用户名: 密码: 验证码:
多孔硅制备及其在重金属离子检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着经济的快速发展,水体重金属污染问题日益严重,直接影响着人类生存,危及人民生活与健康。水体环境中重金属离子浓度的检测无论是对环境安全还是人类健康都有着十分重要的意义。
     本论文综合利用纳米技术和有机合成技术,以纳米多孔硅(PS)材料作为研究对象,运用其光致发光(PL)特性及可调控的化学性状,将对重金属离子具有特异性螯合能力的有机功能基团修饰到多孔硅表面,以实现多孔硅基荧光传感器、多孔硅有机无机纳米复合材料对特定重金属离子的选择性检测和富集。研究内容主要包括以下几个方面:
     采用双槽电化学腐蚀方法制备多孔硅,系统考查了不同掺杂浓度硅片、不同制备参数(腐蚀液配比、腐蚀时间、腐蚀电流密度)对多孔硅形貌结构以及光致发光性能的影响。根据不同制备条件下样品的孔道结构及孔隙率对多孔硅表面层“龟裂”行为的影响,提出解释多孔硅表面层龟裂行为的模型;多孔硅制备参数对其PL发光强度及发光峰位有一定影响,通过引入量化指标孔隙率(P)作为“纽带”,建立制备参数对多孔硅PL发光峰位九λ之间的定量影响关系:λPL/nm=620.3-0.595P, R=0.905。
     采用金属纳米颗粒辅助刻蚀法(MACE)制备多孔硅纳米线,研究了制备参数对多孔硅纳米线形貌结构以及光致发光性能的影响。在一步MACE刻蚀法制备硅纳米线的过程中,通过对硅片进行预氧化处理,可以有效地在中等掺杂硅纳米线中引入多孔甚至介孔结构,根据实验现象,提出相应模型对氧化硅基底制备多孔硅纳米线的形成机理进行解释。通过在HF/AgNO3腐蚀体系中引入氧化物种H2O2,可以有效地在中等掺杂和低掺杂硅纳米线中引入大量多孔结构,当H2O2浓度为0.1M时,能获得大量垂直交错的腐蚀孔道,利用“自电泳驱动”模型对其形成过程进行解释。
     通过对不同制备方法和制备条件下获得的多孔硅样品光致发光性能进行比较后,选取具有PL发光性能较强且稳定性能较好的多孔硅,研究含不同金属离子(Cd2+、Co2+、Cr3+、Mn2+、Ni2+、Pb2+、Zn2+、Cu2+)溶液浸泡对其发光特性及表面化学性状的影响。研究结果表明,与其他金属离子不同,具有较正氧化还原电位的Cu2+能在多孔硅表面发生浸渍沉积,并使得多孔硅表面发生氧化,导致SiHx物种减少,使得多孔硅PL发光减弱甚至淬灭。利用多孔硅的这一荧光选择特性,建立起多孔硅PL发光强度与溶液中Cu2+浓度之间的线性关系,以便实现多孔硅荧光传感器对水溶液中铜离子的选择性快速定性及定量检测。研究结果表明在铜离子浓度为5×10-7~50×10-7M范围内,多孔硅PL强度与铜离子浓度存在如下线性关系:IPL=1269.6-15[Ccu2+]。
     采用电化学三电极体系,将带有氨基、硫脲基团的有机功能分子修饰到多孔硅表面,以功能化的多孔硅作为电化学传感器分别实现对Ag+、Pb2+重金属离子的检测。在较优条件下,实验结果显示,在10-3~10-7mol/L浓度范围内,溶液中Ag+离子浓度与Ag+-APTES-PS电极表面Ag+还原电位峰强之间呈现线性关系:Ipc(μA cm-2)=118.28+15.15×1gCag+(CAg+/mol L-1)(R2=0.97173)。采用三步共价偶联反应将氨基硫脲衍生物(TSCD)嫁接到多孔硅表面,结果表明,在扫描范围为-0.5-0.8V之间,TSCD-PSE表现出对Pb2+离子表现出选择性响应特性,在1×10-6M至1×10。M范围内,Pb0氧化峰强随富集溶液中Pb2+离子浓度呈现规律性变化趋势:I=-156exp(-1562[Pb2+])-260exp(-105[Pb2+])+446(R2=0.998)。
     在多孔硅表面引入Si-OH基团,并采用多步有机共价偶联技术,将具有刺激响应的苯并咪唑二硫衍生物(BDT)“接枝”到多孔硅表面,研究其对不同重金属离子(Cd2+、Cu2+、Hg2+、Pb2+、Co2+)的预富集能力,并在谷胱甘肽(GSH)存在的条件下,研究PS-BDT及PS-BDT-M2+材料的刺激响应行为。实验结果表明BDT对Cd2+表现出较好的选择富集特性(富集效率>95%)。采用高斯09量子化学计算软件对5种BDT-M2+配合物进行键长、前线轨道能量差以及反应过程中能量降低程度等分析,其结果表明BDT配体对不同金属离子显示出选择性配位特点,配位能力排序为:Cu2+>Pb2+>Cd2+>Hg2+>Co2+;在不同金属离子M2+与BDT形成配合物的情况下,GSH的加入会与BDT-M2+配合物形成新的S-S键,导致MBI-M2+基团脱落进入GSH溶液。然而计算结果表明,只有MBI-Cd2+在其脱落之后与GSHD化合物间存在较弱的相互作用,其他四种MBI-M2+分子都与GSHD具有较强的螯合作用,使得被BDT吸附的Cu2+、Pb2+、Hg2+、Co2+离子不能完全在GSH的作用下进入溶液,从而使BDT修饰的多孔硅复合材料表现出对Cd2+具有一定的选择富集特性。
Recently, heavy metal pollution has becomes increasingly serious with the rapidly growing economy, which has directly affects ours living environment and threaten people's life and health. Thus, the method with the advantage of fast and effective detection of metal ions concentration in solution must be expected, which is very important significance for human health and environmental safety.
