镉致肾功能损害的预后与尿蛋白质组
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期的职业或环境镉暴露可引起多器官损伤,肾脏是镉慢性毒作用的主要靶器官,肾小管为靶部位。镉慢性毒作用以低分子量蛋白尿为特征,尿金属硫蛋白(UMT)、β2-微球蛋白(UB2M)等是常被用于反映肾小管损伤的生物标志。镉在人体内的半衰期很长,即使接触停止,大部分既往蓄积的镉仍继续停留在人体内。停止或减少镉接触后,镉致肾功能损害的预后引起了国际学术界的普遍关注。
     对华东某镉污染区的环境监测和流行病学调查显示,食用当地自产大米是当地居民最主要的镉接触来源,自1996年起,当地居民停止食用镉污染的自产大米。本课题组分别于1995年、1998年、2006年先后对该地区居民进行了三次健康调查,通过观察和比较镉接触降低后肾功能预后情况,探讨相关的影响因素。对先后参加过1995年和1998年调查的148名居民的1995年尿镉水平与UB2M、尿白蛋白(UALB)变化情况分析后发现,接触水平下降前的尿镉水平是影响肾功能预后的重要因素,而10μg/g Cr是一重要的阈值,尿镉水平低于此值时肾功能损伤是可逆的,否则不可逆、甚至进一步恶化。2006年底,本课题组对参加过上述1998年调查的居民再次进行调查,随访到475名受访者。研究发现,时隔八年后,随着环境镉接触的降低,居民血镉水平下降明显,而尿镉变化并不显著。通过比较前后两次调查中尿N-乙酰-β-D-氨基葡萄糖苷酶(UNAG)和UB2M的平均值显示,居民总体的肾小管功能状况并无显著恢复、甚至出现恶化趋势,特别是,既往过量的UB2M排泄是肾功能不良预后的危险因素;而UALB水平却明显降低,意味着肾小球功能的改善。除了既往镉接触水平,还发现镉致肾小管损伤仅在特定的性别或年龄组出现恢复的迹象。
     人群研究有很多不确定因素,比如接触剂量、时间及接触途径,需要受到严格控制的动物试验加以佐证。为阐明金属硫蛋白(MT)在镉暴露致肾功能损伤发生和预后中的作用,建立了两个动物模型。第一个模型将雄性Wistar大鼠分别进行锌、铜预处理,皮下注射镉-金属硫蛋白复合物(CdMT)造成急性镉中毒,观察到不同剂量镉染毒后,锌或铜诱导动物肝MT中金属含量比例存在差异,铜/镉高于锌/镉,即与镉相比,铜更易将MT结合锌取代,并认为肝脏中非MT结合锌也是影响与MT结合的金属离子稳态的重要因素。第二个模型将Wistar大鼠经饮用水染镉12周,之后停止染毒、继续观察16周。该试验选取的染毒途径、时间是为了模拟生活在镉污染区普通居民的镉接触情况,旨在通过MT免疫组化法测定和比较终止镉染毒前后大鼠肝、肾组织MT表达情况,探讨其与以UNAG、UMT为指标的肾功能损伤预后的关系。研究发现,亚慢性经口染镉后大鼠肝脏和肾脏MT增加;当染毒终止后,肝脏镉负荷下降而肝脏MT水平上升。到28周后,低剂量组雄性大鼠UNAG降低和所有剂量组UMT下降,可能预示着由肝脏转运至肾脏的CdMT减少和肾小管功能的部分恢复。这些发现有助于揭示人类停止镉接触后机体功能的变化过程,并提示个体间合成MT能力的差异可能是镉致肾毒性发生的重要因素。
     蛋白质组学技术的出现为镉致肾功能损害及其预后研究提供了新的思路。为了解镉致肾损伤尿蛋白质表达情况,采用增强激光解析电离-飞行时间质谱(SELDI-TOF MS)蛋白质芯片技术,对饮水染镉试验中雄鼠染毒前(0周)和染毒后第2、4、8、12周尿样进行分析。结果显示,镉处理组大鼠在不同时点的尿液蛋白质峰数目与对照组基本相同,主要集中在2000-5000Da、8000-12000Da、17000-19000 Da 3个分子量区域内,但是对照组的蛋白质峰强度比镉处理组低很多。镉处理组大鼠尿液平均有11个蛋白质峰,与对照组相比都表达上调。此外,对照组大鼠尿液中蛋白排泄量基本保持恒定,而镉处理组大鼠的蛋白峰强度呈现出时间-效应趋势。据此,初步了解镉接触早期尿蛋白峰的强度和分布模式,并揭示染毒剂量高低与差异蛋白峰出现时间先后的关系,有助于筛选出一组能反映肾功能损伤的敏感的生物标志,为镉肾毒性的早期防护和预后研究提供依据。SELDI分析提供的信息有限,为获取镉致肾损伤及其预后的尿蛋白质表达谱,利用双向凝胶电泳(2DE)技术分析大鼠饮水染镉试验尿样和华东某地镉污染区居民尿样,获取银染的双向电泳图像,经比较发现:镉性肾损害尿蛋白质组(大鼠)及其不同预后尿蛋白质组(人)的差异主要出现在低分子量区域,表明慢性镉中毒的损伤与预后均以低分子量蛋白尿为特征;同性别的各剂量组大鼠尿蛋白分布模式基本上是一致的,而不同个人之间的蛋白分布模式差异却很大。进一步利用双向差异凝胶电泳结合基质辅助激光解析电离-飞行时间质谱(2DE DIGE with MALDI-TOF MS)技术分析差异表达,鉴定出常用的镉肾毒性效应指标血清白蛋白(ALB)、NAG,还发现了潜在的可用于镉肾毒性及预后研究的蛋白质人α1-微球蛋白/bikunin前体、IgG kappa chain。
Occupational or environmental exposure to cadmium (Cd) can give rise to adverse health effects, particularly kidney damage, as a result of Cd accumulation in the kidneys. Cd-induced kidney damage is characterized by proximal tubular reabsorptive dysfunction, the earliest manifestations of which are increased urinary excretion of low-molecular-weight proteins such as urinary metallothionein (UMT) andβ2-microglobulin (UB2M), etc. An important toxicological feature of cadmium is its extremely long biological half-time in the organism. Once absorbed, cadmium is efficiently retained in the organism and accumulates throughout life. The prognosis of Cd-induced kidney dysfunction after the cessation of or reduction in Cd-exposure is concerned by researchers all over the world.
