MOEMS三分量加速度地震检波装置中的多变量系统解耦研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高石油、天然气的产量,矿产勘探技术正朝着多波多分量的三维精细地震勘探发展,这样可以寻找到储藏在浅层、薄层的油矿气藏。检波器作为地震勘探中地震反射波信号的拾取单元,必须满足三分量地震勘探对其频带、分量间串扰、灵敏度、野外施工适应性等各项性能的要求。
     本文是国家自然科学基金资助项目“MOEMS三分量加速度地震检波装置新技术研究”的子课题。对检波器单个分量检测单元的工作原理、结构设计及关键部件的特性进行了介绍。分析了三分量加速度地震检波装置在工作过程中,三维振子检测到的信号的动态特性往往表现出非线性、时变性、多变量强耦合等特点。本文在前人研究成果的基础上,设计了一种多变量系统模糊神经网络解耦的控制方法。该方法结合了模糊自适应整定PID控制算法和神经网络解耦算法,用于三分量加速度地震检波装置的三维振子系统的耦合问题中,并对解耦设计方案进行了仿真研究,结果表明该方法稳定,可靠,对整个三分量加速度地震检波装置的研制给予了一定的帮助。
In order to improve the production of oil, natural gas, the development of mineral exploration technology is heading for 3D high-precision multi-component seismic exploration, looking for the minerals product stored in shallow, thin layer. Geophone as the reflection wave receiver in seismic exploration, it must satisfy 3C3D seismic exploration’s various property requirements such as frequency band, crosstalk, sensitivity and adaptability in field operation.
     This paper is based on“MOEMS three-component acceleration seismic geophone”which funding by the national natural science funds projects. It introduced the working principle of single component detection unit, structure design and key components’characteristics. We found the dynamic behavior of detected signals has nonlinear, time-variation, multi-variable and strong-coupled. And research for the 3D oscillators’coupled problem in three three-component acceleration seismic geophone. Aimed at this problem, on the basis of realized research we proposed a method used a multivariable fuzzy-neural net work decoupling controller, designed and simulated the corresponding decoupling scheme. The results show that this method is stable and reliable, giving some help to the development of three-component acceleration seismic geophone.
引文
[1] Mario A. Gutierrez. 3-Dseismic interpretation of tectonic wrenching and faulting in La-cira-infantas[J].石油物探译丛, 2000(5): 2-15.
    [2] Victor H.三维勘探在阿曼的Natih油田开采应用[J].石油物探译丛,2001(6):10-15.
    [3] Winterstein D.F. and Meadows, M, A, shear-wave polarization and subsurface stress direction at lost hill field [J]. Geophysics, 1999, 56: 1337-1348.
    [4] Robert. E. Smyder, 3-Dseismic:proven applications,data management options [J].World oil, 1996(9).
    [5]冯太林.勘探定向直立裂缝系的地面地震技术[J].石油物探译丛, 1995(3):55-60.
    [6]唐建候,唐晓雪.地震波的偏振分析与应用[J].石油地球物理勘探, 1996,31(A02):67-73.
    [7]孙大明,邵维.高分辨率三维地震采集技术研究[J].吉林大学学报(地球科学版), 2002,32(4):394-395
    [8]蒋连斌,唐建,李勤学.高分辨率三维开发地震采集技术在太190区块的应用[J].石油地球物理勘探, 2002,35(4): 433-442.
    [9]赵殿栋,吕公河.高精度三维地震采集技术及应用效果[J].石油物探, 2001,40(1):l-8.
    [10] P.C. Wuenschel Removal of the detector-ground coupling in the vertical seismic profiling environment [J]. Geophysics, 1988,53(3):359-364.
    [11] Andrew Pap, criteria for selection of geophone parameters, hookups, phone spacing, and low-cut instrument filters, Amoco Canada petroleum Co.Ltd.
    [12]付清峰,周明.地震检波器的进展[J].石油仪器, 2005,14(2):25-27.
    [13]李忠.高分辨率地震勘探技术[M],中国大地出版社,1997.
    [14]付清峰,周明. SN7系列超级检波器[J].传感器世界, 2002(2): 35-38.
    [15]罗福龙,易碧金,罗兰兵.地震检波器技术及应用[J].物探装备,2005,15(1): 6-14.
    [16]刘光林,刘泰生,高中录,李刚,姚光凯.地震检波器的发展方向[J].勘探地球物理进展,2003,26(1): 178-185.
    [17]谭绍泉,余钦范等.新型陆用压电检波器在滩浅海地区地震勘探中的应用及效果[J].石油物探,2004,43(1): 106-110.
    [18]吴树奎,周明非等.数字检波器三分量地震勘探技术的应用[J].石油物探,2004,1(34):602-604.