     In this paper, nano-technology and organic synthesis technology have been jointly exploited. A fluorescent sensor was proposed based on fluorescence quenching feature of porous silicon, and the electrochemical metal ions sensors were developed using the organic group functionalized porous silicon, which shows selective preconcentration or detection for some metal ions. The main research contents are as follows.
     Porous silicon (PS) was prepared by anodizing highly doped p-type silicon in the solution of H2O/ethanol/HF. The effects of key fabrication parameters (HF concentration, etching time and current density) on the nanostructure of PS were carefully investigated. According to the experimental results, a more full-fledged model was developed to explain the crack behaviors on PS surface. The PL spectra blue shift of the sample with higher porosity is confirmed by HRTEM results that the higher porosity results in smaller Si nanocrystals. A linear model (λPL/nm=620.3-0.595P, R=0.905) was established to describe the correlation between PL peak positions and porosity of PS.
     Porous silicon nanowires (PSNWs) were fabricated by the metal-assisted chemical etching (MACE) method, the effects of fabrication parameters on the nanostructure and photoluminescence of silicon nanowires (SiNWs) were investigated. The simple pre-oxidization process is firstly used to treat the starting silicon wafer, and then PSNWs are successfully fabricated from the moderately doped wafer by one-step MACE technology in HF/AgNO3system. According to the experiment results, a model was proposed to explain the formation mechanism of porous SiNWs by etching the oxidized starting silicon. PSNWs were also fabricated by the'one-pot procedure'(MACE method in the HF/H2O2/AgNO3system. The experimental results indicate that porous structure can be introduced by the addition of H2O2. When H2O2concentration is0.1mol/L, numerous almost perpendicular pore channels can be observed in the etched silicon. A self-electrophoresis mode driven by H2O2reduction is proposed to explain the PSNWs formation.
     The porous silicon sample with strong and stable PL emission was selseted by comparing the PL properties of porous silicon fabricated under different conditions. The effects of various metal ions species (Cd2+、Co2+、Cr3+、Mn2+、Ni2+、Pb2+、Zn2+、Cu2+) on PL and surface chemisity of PS were studied. The results indicate that the copper ions with higher redox potential can deposite on PS surface, which leads the surface oxidization and reduction of SiHx group and causes the quenching of PL. The relationship between the PL intensity and copper ions concentration was established, the PL intensity of PS is decreased as the description of the equation of IPL=1269.6-15[CCu2+] when copper ions concentration is between5×10-7~50×10-7M.
     3-aminopropyltriethoxysilanes (APTES) and thiosemicarbazide derivative (TSCD) modified porous silicon electrode (PSE) has been respectively used for the detection of Ag+and Pb2+in aqueous solution. Under the optimal experimental conditions, the cathode peak currents of APTES-PSE were increased with Ag+concentrations over the range from1×10-3mol L-1to1×10-7mol L-1and the linear equation of|Ipc|(μA cm-2)=118.28+15.15×1gCAg+(CAg+/mol L-1)(R2=0.97173) was established. A multi-step graft route was designed for anchoring TSCD groups on porous silicon (PS) surface. The results display that the anodic peak current density increase with the increasing Pb2+concentration over the range of1×10-6mol L-1~1×10-3mol L-1and which has a good fitting with a second order exponential function, I=-156exp(-1562[Pb2+])-260exp(-105[Pb2+])+446(R2=0.998).
     The cleavable groups (benzimidazoledithi, BDT) were grafted on the PS surface by a stepwise covalent process. The pre-enrichment efficiency of BDT-PS was investigated at the different pH for the different metal species (Cd2+、Cu2+、Hg2+、Pb2+and Co2+). The results show that the BDT-PS has sensitive pre-enrichment for Cd ions (enrichment efficiency>95%). The bond length, the gaps of HOMO and LOMO and energy decrease before and after the chelation of coordination compounds (BDT-M2+) were calculated by Gaussian09. The results indicate that the ligand BDT has sensitive chelating ability for different metal ions (Cu2+>Pb2+>Cd2+>Hg2+>Co2+). The disulfide bonds in un-chelated BDT can be cleaved by glutathione (GSH) and leading the2-mercaptobenzimidazole (MBI) loss. The new disulfide bonds would form with the addition of GSH and the MBI-M2+was replaced by glutathione derivative (GSHD). But, compared with MBI-Cu2+、MBI-Pb2+、 MBI-Hg2+and MBI-Co2+, only MBI-Cd2+has a poor chelating with the resulting GSHD and can enter into GSH solution, which leads the BDT-PS shows a sensitive pre-enrichment proprety for Cd2+.
引文
[1]Uhlir A. Electrolytic Shaping of Germanium and Silicon. Bell System Technical Journal,1956,35(2):333-347.
    [2]Turner D R. Electropolishing silicon in hydrofluoric acid solutions. Journal of the electrochemical Society,1958,105(7):402-408.
    [3]Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters,1990,57:1046.
    [4]Halimaoui A, Oules C, Bomchil G, et al. Electroluminescence in the visible range during anodic oxidation of porous silicon films. Applied physics letters,1991,59(3):304-306.