     In late 2006 we followed up the residents in Cd-polluted areas in Zhejiang Province, China, after the 1998 survey. In the pilot study conducted in 1995, the Cd content of rice produced in the highly-polluted area was found as high as 3.7 mg Cd/kg, and thus, the consumption of rice grown locally was identified as the most important determinant of Cd exposure among the residents. Since the year 1996 the residents living in the Cd-contaminated areas stopped to eat rice in their own fields and turned to rice from non-polluted areas. Data of a number of 148 individuals who were examined both in the 1995 and 1998 surveys were picked up to investigate the evolution of kidney function after reduction in Cd-exposure. Based on defined cut-off points of specific kidney markers, the prevalence of adverse renal effects in 1995 and 1998 were compared to each other, indicating that the Cd-induced renal dysfunction might be reversible if UCd concentration was low-level before exposure decreasing, otherwise it might be irreversible or aggravated. Even so, it was still unknown what would happen in a longer time perspective. Therefore, a number of 475 residents who participated in the 1998 survey were followed up in 2006. In order to evaluate the changes in renal function among the population after reduction in Cd-exposure for years, the cut-off values of kidney markers were redefined considering the aging effect and the prevalence of kidney dysfunction in 1998 and 2006 was compared to each other. To find out how the prevalence of impaired kidney function develops after cessation of exposure, and how that development relates to the initial exposure level, three different biomarkers of kidney effects were assessed:urinary N-acetyl-β-D-glucosaminidase (UNAG), UB2M and albumin (UALB). For these biomarkers we also investigated how predicitive an impaired level was for future impairment in the same individual. This study over eight years shows clearly that albuminuria from cadmium exposure (at the here observed exposure levels) is a reversible effect that recovers after cessation of exposure. For the markers of tubular effects, a tendency towards improvement, but not complete recovery, was observed for UNAG, but only among women. Maybe there is also some improvement for UB2M, but then only in relatively young individuals. The pattern previously indicated in a smaller three-year study, with improvements for individuals with low exposure levels and impairment for those with high exposure levels did not repeat itself. Based on the individual level, the study demonstrates that an impaired UNAG value is very little prognostic for the result of a future sampling for UNAG. In contrast, an impaired UB2M value is a strong predictor of impaired values also in the future.
     Animal studies with well-defined exposure doses, duration and route, can help understand the process of evolution of renal function after changes of Cd-exposure. In one experiment, Wistar male rats pre-treated with zinc (Zn) or copper (Cu), were administered with CdMT, to observe the ratios of Zn/Cd, Cu/Cd in liver metallothionein (MT) induced by zinc or copper. It was concluded that Zn bound to MT was more easily replaced by Cu than Cd bound to MT. The non-MT-bound Zn in liver tissues may be one of the explanations for the difference. In another one, to investigate the role of MT in tissues after cessation of Cd-exposure, Wistar rats of both genders were exposed to Cd via drinking water for 12 weeks, and then exposure was stopped; the animals were monitored for the following 16 weeks, i.e., until 28 weeks after start of the experiment. We observed that the levels of immunohistochemically determined MT in rat liver and kidneys were responsive to chronic oral Cd exposure. Once the exposure ceased, the present study confirmed a decreased Cd burden in the liver tissue and found increased hepatic MT levels. The decreased UNAG levels in the lowest-dose group and the decreased UMT levels in the urine in all of the dose groups after cessation of exposure might reflect a partial recovery of renal tubular function and decreased transport of CdMT from the liver. These findings should also contribute to our understanding of the events taking place in tissues after cessation of Cd exposure in humans.