    [19]刘绘清,付清锋.用于地震勘探的三分量检波器[J].传感器世界,2003(9):17-19.
    [20] A. Liobera, J.A. Plaza, I. Salinas. Technological aspects on the fabrication of silicon-based optical accelerometer with ARROW structures [J]. Sensors and Actuators. 2004(110):395-400.
    [21] A. Liobera, J. A. Plaza, I. Salinas. ARROW-Based optical accelerometer[J]. Sensors,2002(13): 1075.
    [22] Maenaka K, Suqimoto H. Fully digital controlled inertial sensing system for MEMS devices [J]. Pacific Rim Workshop on Transducers and Micro/Nano Technologies,2002:549-52.
    [23]泽田廉士,羽根一博,日暮荣治.微光机电系统[M].科学出版社,2005.
    [24] Ding guilan, Liu zhenfu, Chen caihe. All fiber optic accelerometer based on compliant cylinders [J]. Guangxue Xuebao. 2002,22(3):340-343.
    [25] Shindo Yuqo, Yoshikawa Takashi, Mikada Hitoshi. A Large Scale Seismic Sensing Array on the Seafloor with fiber Optic Accelerometers [J]. Proceedings of IEEE Sensors, 2002,1(2): 1767-1770.
    [26] Li Dong-sheng, Li Hong-nan, Ren liang. Experiments on an offshore platform model by FBG sensors[C]. Proceedings of SPIE-The International Society for Optical Engineering, 2004, (v5391):100-106.
    [27]李淑清,陶知非.未来地震检波器理论分析[J].物探设备, 2003,13(3):152-156.
    [28]朱力.超小型精密三分量地震传感器[J].地质装备,2004(6):13-14.
    [29]宁靖,王文争,刘世海,冯跃军.光纤布拉格光栅传感器在石油勘探领域应用展望[J].物探装备.2004,14(4):225-228.
    [30]杜振辉,李志刚,高华,李淑清,蒋诚志.光栅多普勒效应新型地震检波器[J],天津大学学报, 2005,38(1):391-394.
    [31]陈非凡,殷玲,李云龙.微光机电系统(MOMEMS)的研究现状及展望[J].微细加工技术2002(3):19-22.
    [32]何仁汉.三分量地震检波器综述[J].地学仪器,1995(2):l-5.
    [33]金抒辛,董世学. OMNIPHONE检波器与OYO三分量检波器性能对比与试验资料分析[J]长春科技大学学报, 1999,29(1):387-389.
    [34]石英,韩瑞民译.井中随钻地震波三分量测量及使用三分量VSP法解释地下构造-日本石油公司柏崎试验区实例研究[J].国外油气勘探, 1999,1(6):737-747.
    [35]冯太林,张学工,李衍达.三分量地震资料野外采集应遵守的重要原则[J].物探与化探,2001,25(1):70-74.
    [36]师先进,何仁汉,徐仲达.三分量地震检波器的转换公式及误差分析[J].上海地质,1992(3):35-40.
    [37]刘绘清,付清锋.用于地震勘探的三分量检波器[J].传感器世界,2003(9).
    [38]何仁汉,唐宗璜等. OMNiphone检波器性能分析及问题探讨[J].石油地球物理勘探,1995(12):171-176.
    [39]恩德,陈才和,崔宇明等.高精度硅微简谐振子的设计与制作工艺[J].纳米技术与精密工程.2007,5(2):23-25
    [40]恩德,陈才和,崔宇明等.集成光学Michelson干涉型加速度地震检波器[J].中国激光,2007, 32(3):32-33.
    [41]恩德,陈才和,李岷等.混合集成光学加速度计的信号处理和总体灵敏度[J].光子学报,2004,33(12):14-16.
    [42]恩德,徐可欣,陈才和等.集成光学非球面消球差双凸波导透镜的研制[J].光电工程2008,35(10):98-101.
    [43]王庆利,王丹等.基于模糊解耦的火电单元机组负荷控制[J].控制与决策,2006,21(4):435-439.
    [44] Wang Linxin. Generating Fuzzy Rules by Learning from examples [J]. IEEE SMC, 1992, 22(6).
    [45] Kaya A. On the control methods of atmospheric fluidized bed boilers for power generation [J] Journal of Engineering for Gas Turbine and Power. 1989(11):685-693.
    [46]陈卫田,施松淑.基于神经网络的非线性自适应控制[J].控制理论与应用,1996,13(5): 545-552.
    [47]王作宏.基于BP神经网络的多变量解耦控制研究[J].武汉科技学院学报.2003,16(5):61-64.
    [48] Lin C T. A, neural Fuzzy control system with structure and parameter learning [J]. Fuzzy set any Systems,1995,70(4):34-35.