    [5]Sailor M J, Wu E C. Photoluminescence- Based Sensing With Porous Silicon Films, Microparticles, and Nanoparticles. Advanced Functional Materials,2009,19(20):3195-3208.
    [6]Beale M, Benjamin J, Uren M, et al. An experimental and theoretical study of the formation and microstructure of porous silicon. Journal of Crystal Growth,1985,73(3):622-636.
    [7]Fathauer R, George T, Ksendzov A, et al. Visible luminescence from silicon wafers subjected to stain etches. Applied physics letters,1992, 60(8):995-997.
    [8]Chen Q, Zhu J, Li X-G, et al. Photoluminescence in porous silicon obtained by hydrothermal etching. Physics Letters A,1996, 220(4):293-296.
    [9]Hou X y, Fan H 1, Xu L, et al. Pulsed anodic etching:An effective method of preparing light-emitting porous silicon. Applied physics letters,1996,68(17):2323-2325.
    [10]韩建忠,倪国强,崔梦等.应用于MEMS的多孔硅的制备方法研究.电子元件与材料,2004,23(6):32-34.
    [11]Dimova-Malinovska D, Sendova-Vassileva M, Tzenov N, et al. Preparation of thin porous silicon layers by stain etching. Thin Solid Films,1997,297(1-2):9-12.
    [12]Li X, Bohn P. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Applied Physics Letters,2000,77(16):2572-2574.
    [13]Qu Y, Liao L, Li Y, et al. Electrically conductive and optically active porous silicon nanowires. Nano letters,2009,9(12):4539-4543.
    [14]Witten T t, Sander L. Diffusion-limited aggregation. Physical Review B,1983,27(9):5686.
    [15]Smith R, Collins S. Porous silicon formation mechanisms. Journal of Applied Physics,1992,71(8):R1-R22.
    [16]Lehmann V, Gosele U. Porous silicon formation:A quantum wire effect. Applied Physics Letters,1991,58(8):856-858.
    [17]Sweryda-Krawiec B, Chandler-Henderson R R, Coffer J L, et al. A comparison of porous silicon and silicon nanocrystallite photoluminescence quenching with amines. The Journal of Physical Chemistry,1996,100(32):13776-13780.
    [18]Canaria C A, Huang M, Cho Y, et al. The effect of surfactants on the reactivity and photophysics of luminescent nanocrystalline porous silicon. Advanced Functional Materials,2002,12(8):495-500.
    [19]Gupta P, Dillon A, Bracker A, et al. FTIR studies of H2O and D2O decomposition on porous silicon surfaces. Surface science,1991, 245(3):360-372.
    [20]Zheng J, Jiao K, Shen W, et al. Highly sensitive photodetector using porous silicon. Applied physics letters,1992,61(4):459-461.
    [21]Rittersma Z, Splinter A, Bodecker A, et al. A novel surface-micromachined capacitive porous silicon humidity sensor. Sensors and Actuators B:Chemical,2000,68(1):210-217.
    [22]Synthesis and Characterization of Dimensionally Ordered Semiconductor Nanowires within Mesoporous Silica.
    [23]Kleps I, Danila M, Angelescu A, et al. Gold and silver/Si nanocomposite layers. Materials Science and Engineering:C,2007, 27(5):1439-1443.
    [24]Shetty K, Zhao S, Cao W, et al. Synthesis and characterization of non-noble nanocatalysts for hydrogen production in microreactors. Journal of power sources,2007,163(2):630-636.
    [25]Andsager D, Hilliard J, Hetrick J, et al. Quenching of porous silicon photoluminescence by deposition of metal adsorbates. Journal of applied physics,1993,74(7):4783-4785.
    [26]Jeske M, Schultze J, Thonissen M, et al. Electrodeposition of metals into porous silicon. Thin solid films,1995,255(1):63-66.
    [27]Harraz F, Tsuboi T, Sasano J, et al. Metal deposition onto a porous silicon layer by immersion plating from aqueous and nonaqueous solutions. Journal of The Electrochemical Society,2002, 149(9):C456-C463.
    [28]Ferreira I, Fortunato E, Martins R. Ethanol vapour detector based in porous a-Si:H films produced by HW-CVD technique. Sensors and Actuators B:Chemical,2004,100(1):236-239.
    [29]Miranda C, Braga N, Baldan M, et al. Improvements in CVD/CVI processes for optimizing nanocrystalline diamond growth into porous silicon. Diamond and Related Materials,2010,19(7):760-763.
    [30]Saravanan S, Hayashi Y, Soga T, et al. Growth of GaAs epitaxial layers on Si substrate with porous Si intermediate layer by chemical beam epitaxy. Journal of crystal growth,2002,237:1450-1454.
    [31]Paiva P, Madelino F, Conde O. Laser assisted chemical vapour deposition of silicon oxide layers. Journal of luminescence,1998, 80(1):141-145.
    [32]Moshnikov V A, Gracheva I, Lenshin A S, et al. Porous silicon with embedded metal oxides for gas sensing applications. Journal of Non-Crystalline Solids,2012,358(3):590-595.
    [33]Salonen J, Lehto V P, Bjorkqvist M, et al. Studies of Thermally-Carbonized Porous Silicon Surfaces, physica status solidi (a),2000,182(1):123-126.
    [34]Mathew F P, Alocilja E C. Porous silicon-based biosensor for pathogen detection. Biosensors and Bioelectronics,2005, 20(8):1656-1661.