     Recent developments in proteomic technologies have provided tools for discovering and identifying disease-associated biomarkers. Surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) analysis was performed on urine samples for Wistar male rats orally exposed to Cd via drink water. The samples collected at different time points of the exposure, demonstrated a time-dependant increase in the density of protein/peptides peaks at the range of 2000-5000 Da,8000-12000 Da and 17000-19000 Da. The dose-effect relationship was also found between dose groups and the density of those peaks. This experiment revealed the time-related and dose-related changes of urinary protein patterns under Cd-exposure, which might be a good start to investigate the Cd nephrotoxicity and its prognosis from a proteomic perspective. Because of the limited information provided by SELDI analysis, two-dimensional gel electrophoresis (2DE) was performed to profile urinary proteins from animals (rats exposed to Cd via drinking water) and humans (residents living in the Cd-contaminated areas in southeast China). The silver-staining images showed a similar pattern of protein spots for the urine from rats of the same gender at the same dose, but varied patterns for individuals of human. In spite of that, both urinary proteome of Cd-induced renal dysfunction (rats) and its prognosis (human) indicated increasing spots located in the low-molecular-weight area. Furthermore, by labeling urinary proteins with different fluorescent dyes, the 2D difference gel electrophoresis (2D-DIGE) analysis revealed 95 protein spots for rats and 78 for humans, the expression levels of which were altered during cadmium exposure.36 protein spots up-regulated in rat urines and 21 in human urines (>1.49-fold changes and P<0.05) were picked up for subsequent identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) followed by peptide mass fingerprinting. Some of them were identified as Serum albumin, NAG, Ig kappa chain C region, human alpha-1-microglobulin/bikunin precursor (Protein AMBP) and rat alpha-2u-globulin. The elevated excretion of urinary NAG and albumin (both of which are widely used in the study of Cd nephrotoxicity), and probably Protein AMBP, was a sign of impaired renal function. Ig Kappa chain may increase when the capacity of tubular reabsorption decrease. Although not all urinary biomarkers related to cadmium toxicity were covered by our findings, the present study should be regarded as exploratory in an attempt to profile cadmium-induced proteinuria with proteomic techniques.
引文
[1]Nordberg GF, Nogawa K, Nordberg M, et al. Cadmium [A]. In:Nordberg GF, Fowler BA, Nordberg M, et al., editors. Handbook on the toxicology of metals-third edition [M]. Burlington:Academic Press,2007:446-486.
    [2]Jin T, Nordberg G, Wu X, et al. Urinary N-acetyl-beta-D-glucosaminidase isoenzymes as biomarker of renal dysfunction caused by cadmium in a general population [J]. Environ Res.1999,81(2):167-173.
    [3]Jin T, Nordberg M, Frech W, et al. Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad) [J]. Biometals.2002,15(4):397-410.
    [4]in T, Kong Q, Ye T, et al. Renal dysfunction of cadmium-exposed workers residing in a cadmium-polluted environment [J]. Biometals.2004,17(5):513-518.
    [5]Jin T, Wu X, Tang Y, et al. Environmental epidemiological study and estimation of benchmark dose for renal dysfunction in a cadmium-polluted area in China [J]. Biometals.2004,17(5):525-530.
    [6]Lu J, Jin T, Nordberg G, et al. Metallothionein gene expression in peripheral lymphocytes from cadmium-exposed workers [J]. Cell Stress Chaperones. 2001,6(2):97-104.
    [7]Lu J, Jin T, Nordberg G, et al. Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium [J]. Toxicol Appl Pharmacol.2005,206(2):150-156.
    [8]常秀丽,金泰廙,周袁芬.镉诱导人外周血淋巴细胞金属硫蛋白-1基因亚型的表达[J].卫生研究,2005,34(2):137-140.
    [9]常秀丽,金泰廙,陈亮,雷立健,周袁芬.金属硫蛋白基因亚型表达在镉接触中作为生物标志物的研究[J].中华劳动卫生职业病杂志,2006,24(1):12-15.
    [10]Chang X, Jin T, Chen L, et al. Metallothionein I isoform mRNA expression in peripheral lymphocytes as a biomarker for occupational cadmium exposure [J]. Exp Biol Med (Maywood).2009,234(6):666-672.
    [11]Chen L, Jin T, Huang B, et al. Plasma metallothionein antibody and cadmium-induced renal dysfunction in an occupational population in China [J]. Toxicol Sci.2006,91(1):104-112.
    [12]Chen L, Lei L, Jin T, et al. Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population [J]. Diabetes Care. 2006,29(12):2682-2687.
    [13]Kido T, Honda R, Tsuritani I, et al. Progress of renal dysfunction in inhabitants environmentally exposed to cadmium [J]. Arch Environ Health.1988,43(3):213-217.
    [14]wata K, Saito H, Moriyama M, et al. Renal tubular function after reduction of environmental cadmium exposure:a ten-year follow-up [J]. Arch Environ Health. 1993,48(3):157-163.
    [15]Lauwerys R, Dewals P. Environmental-Pollution by Cadmium and Mortality from Renal Diseases [J]. Lancet.1981,1(8216):383-383.
    [16]Inskip H, Beral V, Mcdowall M. Mortality of Shipham Residents-40-Year Follow-Up [J]. Lancet.1982,1(8277):896-899.
    [17]shijo M, Nakagawa H, Morikawa Y, et al. Mortality of inhabitants in an area polluted by cadmium:15 year follow up [J]. Occup Environ Med. 1995,52(3):181-184.
    [18]Hotz P, Buchet JP, Bernard A, et al. Renal effects of low-level environmental cadmium exposure:5-year follow-up of a subcohort from the Cadmibel study [J]. Lancet.1999,354(9189):1508-1513.
    [19]Thongboonkerd V. Proteomics in nephrology:Current status and future directions [J]. American Journal of Nephrology.2004,24(3):360-378.