    [49]柴天佑.多变量自适应解耦控制及应用[M].北京:科学出版社,2001
    [50] Czogalaand E. Zimmermann H J. Some aspects of synthesis of probabilistic fuzzy contro1lers [J]. Fuzzy Sets and Systems, 1984, 13(2):169-178.
    [51] Chao cheek, Kwang Y L. Diagonal recurrent neural networks for dynamic systems control[J], IEEE trans on Neural networks, 1994(6):28-30.
    [52]郝立军,杨艳华.模糊解耦控制在精馏塔的应用[J].石油化工自动化,2005(6):27-33
    [53] Wittenmark B, Middleton R, Goodwin G C. Adaptive decoupling of multivariable systems[J]. Controller,l987,46(6):1993-2009.
    [54]张欣,夏渊等.一类自适应模糊神经解耦混合控制器[J].高技术通讯,2004,14(6):78-8l.
    [55]阎维平.洁净煤发电技术[M].北京:中国电力出版社, 2002.
    [56]金以慧.过程控制[M].北京:清华大学出版社, 1991.
    [57] R. Babuska. Fuzzy Modeling for Control [M]. Kluwer Academic Publishers, l998.
    [58]王士同.模糊系统、模糊神经网络及应用程序设计[M].上海:上海科技文献出版社,1997.
    [59]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社, 2004.
    [60]刘娜,杨耀权.神经网络在解耦控制中的应用研究[J].仪器仪表与分析监测,2006(3): 1-5.
    [61]姜长泓,于徽波.神经网络解耦控制在蒸馏水机中的应用[J].控制系统及应用,2002,17(2):25-26.
    [62]秦斌,吴敏等.基于模糊神经网络的多变量解耦控制[J].微型计算机系统,2002,23(5):67-68.
    [63]陈彦桥,郑亚峰等.基于动态解耦的模糊多模型协调控制系统应用研究[J].中国电机工程学报,2006,26(12):166-170.
    [64]张杰,邹继刚,李文秀.多输入多输出系统的神经网络PID解耦控制器[J].哈尔滨工程大学学报, 2000,1(5):6-9.
    [65]楼顺天,胡昌华,张伟.基于MATLAB的系统分析与设计.西安:西安电子科技大学出版社[J],2003.
    [66]胡慧,刘国荣.多变量系统模糊自适应解耦控制方法综述[J].湖南工程学院学报,2004,14(3):11-13.
    [67]郝久玉,陈伟等.多变量模糊控制系统的前馈解耦[J].天津大学学报,2004,37(5):396-399.
    [68]靳其兵,曾东宁,王云华,顾树生.多变量系统的神经网络解耦新方法[J].东北大学学报(自然科学版),1999,1(20):250-253.
    [69]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005.
    [70]王大志,金辉等.基于遗传算法的非线性多变量系统模糊神经网络控制[J].沈阳工业学院学报,2003,22(1):1-3.
    [71]史旭华.神经网络自适应广义预测解耦控制器的设计[J].系统仿真学报,2005,17(1): 178-180.
    [72] Bramlette M F. Initialization, Mutation and Selection Methods in Genetic Algorithms for Function Optimization[C]. 1991(6):100-107.
    [73] Kortela U, Ikonen E, Kotajarvi H. Modeling,simulation and control of fluidized bed combustion process[J]. International Journal of Power and Energy Systems,1994,14(3):92-97.
    [74] Z. Ai-Qodah M, Ai-Busoul, effect of magnetic field on local heat transfer coefficient in fluidized beds with in fluidized beds with immersed heating surface[J]. Journal of Heat Transfer,200l(123):157-161.
    [75] Shen You-ting, song Hong-wei, Vedfication of the Tsinghai-CFBB Model with the testing Results on an Industrial-Scale CFB Boiler[C].Proceedings of Imitational Power Engineering Conference. Hangzhou, 1992:187-195.
    [76]杨国亮,项龙江等.神经网络解耦控制器在单元机组负荷控制中的应用[J].南方冶金学院学报, 2002,22(3):112-115.
    [77]李维波. MATLAB在电气工程中的应用[M].北京:中国电力出版社,2006.
    [78]张葛祥,李娜. MATLAB仿真技术与应用[M].北京:清华大学出版社, 2003:86-87.
    [79]雷英杰,张善文,李续武,周创明. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社2005:167-168.
    [80]周琛琛.基于Matlab遗传算法工具箱的函数优化问题求解[J].现代计算机,2006(12):84-86.
    [81]梁科,夏定纯. Matlab环境下的遗传算法程序设计及优化问题求解[J].电脑知识与技术, 2007(4):1049-1050.
    [82] En De , Chen Caihe, Cui Yuming. Hybrid-integrated Optical Accelerations Seismometer and its Digital Processing System[C]. Photonics Asia 2004,2004(11):66-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700