    [35]Rossi A M, Wang L, Reipa V, et al. Porous silicon biosensor for detection of viruses. Biosensors and Bioelectronics,2007, 23(5):741-745.
    [36]Li Y Y, Cunin F, Link J R, et al. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science,2003, 299(5615):2045-2047.
    [37]Geobaldo F, Rivolo P, Ugliengo P, et al. A new route to the surface functionalisation of porous silicon. Sensors and Actuators B: Chemical,2004,100(1):29-32.
    [38]Alekseev S, Lysenko V, Zaitsev V, et al. Application of infrared interferometry for quantitative analysis of chemical groups grafted onto the internal surface of porous silicon nanostructures. The Journal of Physical Chemistry C,2007,111(42):15217-15222.
    [39]Bjorkqvist M, Salonen J, Laine E, et al. Comparison of stabilizing treatments on porous silicon for sensor applications, physica status solidi (a),2003,197(2):374-377.
    [40]Bateman J E, Eagling R D, Worrall D R, et al. Alkylation of porous silicon by direct reaction with alkenes and alkynes. Angewandte Chemie International Edition,1998,37(19):2683-2685.
    [41]Boukherroub R, Morin S, Wayner D, et al. Ideal passivation of luminescent porous silicon by thermal, noncatalytic reaction with alkenes and aldehydes. Chemistry of materials,2001, 13(6):2002-2011.
    [42]Dattilo D, Armelao L, Fois G, et al. Wetting properties of flat and porous silicon surfaces coated with a spiropyran. Langmuir,2007, 23(26):12945-12950.
    [43]Vrkoslav V, Jelinek I, Trojan T, et al. Porous silicon with p-cyclodextrin modified surface for photoluminescence sensing of organic molecules in gas and liquid phase. Physica E: Low-dimensional Systems and Nanostructures,2007,38(1):200-204.
    [44]Britcher L, Barnes T J, Griesser H J, et al. PEGylation of porous silicon using click chemistry. Langmuir,2008,24(15):7625-7627.
    [45]Guan B, Ciampi S, Le Saux G, et al. Different functionalization of the internal and external surfaces in mesoporous materials for biosensing applications using "click" chemistry. Langmuir,2010,27(l):328-334.
    [46]Saghatelian A, Buriak J, Lin V S, et al. Transition metal mediated surface modification of porous silicon. Tetrahedron,2001, 57(24):5131-5136.
    [47]Holland J M, Stewart M P, Allen M J, et al. Metal mediated reactions on porous silicon surfaces. Journal of Solid State Chemistry,1999, 147(1):251-258.
    [48]Romano E, Narducci D. Vibrational study on styrene functionalized porous silicon:A method for determining the relative yield of different grafting routes. Surface science,2007,601(13):2836-2839.
    [49]Buriak J M, Allen M J. Photoluminescence of porous silicon surfaces stabilized through Lewis acid mediated hydrosilylation. Journal of luminescence,1998,80(1):29-35.
    [50]Xu D, Sun L, Li H, et al. Hydrolysis and silanization of the hydrosilicon surface of freshly prepared porous silicon by an amine catalytic reaction. New Journal of Chemistry,2003,27(2):300-306.
    [51]Trauger S A, Go E P, Shen Z, et al. High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Analytical chemistry,2004,76(15):4484-4489.
    [52]Erson R C, Muller R S, Tobias C W. Investigations of porous silicon for vapor sensing. Sensors and Actuators A:Physical,1990, 23(1):835-839.
    [53]Ozdemir S, Gole J L. The potential of porous silicon gas sensors. Current Opinion in Solid State and Materials Science,2007, 11(5):92-100.
    [54]Borini S, Boarino L, Amato G. Coulomb blockade sensors based on nanostructured mesoporous silicon. Physica E:Low-dimensional Systems and Nanostructures,2007,38(1):197-199.
    [55]Gao J, Gao T, Sailor M J. Porous-silicon vapor sensor based on laser interferometry. Applied Physics Letters,2000,77(6):901-903.
    [56]Arakelyan V, Galstyan V, Martirosyan K S, et al. Hydrogen sensitive gas sensor based on porous silicon/TiO2 structure. Physica E: Low-dimensional Systems and Nanostructures,2007,38(1):219-221.
    [57]Seals L, Gole J L, Tse L A, et al. Rapid, reversible, sensitive porous silicon gas sensor. Journal of applied physics,2002, 91(4):2519-2523.
    [58]Baratto C, Comini E, Faglia G, et al. Gas detection with a porous silicon based sensor. Sensors and Actuators B:Chemical,2000, 65(1):257-259.
    [59]Gole J L, Lewis S, Lee S. Nanostructures and porous silicon:activity at interfaces in sensors and photocatalytic reactors, physica status solidi (a),2007,204(5):1417-1422.
    [60]黎学明,潘进,万体智.环境中二氧化硫监测的多孔硅光学传感方法研究.分析化学,2005,3.
    [61]Torres-Costa V, Salonen J, Jalkanen T, et al. Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity, physica status solidi (a),2009,206(6):1306-1308.
    [62]Zangooie S, Bjorklund R, Arwin H. Vapor sensitivity of thin porous silicon layers. Sensors and Actuators B:Chemical,1997, 43(1):168-174.
    [63]Gao J, Gao T, Li Y Y, et al. Vapor sensors based on optical interferometry from oxidized microporous silicon films. Langmuir, 2002,18(6):2229-2233.
    [64]Barillaro G, Diligenti A, Marola G, et al. A silicon crystalline resistor with an adsorbing porous layer as gas sensor. Sensors and Actuators B: Chemical,2005,105(2):278-282.