    [20]Kasuya M, Tetanishi H, Kubota Y, et al. Significance of determination of low molecular weight protein in urine and serum in patients with Itai-itai disease and their family member:an observation of of urinary low molecular weight proteins after a ten year interval urinary low molecular weight proteins after a ten year interval [J]. Kankyo Hoken Repoto.1986,52:276-282.
    [21]Iwata K, Saito H, Moriyama M, et al. Renal Tubular Function after Reduction of Environmental Cadmium Exposure-a 10-Year Follow-Up [J]. Archives of Environmental Health.1993,48(3):157-163.
    [22]Cai S, Yue L, Shang Q, et al. Cadmium exposure among residents in an area contaminated by irrigation water in China [J]. Bull World Health Organ. 1995,73(3):359-367.
    [23]Cai S, Yue L, Jin T, et al. Renal dysfunction from cadmium contamination of irrigation water:dose-response analysis in a Chinese population [J]. Bull World Health Organ.1998,76(2):153-159.
    [24]Nordberg GF, Jin T, Kong Q, et al. Biological monitoring of cadmium exposure and renal effects in a population group residing in a polluted area in China [J]. Sci Total Environ.1997,199(1-2):111-114.
    [25]Neuman RG, Cohen MP. Improved competitive enzyme-linked immunoassay (ELISA) for albuminuria [J]. Clin Chim Acta.1989,179(3):229-237.
    [26]Hare RS. Endogenous creatinine in serum and urine [J]. Proc Soc Exp Biol Med. 1950,74(1):148-151.
    [27]Lauwerys R, Roels H, Bernard A, et al. Renal response to cadmium in a population living in a nonferrous smelter area in Belgium [J]. Int Arch Occup Environ Health.1980,45(3):271-274.
    [28]Roels HA, Lauwerys RR, Buchet JP, et al. In vivo measurement of liver and kidney cadmium in workers exposed to this metal:its significance with respect to cadmium in blood and urine [J]. Environ Res.1981,26(1):217-240.
    [29]Lauwerys RR. Cadmium [A]. In:Lauwerys RR, Hoet P, editors. Industrial Chemical Exposure:Guidelines for Biological Monitoring,3rd ed [M]. Boca Raton: Lewis Publishers,2001:54-68.
    [30]De Silva PE, Donnan MB. Chronic cadmium poisoning in a pigment manufacturing plant [J]. Br J Ind Med.1981,38(1):76-86.
    [31]McDiarmid MA, Freeman CS, Grossman EA, et al. Follow-up of biologic monitoring results in cadmium workers removed from exposure [J]. Am J Ind Med. 1997,32(3):261-267.
    [32]Mason HJ, Davison AG, Wright AL, et al. Relations between liver cadmium, cumulative exposure, and renal function in cadmium alloy workers [J]. Br J Ind Med. 1988,45(12):793-802.
    [33]Beckett WS, Nordberg GF, Clarkson TW. Routes of exposure, dose, and metabolism of metals [A]. In:Nordberg GF, Fowler BA, Nordberg M, et al, editors. Handbook on the Toxicology of Metals-Third Edition [M]. Burlington:Academic press,2007:39-64.
    [34]Bernard A. The Detection of Early Nephrotoxic Effects:Development and Validation of Screening Tests through Clinical, Epidemiological and Experimental Studies. Bruxelles:Universite Catholique de Louvain; 1988.
    [35]Buchet JP, Lauwerys R, Roels H, et al. Renal effects of cadmium body burden of the general population [J]. Lancet.1990,336(8717):699-702.
    [36]Elinder CG, Edling C, Lindberg E, et al. Assessment of renal function in workers previously exposed to cadmium [J]. Br J Ind Med.1985,42(11):754-760.
    [37]Jarup L, Elinder CG, Spang G. Cumulative blood-cadmium and tubular proteinuria:a dose-response relationship [J]. Int Arch Occup Environ Health. 1988,60(3):223-229.
    [38]Roels HA, Lauwerys RR, Buchet JP, et al. Health significance of cadmium induced renal dysfunction:a five year follow up [J]. Br J Ind Med. 1989,46(11):755-764.
    [39]Nogawa K, Kobayashi E, Honda R, et al. A follow up study on urinary findings of patients with and suspected of itai-itai disease [J]. Jap J Public Health 1979,26:25-31.
    [40]Satio H. Follow-up study on health status of residents in a cadmium polluted area after improvement of cadmium-polluted lands [J]. Kankyo Hoken Repoto. 1987,53:215-232.
    [41]Roels HA, Van Assche FJ, Oversteyns M, et al. Reversibility of microproteinuria in cadmium workers with incipient tubular dysfunction after reduction of exposure [J]. Am J Ind Med.1997,31(5):645-652.
    [42]Jarup L, Persson B, Edling C, et al. Renal function impairment in workers previously exposed to cadmium [J]. Nephron.1993,64(1):75-81.
    [43]Nordberg GF. Renal dysfunction induced by cadmium-is it reversible [A]? In: Nogawa K, Kuachi M, Kasuya M, editors. Advances in the Prevention of Environmental Cadmium Pollution and Countermeasures [M]. Eiko Laboratory,1999: 99-101.
    [44]Wu X, Liang Y, Jin T, et al. Renal effects evolution in a Chinese population after reduction of cadmium exposure in rice [J]. Environ Res.2008,108(2):233-238.
