abstrcts,2006:1767-1770.
    [58] Portniaguine.O and J.P.Castagna.Inverse spectral decomposition:74th Annual International Meeting. SEG. Expanded Abstracts,2004:1786-1789.
    [59] Theophanis.S, Queen.J.Color display of the localized spectrum[J].Geophysics,2000,65(4): 1330-13400
    [60] Shuey.R .T.A simplification of the Zoeppritz equations.Geophysics,1985,50:609-614
    [61] Grossmann.A, Martinent.R.K, Morlet.J.Reading ang understanding continuous wavelet Transform. In Wavelets.Time-frequency Method and Phase Space. 1st Int.Wavelets Conf. Marseille,1989,2-20
    [62] Tirado.S.Sand thickness estimation using spectral decomposition.M.S. thesis.University of Oklahoma,2004
    [63] Pinnegar.C.R, Mansinha.L.The S-transform with windows of arbitrary and varying shape[J]. Geophysics,2003,68(1):381-385
    [64] Pinnegar.C.R, Eaton.D.W.Application of the Stransform to prestack noise attenuation filtering[J].Journal of Geophysical Research,2003,108(B9):1-10
    [65] Castagna.J.P, Sun S, Siegfried R.W . Instantaneous spectral analysis: Detection of low-frequency shadow s associated with hydrocarbons[J].The Leading Edge,2003,22(2): 120-127
    [66] Fu lei, Wang Jianmin, Cui Fenglin.3D AVO Analysis for Identifying Thin Continental Sandstone Interbeds and Deep Volcanic Rocks.Allpied Geophysics,2005,No.1:41-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700