    [65]Bogue R. Novel porous silicon biosensor. Biosensors and Bioelectronics,1997,12(1):xxvii-xxviii.
    [66]Lin V S-Y, Motesharei K, Dancil K-P S, et al. A porous silicon-based optical interferometric biosensor. Science,1997,278(5339):840-843.
    [67]http://www.reportlinker.com/p0795991/Bio sensors-A-Global-Market-O verview.html.
    [68]Thust M, Schoning M, Frohnhoff S, et al. Porous silicon as a substrate material for potentiometric biosensors. Measurement science and technology,1996,7(1):26.
    [69]Lugo J, Ocampo M, Kirk A, et al. Electrochemical sensing of DNA with porous silicon layers. Journal of new materials for Electrochemical Systems,2007,10(2):113.
    [70]Song M-J, Yun D-H, Min N-K, et al. Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode. Journal of bioscience and bioengineering,2007, 103(1):32-37.
    [71]Meskini O, Abdelghani A, Tlili A, et al. Porous silicon as functionalized material for immunosensor application. Talanta,2007, 71(3):1430-1433.
    [72]董杉木,张娟琨,白丽荣等.纳米多孔硅阻抗生物传感器的研究.生物加工过程,2009,7(4):56-60.
    [73]Rivolo P, Pirasteh P, Chaillou A, et al. Oxidised porous silicon impregnated with Congo Red for chemical sensoring applications. Sensors and Actuators B:Chemical,2004,100(1):99-102.
    [74]Ben Ali M, Mlika R, Ben Ouada H, et al. Porous silicon as substrate for ion sensors. Sensors and Actuators A:Physical,1999, 74(1):123-125.
    [75]Mlika R, Ouada H B, Chaabane R B, et al. Calixarene membranes on semiconductor substrates for EIS chemical sensors. Electrochimica acta,1997,43(8):841-847.
    [76]Srivastava S K, Kumar D, Sharma M, et al. Silver catalyzed nano-texturing of silicon surfaces for solar cell applications. Solar Energy Materials and Solar Cells,2012,100:33-38.
    [77]李丹.银催化腐蚀多孔硅制备及其在硅太阳电池上的应用[D]浙江 大学 2013.
    [78]Salman K A, Omar K, Hassan Z. The effect of etching time of porous silicon on solar cell performance. Superlattices and Microstructures, 2011,50(6):647-658.
    [79]Desplobain S, Gautier G, Ventura L, et al. Macroporous silicon hydrogen diffusion layers for micro-fuel cells, physica status solidi (a),2009,206(6):1282-1285.
    [80]Thakur M, Isaacson M, Sinsabaugh S L, et al. Gold-coated porous silicon films as anodes for lithium ion batteries. Journal of Power Sources,2012,205:426-432.
    [81]Anderson S, Elliott H, Wallis D, et al. Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions, physica status solidi (a),2003,197(2):331-335.
    [82]Popplewell J, King S, Day J, et al. Kinetics of uptake and elimination of silicic acid by a human subject:A novel application of 32Si and accelerator mass spectrometry. Journal of inorganic biochemistry, 1998,69(3):177-180.
    [83]Cheng L, Anglin E, Cunin F, et al. Intravitreal properties of porous silicon photonic crystals:a potential self-reporting intraocular drug-delivery vehicle. British Journal of Ophthalmology,2008, 92(5):705-711.
    [84]Low S P, Williams K A, Canham L T, et al. Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials,2006, 27(26):4538-4546.
    [85]Alvarez S D, Schwartz M P, Migliori B, et al. Using a porous silicon photonic crystal for bacterial cell-based biosensing. physica status solidi (a),2007,204(5):1439-1443.
    [86]Alvarez S D, Derfus A M, Schwartz M P, et al. The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Biomaterials,2009,30(1):26-34.
    [87]Wu E C, Park J-H, Park J, et al. Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. Acs Nano,2008,2(11):2401-2409.
    [88]Heinrich J L, Curtis C L, Credo G M, et al. Luminescent colloidal silicon suspensions from porous silicon. Science,1992, 255(5040):66-68.
    [89]Granitzer P, Rumpf K. Porous silicon-a versatile host material. Materials,2010,3(2):943-998.
    [90]http://china.cnr.cn/news/201102/t20110219_507693627.html.
    [91]翟慧泉,金星龙,岳俊杰等.重金属快速检测方法的研究进展.湖北农业科学,2010,49(8):1995-1998.
    [92]张丽娜.新型功能化吸附材料的制备及其对痕量金属离子吸附性能的研究[D]兰州大学2010.
    [93]Jal P, Patel S, Mishra B. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta,2004,62(5):1005-1028.
    [94]Rofouei M K, Rezaei A, Masteri-Farahani M, et al. Selective extraction and preconcentration of ultra-trace level of mercury ions in water and fish samples using Fe3O4-magnetite-nanoparticles functionalized by triazene compound prior to its determination by inductively coupled plasma-optical emission spectrometry. Analytical Methods,2012,4(4):959-966.
    [95]Liang P, Liu Y, Guo L, et al. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom.,2004, 19(11):1489-1492.
    [96]Fernandez-Arguelles M T, Jin W J, Costa-Fernandez J M, et al. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu (Ⅱ) in aqueous solutions by luminescent measurements. Analytica chimica acta,2005,549(1):20-25.
    [97]Darbha G K, Singh A K, Rai U S, et al. Selective detection of mercury (Ⅱ) ion using nonlinear optical properties of gold nanoparticles. Journal of the American Chemical Society,2008,130(25):8038-8043.