    [45]Moriguchi J, Ezaki T, Tsukahara T, et al. Comparative evaluation of four urinary tubular dysfunction markers, with special references to the effects of aging and correction for creatinine concentration [J]. Toxicol Lett.2003,143(3):279-290.
    [46]Moriguchi J, Ezaki T, Tsukahara T, et al. Effects of aging on cadmium and tubular dysfunction markers in urine from adult women in non-polluted areas [J]. Int Arch Occup Environ Health.2005,78(6):446-451.
    [47]Kobayashi E, Suwazono Y, Honda R, et al. Serial changes in urinary cadmium concentrations and degree of renal tubular injury after soil replacement in cadmium-polluted rice paddies [J]. Toxicol Lett.2008,176(2):124-130.
    [48]Gamo M, Ono K, Nakanishi J. Meta-analysis for deriving age-and gender-specific dose-response relationships between urinary cadmium concentration and beta2-microglobulinuria under environmental exposure [J]. Environ Res. 2006,101(1):104-112.
    [49]Omarova A, Phillips CJ. A meta-analysis of literature data relating to the relationships between cadmium intake and toxicity indicators in humans [J]. Environ Res.2007,103(3):432-440.
    [50]Hosoya T, Toshima R, Icida K, et al. Changes in renal function with aging among Japanese [J]. Intern Med.1995,34(6):520-527.
    [51]Vahter M, Berglund M, Akesson A, et al. Metals and women's health [J]. Environmental Research.2002,88(3):145-155.
    [52]Vahter M, Akesson A, Liden C, et al. Gender differences in the disposition and toxicity of metals [J]. Environmental Research.2007,104(1):85-95.
    [53]Nishijo M, Satarug S, Honda R, et al. The gender differences in health effects of environmental cadmium exposure and potential mechanisms [J]. Mol Cell Biochem. 2004,255(1-2):87-92.
    [54]Nishijo M, Nakagawa H, Morikawa Y, et al. Prognostic factors of renal dysfunction induced by environmental cadmium pollution [J]. Environ Res. 1994,64(2):112-121.
    [55]Kawada T, Koyama H, Suzuki S. Cadmium, NAG activity, and beta 2-microglobulin in the urine of cadmium pigment workers [J]. Br J Ind Med. 1989,46(1):52-55.
    [56]Price RG. Measurement of N-acetyl-beta-glucosaminidase and its isoenzymes in urine methods and clinical applications [J]. Eur J Clin Chem Clin Biochem. 1992,30(10):693-705.
    [57]Bernard A, Thielemans N, Roels H, et al. Association between NAG-B and cadmium in urine with no evidence of a threshold [J]. Occup Environ Med. 1995,52(3):177-180.
    [58]Axelsson B, Piscator M. Renal Damage after Prolonged Exposure to Cadmium-an Experimental Study [J]. Archives of Environmental Health.1966,12(3):360-373.
    [59]Nomiyama K, Nomiyama H. Reversibility of Cadmium-Induced Health-Effects in Rabbits [J]. Environmental Health Perspectives.1984,54(Mar):201-211.
    [60]Nordberg GF, Goyer R, Nordberg M. Comparative Toxicity of Cadmium-Metallothionein and Cadmium Chloride on Mouse Kidney [J]. Archives of Pathology.1975,99(4):192-197.
    [61]Jin T, Nordberg GF, Nordberg M. Resistance to Acute Nephrotoxicity Induced by Cadmium-Metallothionein Dependence on Pretreatment with Cadmium Chloride [J]. Pharmacology & Toxicology.1987,61(2):89-93.
    [62]Nordberg M. Metallothioneins:historical review and state of knowledge [J]. Talanta.1998,46(2):243-254.
    [63]Kagi JH, Kojima Y. Chemistry and biochemistry of metallothionein [J]. Experientia Suppl.1987,52:25-61.
    [64]Liu X, Jin T, Nordberg GF, et al. Influence of zinc and copper administration on metal disposition in rats with cadmium-metallothionein-induced nephrotoxicity [J]. Toxicol Appl Pharmacol.1994,126(1):84-90.
    [65]Nordberg M, Nordberg GF, Piscator M. Isolation and characterization of a hepatic metallothionein from mice [J]. Environ Physiol Biochem.1975,5(6):396-403.
    [66]Nordberg GF. Modulation of metal toxicity by metallothionein [J]. Biol Trace Elem Res.1989,21:131-135.
    [67.Bremner I. Nutritional and physiological significance of metallothionein [J]. Experientia Suppl.1987,52:81-107.
    [68]Kagi JH, Vallee BL. Metallothionein:a cadmium and zinc-containign protein from equine renal cortex. Ⅱ. Physico-chemical properties [J]. J Biol Chem. 1961,236:2435-2442.
    [69]Satarug S, Baker JR, Reilly PE, et al. Changes in zinc and copper homeostasis in human livers and kidneys associated with exposure to environmental cadmium [J]. Hum Exp Toxicol.2001,20(4):205-213.
    [70]Nordberg GF. Historical perspectives on cadmium toxicology [J]. Toxicol Appl Pharmacol.2009,238(3):192-200.
    [71]Nordberg GF, Piscator M, Lind B. Distribution of cadmium among protein fractions of mouse liver [J]. Acta Pharmacol Toxicol (Copenh).1971,29(5):456-470.
    [72]Liu J, Liu Y, Habeebu SM, et al. Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-Ⅰ/Ⅱ null mice [J]. Toxicology.2000,147(3):157-166.
    [73]Liu Y, Liu J, Habeebu SM, et al. Metallothionein-Ⅰ/Ⅱ null mice are sensitive to chronic oral cadmium-induced nephrotoxicity [J]. Toxicol Sci.2000,57(1):167-176.
    [74]Chen L, Jin T, Huang B, et al. Critical exposure level of cadmium for elevated urinary metallothionein-an occupational population study in China [J]. Toxicol Appl Pharmacol.2006,215(1):93-99.
    [75]Mullins JE, Fuentealba IC. Immunohistochemical detection of metallothionein in liver, duodenum and kidney after dietary copper-overload in rats [J]. Histol Histopathol.1998,13(3):627-633.
    [76]Tuccari G, Giuffre G, Arena F, et al. Immunohistochemical detection of metallothionein in carcinomatous and normal human gastric mucosa [J]. Histol Histopathol.2000,15(4):1035-1041.
    [77]Ferreira de Aguiar MC, Gomes Dos Reis D, da Silva Fonseca LM, et al. Immunohistochemical evaluation of metallothionein in palatal mucosal cells of mice treated with 4NQO [J]. Med Oral Patol Oral Cir Bucal.2006,11(4):E315-318.
    [78]Dabrio M, Rodriguez AR, Bordin G, et al. Recent developments in quantification methods for metallothionein [J]. J Inorg Biochem.2002,88(2):123-134.
    [79]Borges Junior PC, Ribeiro RI, Cardoso SV, et al. Metallothionein immunolocalization in actinic skin nonmelanoma carcinomas [J]. Appl Immunohistochem Mol Morphol.2007,15(2):165-169.
    [80]Tucker SM, Boyd PJ, Thompson AE, et al. Automated assay of N-acetyl-beta-glucosaminidase in normal and pathological human urine [J]. Clin Chim Acta.1975,62(2):333-339.
    [81]Elmes ME, Haywood S, Jasani B. A histochemical and immunocytochemical study of hepatic copper and metallothionein in the pre-and post-natal rat [J]. J Pathol. 1991,164(1):83-87.
    [82]Fuller CE, Elmes ME, Jasani B. Age-related changes in metallothionein, copper, copper-associated protein, and lipofuscin in human liver:a histochemical and immunohistochemical study [J]. J Pathol.1990,161 (2):167-172.
    [83]Schmid KW, Morgan JM, Ofner D, et al. Quantitative immunohistochemical evaluation by image analysis of metallothionein in copper-loaded rat kidney [J]. J Histochem Cytochem.1993,41(5):727-731.
    [84]Johansson AC, Visse E, Widegren B, et al. Computerized image analysis as a tool to quantify infiltrating leukocytes:a comparison between high-and low-magnification images [J]. J Histochem Cytochem.2001,49(9):1073-1079.
    [85]Nordberg M, Jin T, Nordberg GF. Cadmium, metallothionein and renal tubular toxicity [A]. In:Nordberg GF, Alessio L, Herber RFM, editors. Cadmium in the Human Environment:Toxicity and Carcinogenicity (No 118) [M]. Lyon:IARC Scientific Publications,1992:293-297.
    [86]Jin T, Lu J, Nordberg M. Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein [J]. Neurotoxicology. 1998,19(4-5):529-535.
    [87]Nordberg M, Nordberg GF. Toxicological aspects of metallothionein [J]. Cell Mol Biol (Noisy-le-grand).2000,46(2):451-463.
    [88]Nordberg GF, Kjellstrom T, Nordberg M. Kinetics and metabolism [A]. In: Friberg L, Elinder CG, Kjellstrom T, et al, editors. Cadmium and health:a toxicological and epidemiological appraisal [M]. Boca Raton:CRC Press, 1985:103-178.
    [89]Jin TY, Leffler P, Nordberg GF. Cadmium-metallothionein nephrotoxicity in the rat:transient calcuria and proteinuria [J]. Toxicology.1987,45(3):307-317.
    [90]Kjellstrom T. Renal effects [A]. In:Friberg L, Elinder CG, Kjellstrom T, et al., editors. Cadmium and health:a toxicological and epidemiological appraisal. Vol Ⅱ. Effects and response [M]. Boca Raton:CRC Press,1986:21-109.
    [91]Blazka ME, Nolan CV, Shaikh ZA. Developmental and sex differences in cadmium distribution and metallothionein induction and localization [J]. J Appl Toxicol.1988,8(3):217-222.
    [92]Blazka ME, Shaikh ZA. Sex differences in hepatic and renal cadmium accumulation and metallothionein induction. Role of estradiol [J]. Biochem Pharmacol.1991,41(5):775-780.
    [93]Shaikh ZA, Jordan SA, Tewari PC. Cadmium disposition and metallothionein induction in mice:strain-, sex-, age-and dose-dependent differences [J]. Toxicology. 1993,80(1):51-70.
    [94]Kahn P. From genome to proteome:looking at a cell's proteins [J]. Science. 1995,270(5235):369-370.
    [95]Witzmann F, Clack J, Fultz C, et al. Two-dimensional electrophoretic mapping of hepatic and renal stress proteins [J]. Electrophoresis.1995,16(3):451-45.9.
    [96]Marshall T, Williams K. Two-dimensional electrophoresis of human urinary proteins following concentration by dye precipitation [J]. Electrophoresis. 1996,17(7):1265-1272.