    [98]Cai Z-X, Yang H, Zhang Y, et al. Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg (Ⅱ) in aqueous solution. Analytica Chimica Acta,2006,559(2):234-239.
    [99]Xia Y-S, Cao C, Zhu C-Q. Two distinct photoluminescence responses of CdTe quantum dots to Ag (Ⅰ). Journal of Luminescence,2008, 128(1):166-172.
    [100]Li M, Zhou X, Guo S, et al. Detection of lead (Ⅱ) with a "turn-on" fluorescent biosensor based on energy transfer from Cdse/Zns quantum dots to graphene oxide. Biosensors and Bioelectronics,2013, 43:69-74.
    [101]Ren H-B, Wu B-Y, Chen J-T, et al. Silica-Coated S2-Enriched Manganese-Doped ZnS Quantum Dots as a Photoluminescence Probe for Imaging Intracellular Zn2+ Ions. Analytical chemistry,2011, 83(21):8239-8244.
    [102]董绍俊,车广礼,谢远武.化学修饰电极.化学通报,1981,12:9-17.
    [103]Lehmann V, Gosele U. Porous silicon formation:A quantum wire effect. Applied Physics Letters,1991,58:856.
    [104]Herino R, Bomchil G, Barla K, et al. Porosity and pore size distributions of porous silicon layers. Journal of the electrochemical society,1987,134(8):1994-2000.
    [105]Halimaoui A. Porous silicon formation by anodisation. Properties of porous silicon,1997,18:12-22.
    [106]Gruning U, Yelon A. Capillary and Van der Waals forces and mechanical stability of porous silicon. Thin Solid Films,1995, 255(1):135-138.
    [107]Belmont O, Bellet D, Brechet Y. Study of the cracking of highly porous p+ type silicon during drying. Journal of applied physics,1996, 79(10):7586-7591.
    [108]Dian J, Macek A, Niznansky D, et al. SEM and HRTEM study of porous silicon-relationship between fabrication, morphology and optical properties. Applied surface science,2004,238(1):169-174.
    [109]Zhang X G. Electrochemistry of Silicon and its Oxide:Springer, 2001.
    [110]Salgado G G, Becerril T D, Santiesteban H J, et al. Porous silicon organic vapor sensor. Optical Materials,2006,29(1):51-55.
    [111]Mason M D, Sirbuly D J, Buratto S K. Correlation between bulk morphology and luminescence in porous silicon investigated by pore collapse resulting from drying. Thin Solid Films,2002, 406(1):151-158.
    [112]Nakagawa T, Sugiyama H, Koshida N. Fabrication of periodic Si nanostructure by controlled anodization. Japanese journal of applied physics,1998,37(part 1):7186-7189.
    [113]Lehmann V, Stengl R, Luigart A. On the morphology and the electrochemical formation mechanism of mesoporous silicon. Materials Science and Engineering:B,2000,69:11-22.
    [114]Lin C H, Lee S C, Chen Y F. Morphologies and photoluminescence of porous silicon under different etching and oxidation conditions. Journal of applied physics,1994,75(12):7728-7736.
    [115]Wijesinghe T, Li S Q, Breese M B, et al. High resolution TEM and triple-axis XRD investigation into porous silicon formed on highly conducting substrates. Electrochimica Acta,2009,54(13):3671-3676.
    [116]Martin-Palma R, Pascual L, Landa A, et al. High-resolution transmission electron microscopic analysis of porous silicon/silicon interface. Applied physics letters,2004,85(13):2517-2519.
    [117]Kohno H, Ozaki N, Yoshida H, et al. Misleading fringes in TEM images and diffraction patterns of Si nanocrystallites. Crystal Research and Technology,2003,38(12):1082-1086.
    [118]Peng K, Lu A, Zhang R, et al. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Advanced Functional Materials,2008,18(19):3026-3035.
    [119]Zhong X, Qu Y, Lin Y C, et al. Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl Mater Interfaces,2011,3(2):261-70.
    [120]Angelescu D G, Vasilescu M, Anastasescu M, et al. Synthesis and association of Ag (0) nanoparticles in aqueous Pluronic F127 triblock copolymer solutions. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,394:57-66.
    [121]Smith Z R, Smith R L, Collins S D. Mechanism of nanowire formation in metal assisted chemical etching. Electrochimica Acta,2013, 92:139-147.
    [122]Peng K, Wu Y, Fang H, et al. Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays. Angewandte Chemie International Edition,2005,44(18):2737-2742.
    [123]Lee C-L, Tsujino K, Kanda Y, et al. Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts. Journal of Materials Chemistry,2008,18(9):1015-1020.
    [124]Chartier C, Bastide S, Levy-Clement C. Metal-assisted chemical etching of silicon in HF-H2O2. Electrochimica Acta,2008, 53(17):5509-5516.
    [125]Zhong X, Qu Y, Lin Y-C, et al. Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS applied materials & interfaces,2011,3(2):261-270.
    [126]Huang Z, Shimizu T, Senz S, et al. Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. The Journal of Physical Chemistry C,2010, 114(24):10683-10690.
    [127]Hochbaum A I, Gargas D, Hwang Y J, et al. Single crystalline mesoporous silicon nanowires. Nano letters,2009,9(10):3550-3554.
    [128]Magoariec H, Danescu A. Modeling macroscopic elasticity of porous silicon, physica status solidi (c),2009,6(7):1680-1684.