    [97]Thongboonkerd V, McLeish KR, Arthur JM, et al. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation [J]. Kidney Int.2002,62(4):1461-1469.
    [98]Schaub S, Wilkins J, Weiler T, et al. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry [J]. Kidney Int.2004,65(1):323-332.
    [99]Rasmussen HH, Orntoft TF, Wolf H, et al. Towards a comprehensive database of proteins from the urine of patients with bladder cancer [J]. J Urol. 1996,155(6):2113-2119.
    [100]Vlahou A, Schellhammer PF, Mendrinos S, et al. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine [J]. Am J Pathol.2001,158(4):1491-1502.
    [101]Thongboonkerd V, Klein JB, Jevans AW, et al. Urinary proteomics and biomarker discovery for glomerular diseases [J]. Contrib Nephrol.2004,141:292-307.
    [102]Hegedus CM, Skibola CF, Warner M, et al. Decreased urinary beta-defensin-1 expression as a biomarker of response to arsenic [J]. Toxicol Sci.2008,106(1):74-82.
    [103]Pisitkun T, Johnstone R, Knepper MA. Discovery of urinary biomarkers [J]. Mol Cell Proteomics.2006,5(10):1760-1771.
    [104]Cutler P. Protein arrays:the current state-of-the-art [J]. Proteomics. 2003,3(1):3-18.
    [105]Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry [J]. Electrophoresis. 2000,21 (6):1164-1177.
    [106]Goyer RA, Cherian MG. Renal effects of metals. In:Goyer RA, Cherian MG, editors. Metal Toxicology San Diego:Academic Press,1995:389-412.
    [107]Bernard A, Roels H, Thielemans N. Assessment of the casuality of the cadmium-protein relationships in the urine of the general population with reference to the Cadmibel study [A]. In:Nordberg GF, Alessio L, Herber RFM, editors. Cadmium in the Human Environment:Toxicity and Carcinogenicity (No 118) [M]. Lyon:IARC Scientific Publications,1992:341-346.
    [108]Verschoor M, Herber R, van Hemmen J, et al. Renal function of workers with low-level cadmium exposure [J]. Scand J Work Environ Health.1987,13(3):232-238.
    109] Tohyama C, Kobayashi E, Saito H, et al. Urinary alpha 1-microglobulin as an indicator protein of renal tubular dysfunction caused by environmental cadmium exposure [J]. J Appl Toxicol.1986,6(3).171-178.
    [110]Myrick JE, Caudill SP, Robinson MK, et al. Quantitative two-dimensional electrophoretic detection of possible urinary protein biomarkers of occupational exposure to cadmium [J]. Appl Theor Electrophor.1993,3(3-4):137-146.
    [111]Bottini PV, Ribeiro Alves MA, Garlipp CR. Electrophoretic pattern of concentrated urine:comparison between 24-hour collection and random samples [J]. Am J Kidney Dis.2002,39(1):E2.
    [112]Hoorn EJ, Pisitkun T, Zietse R, et al. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers [J]. Nephrology (Carlton). 2005,10(3):283-290.
    [113]Thongboonkerd V, Chutipongtanate S, Kanlaya R. Systematic evaluation of sample preparation methods for gel-based human urinary proteomics:quantity, quality, and variability [J]. J Proteome Res.2006,5(1):183-191.
    [114]Oh J, Pyo JH, Jo EH, et al. Establishment of a near-standard two-dimensional human urine proteomic map [J]. Proteomics.2004,4(11):3485-3497.
    [115]Mackintosh JA, Choi HY, Bae SH, et al. A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis [J]. Proteomics.2003,3(12):2273-2288.
    [116]Kania K, Byrnes EA, Beilby JP, et al. Urinary proteases degrade albumin: implications for measurement of albuminuria in stored samples [J]. Ann Clin Biochem.47(Pt2):151-157.
    [117]Yu H, Yanagisawa Y, Forbes MA, et al. Alpha-1-microglobulin:an indicator protein for renal tubular function [J]. J Clin Pathol.1983,36(3):253-259.
    [118]Weber MH, Verwiebe R. Alpha 1-microglobulin (protein HC):features of a promising indicator of proximal tubular dysfunction [J]. Eur J Clin Chem Clin Biochem.1992,30(10):683-691.
    [119]Jarup L, Alfven T. Low level cadmium exposure, renal and bone effects-the OSCAR study [J]. Biometals.2004,17(5):505-509.
    [120]Groop L, Makipernaa A, Stenman S, et al. Urinary excretion of kappa light chains in patients with diabetes mellitus [J]. Kidney Int.1990,37(4):1120-1125.
    [121]Roy AK, Neuhaus OW. Identification of rat urinary proteins by zone and immunoelectrophoresis [J]. Proc Soc Exp Biol Med.1966,121(3):894-899.
    [122]Bayard C. Purification, characterization and immunological studies of rat urinary proteins causing allergy in humans. Second Edition. Solna:Arbete och Halsa; 1998:15.
    [123]Hard GC, Rodgers IS, Baetcke KP, et al. Hazard evaluation of chemicals that cause accumulation of alpha 2u-globulin, hyaline droplet nephropathy, and tubule neoplasia in the kidneys of male rats [J]. Environ Health Perspect.1993,99:313-349.