    [129]Ling L, Kuwabara S, Abe T, et al. Multiple internal reflection infrared spectroscopy of silicon surface structure and oxidation process at room temperature. Journal of applied physics,1993, 73(6):3018-3022.
    [130]Ocana M, Fornes V, Serna C. The variability of the infrared powder spectrum of amorphous SiO2. Journal of non-crystalline solids,1989, 107(2):187-192.
    [131]Fobelets K, Li C, Coquillat D, et al. Far infrared response of silicon nanowire arrays. RSC Advances,2013,3(13):4434-4439.
    [132]Malvankar P L, Shinde V M. Ion-pair extraction and determination of copper (Ⅱ) and zinc (Ⅱ) in environmental and pharmaceutical samples. Analyst,1991,116(10):1081-1084.
    [133]Cereghetti G M, Schweiger A, Glockshuber R, et al. Stability and Cu (Ⅱ) binding of prion protein variants related to inherited human prion diseases. Biophysical journal,2003,84(3):1985-1997.
    [134]James S A, Volitakis I, Adlard P A, et al. Elevated labile Cu is associated with oxidative pathology in Alzheimer disease. Free Radical Biology and Medicine,2012,52(2):298-302.
    [135]Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Analytical Chemistry,2002,74(19):5132-5138.
    [136]石怀文,李淼,曾新华等.基于量子点检测Cu2+的荧光传感器系统设计.仪表技术,2012,7:018.
    [137]郑守国,李淼,张健等.基于量子点荧光淬灭技术的痕量Cu2+检测传感器研究.激光杂志,2013,34(1):39-40.
    [138]Xiao Y, Heben M, McCullough J, et al. Enhancement and stabilization of porous silicon photoluminescence by oxygen incorporation with a remote-plasma treatment. Applied physics letters,1993, 62(10):1152-1154.
    [139]Gelloz B, Kojima A, Koshida N. Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing. Applied Physics Letters,2005, 87(3):031107-031107-3.
    [140]Rahmani M, Moadhen A, Zaibi M-A, et al. Photoluminescence enhancement and stabilisation of porous silicon passivated by iron. Journal of Luminescence,2008,128(11):1763-1766.
    [141]Jane A, Dronov R, Hodges A, et al. Porous silicon biosensors on the advance. Trends in biotechnology,2009,27(4):230-239.
    [142]Torres-Costa V, Agullo-Rueda F, Martin-Palma R, et al. Porous silicon optical devices for sensing applications. Optical materials, 2005,27(5):1084-1087.
    [143]Canham L, Houlton M, Leong W, et al. Atmospheric impregnation of porous silicon at room temperature. Journal of applied physics,1991, 70(1):422-431.
    [144]Tischler M, Collins R, Stathis J, et al. Luminescence degradation in porous silicon. Applied physics letters,1992,60(5):639-641.
    [145]张甫龙,侯晓远,杨敏等.多孔硅发光稳定性的改进.物理学报,1994,43(3):499-504.
    [146]Prokes S, Glembocki O, Bermudez V, et al. SiHx excitation:An alternate mechanism for porous Si photoluminescence. Physical Review B,1992,45(23):13788.
    [147]Tsai C, Li K H, Kinosky D, et al. Correlation between silicon hydride species and the photoluminescence intensity of porous silicon. Applied physics letters,1992,60(14):1700-1702.
    [148]Mawhinney D B, Glass J A, Yates J T. FTIR study of the oxidation of porous silicon. The Journal of Physical Chemistry B,1997, 101(7):1202-1206.
    [149]王燕,岳瑞峰.多孔硅的XPS研究.分析测试学报,2001,20(1):30-32.
    [150]Errien N, Vellutini L, Louarn G, et al. Surface characterization of porous silicon after pore opening processes inducing chemical modifications. Applied surface science,2007,253(17):7265-7271.
    [151]Chambliss D, Rhodin T. Electronic and atomic structure of the Cu/Si (111) quasi-5×5 overlayer. Physical Review B,1990,42(3):1674.
    [152]Adamchuk V, Shikin A. Si-noble metal (Au, Cu, Ag) interface formation studies by AES. Journal of Electron Spectroscopy and Related Phenomena,1990,52:103-112.
    [153]Calandra C, Bisi O, Ottaviani G. Electronic properties on silicon-transition metal interface compounds. Surface Science Reports,1985,4(5):271-364.
    [154]迪安,尚久方,操时杰.兰氏化学手册:科学出版社,1991.
    [155]常彦龙,苏旭,时雪钊等.多孔硅上贵金属的浸入沉积.化学学报,2007,65(22):2527-2532.
    [156]Coulthard I, Sham T. Novel preparation of noble metal nanostructures utilizing porous silicon. Solid state communications,1998, 105(12):751-754.
    [157]Zhao Z-Q, Chen X, Yang Q, et al. Selective adsorption toward toxic metal ions results in selective response:electrochemical studies on a polypyrrole/reduced graphene oxide nanocomposite. Chem. Commun. 2012,48(16):2180-2182.
    [158]邓红.银离子消毒饮用水的机制.国外医学:卫生学分册,1999,26(1):45-47.
    [159]Sharma R, Rastogi A, Desu S. Nano crystalline porous silicon as large-area electrode for electrochemical synthesis of polypyrrole. Physica B:Condensed Matter,2007,388(1):344-349.
    [160]Macdonald J R. Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. Journal of electroanalytical chemistry and interfacial electrochemistry,1987, 223(1):25-50.
    [161]Vanmaekelbergh D, Searson P. On the electrical impedance due to the anodic dissolution of silicon in HF solutions. Journal of The Electrochemical Society,1994,141(3):697-702.
    [162]De Levie R. Electrochemical response of porous and rough electrodes. Advances in electrochemistry and electrochemical engineering,1967, 6:329-397.
    [163]Itagaki M, Hatada Y, Shitanda I, et al. Complex impedance spectra of porous electrode with fractal structure. Electrochimica Acta,2010, 55(21):6255-6262.
    [164]Barcia O, D'elia E, Frateur I, et al. Application of the impedance model of de Levie for the characterization of porous electrodes. Electrochimica acta,2002,47(13):2109-2116.
    [165]李永军,刘春艳.银离子交换的沸石修饰电极的循环伏安新特性.感光科学与光化学,2002,2.
    [166]Huang L-M, Liao W-H, Ling H-C, et al. Simultaneous synthesis of polyaniline nanofibers and metal (Ag and Pt) nanoparticles. Materials Chemistry and Physics,2009,116(2):474-478.
    [167]Liu Q, Wang F, Qiao Y, et al. Polyaniline Langmuir-Blodgett film modified glassy carbon electrode as a voltammetric sensor for determination of Ag+ ions. Electrochimica Acta,2010, 55(5):1795-1800.
    [168]Wang S, Zhou Y, Guan W, et al. Preparation and characterization of stimuli-responsive magnetic nanoparticles. Nanoscale Research Letters,2008,3(8):289-294.
    [169]Oishi M, Hayama T, Akiyama Y, et al. Supramolecular assemblies for the cytoplasmic delivery of antisense oligodeoxynucleotide:polyion complex (PIC) micelles based on poly (ethylene glycol)-SS-oligodeoxynucleotide conjugate. Biomacromolecules, 2005,6(5):2449-2454.
    [170]Bulmus V, Woodward M, Lin L, et al. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. Journal of controlled release,2003,93(2):105-120.
    [171]Wang Y, Lu J, Tang L, et al. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Analytical chemistry,2009,81(23):9710-9715.
    [172]Qiu B, Stefanos S, Ma J, et al. A hydrogel prepared by in situ cross-linking of a thiol-containing poly (ethylene glycol)-based copolymer:a new biomaterial for protein drug delivery. Biomaterials, 2003,24(1):11-18.
    [173]Xue G, Lu Y. Various adsorption states of 2-mercaptobenzimidazole on the surfaces of gold and silver studied by surface enhanced Raman scattering. Langmuir,1994,10(3):967-969.
    [174]Pourreza N, Ghanemi K. Determination of mercury in water and fish samples by cold vapor atomic absorption spectrometry after solid phase extraction on agar modified with 2-mercaptobenzimidazole. Journal of hazardous materials,2009,161(2):982-987.
    [175]Belhousse S, Boukherroub R, Szunerits S, et al. Electrochemical grafting of poly (3-hexylthiophene) on porous silicon for gas sensing. Surface and Interface Analysis,2010,42(6-7):1041-1045.
    [176]Zheng F, Hu B. MPTS-silica coated capillary microextraction on line hyphenated with inductively coupled plasma atomic emission spectrometry for the determination of Cu, Hg and Pb in biological samples. Talanta,2007,73(2):372-379.
    [177]Mahmoudi B, Gabouze N, Guerbous L, et al. Long-time stabilization of porous silicon photoluminescence by surface modification. Journal of luminescence,2007,127(2):534-540.
    [178]Dean J A. Lange's handbook of chemistry.1985.
    [179]You Y Z, Hong C Y, Pan C Y. Preparation of Smart Polymer/Carbon Nanotube Conjugates via Stimuli-Responsive Linkages. Advanced Functional Materials,2007,17(14):2470-2477.
    [180]Doneux T, Tielens F, Geerlings P, et al. Experimental and density functional theory study of the vibrational properties of 2-mercaptobenzimidazole in interaction with gold. The Journal of Physical Chemistry A,2006,110(39):11346-11352.
    [181]Bigotto A. Vibrational spectra of benzimidazol-2-thione. Spectroscopy letters,1991,24(1):69-80.
    [182]Aida M, Nagata C. An ab initio MO study on the disulfide bond: properties concerning the characteristic SS dihedral angle. Theoretica chimica acta,1986,70(2):73-80.
    [183]杨刚,龙翔云.巯基类浮选药剂电子结构及其与金属离子作用的量子化学研究.高等学校化学学报,2001,22(1):86-90.
    [184]Pearson R G. Hard and soft acids and bases. Journal of the American Chemical Society,1963,85(22):3533-3539.
    [185]Pearson R G, Songstad J. Application of the principle of hard and soft acids and bases to organic chemistry. Journal of the American Chemical Society,1967,89(8):1827-1836.
    [186]刘广义,詹金华,钟宏等.溶液中巯基苯并噻唑,咪唑和恶唑反应性的理论研究.中国有色金属学报,2010,20(11):2248-2253.
    [187]Klopman G. Chemical reactivity and the concept of charge-and frontier-controlled reactions. Journal of the American Chemical Society,1968,90(2):223-234.
    [188]王帅.聚酯基硫脲树脂的合成及其对贵金属离子的吸附分离性能[D]中南大学2008.
    [189]Fukui K. Formulation of the reaction coordinate. The Journal of Physical Chemistry,1970,74(23):4161-4163.
    [190]王风贺,石文艳,王志良.重金属捕集剂二甲基二硫代氨基甲酸对6种重金属螯合固化性能的量子化学研究.计算机与应用化学,2012,29(6):647-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700