    [124]Hamamura M, Hirose A, Kamata E, et al. Semi-quantitative immunohistochemical analysis of male rat-specific alpha2u-globulin accumulation for chemical toxicity evaluation [J]. J Toxicol Sci.2006,31(1):35-47.
    [1]Thongboonkerd V. Proteomics in nephrology:Current status and future directions [J]. American Journal of Nephrology.2004,24(3):360-378.
    [2]Kahn P. From genome to proteome:looking at a cell's proteins [J]. Science. 1995,270(5235):369-370.
    [3]Witzmann F, Clack J, Fultz C, et al. Two-dimensional electrophoretic mapping of hepatic and renal stress proteins [J]. Electrophoresis.1995,16(3):451-459.
    [4]Marshall T, Williams K. Two-dimensional electrophoresis of human urinary proteins following concentration by dye precipitation [J]. Electrophoresis. 1996,17(7):1265-1272.
    [5]Mackintosh JA, Choi HY, Bae SH, et al. A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis [J]. Proteomics.2003,3(12):2273-2288.
    [6]McCormack AL, Schieltz DM, Goode B, et al. Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level [J]. Anal Chem.1997,69(4):767-776.
    [7]Wu CC, MacCoss MJ, Howell KE, et al. A method for the comprehensive proteomic analysis of membrane proteins [J]. Nat Biotechnol. 2003,21 (5):532-538.
    [8]Gygi SP, Rist B, Griffin TJ, et al. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags [J]. J Proteome Res.2002,1(1):47-54.
    [9]Cutler P. Protein arrays:the current state-of-the-art [J]. Proteomics. 2003,3(1):3-18.
    [10]Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry [J]. Electrophoresis. 2000,21(6):1164-1177.
    [11]Heine G, Raida M, Forssmann WG. Mapping of peptides and protein fragments in human urine using liquid chromatography-mass spectrometry [J]. J Chromatogr A.1997,776(1):117-124.
    [12]Spahr CS, Davis MT, McGinley MD, et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. Ⅰ. Profiling an unfractionated tryptic digest [J]. Proteomics.2001,1(1):93-107.
    [13]Thongboonkerd V, McLeish KR, Arthur JM, et al. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation [J]. Kidney Int.2002,62(4):1461-1469.
    [14]Wittke S, Fliser D, Haubitz M, et al. Determination of peptides and proteins in human urine with capillary electrophoresis-mass spectrometry, a suitable tool for the establishment of new diagnostic markers [J]. Journal of Chromatography A. 2003,1013(1-2):173-181.
    [15]Schaub S, Wilkins J, Weiler T, et al. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry [J]. Kidney Int.2004,65(1):323-332.
    [16]Thongboonkerd V, Semangoen T, Chutipongtanate S. Enrichment of the basic/cationic urinary proteome using ion exchange chromatography and batch adsorption [J]. J Proteome Res.2007,6(3):1209-1214.
    [17]Rasmussen HH, Orntoft TF, Wolf H, et al. Towards a comprehensive database of proteins from the urine of patients with bladder cancer [J]. J Urol. 1996,155(6):2113-2119.
    [18]Clarke W, Silverman BC, Zhang Z, et al. Characterization of renal allograft rejection by urinary proteomic analysis [J]. Ann Surg.2003,237(5):660-664.
    [19]Norden AG, Sharratt P, Cutillas PR, et al. Quantitative amino acid and proteomic analysis:very low excretion of polypeptides>750 Da in normal urine [J]. Kidney Int.2004,66(5):1994-2003.
    [20]Mischak H, Kaiser T, Walden M, et al. Proteomic analysis for the assessment of diabetic renal damage in humans [J]. Clin Sci (Lond).2004,107(5):485-495.
    [21]Weissinger EM, Wittke S, Kaiser T, et al. Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes [J]. Kidney Int.2004,65(6):2426-2434.
    [22]O'Riordan E, Orlova TN, Mei JJ, et al. Bioinformatic analysis of the urine proteome of acute allograft rejection [J]. J Am Soc Nephrol. 2004,15(12):3240-3248.
    [23]Jain S, Rajput A, Kumar Y, et al. Proteomic analysis of urinary protein markers for accurate prediction of diabetic kidney disorder [J]. J Assoc Physicians India. 2005,53:513-520.
    [24]Meier M, Kaiser T, Herrmann A, et al. Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis [J]. J Diabetes Complications.2005,19(4):223-232.
    [25]Rossing K, Mischak H, Parving HH, et al. Impact of diabetic nephropathy and angiotensin Ⅱ receptor blockade on urinary polypeptide patterns [J]. Kidney Int. 2005,68(1):193-205.
    [26]Sharma K, Lee S, Han S, et al. Two-dimensional fluorescence difference gel electrophoresis analysis of the urine proteome in human diabetic nephropathy [J]. Proteomics.2005,5(10):2648-2655.
    [27]Haubitz M, Wittke S, Weissinger EM, et al. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy [J]. Kidney Int. 2005,67(6):2313-2320.
    [28]Oates JC, Varghese S, Bland AM, et al. Prediction of urinary protein markers in lupus nephritis [J]. Kidney Int.2005,68(6):2588-2592.
    [29]Wittke S, Mischak H, Walden M, et al. Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches [J]. Electrophoresis. 2005,26(7-8):1476-1487.
    [30]Wittke S, Haubitz M, Walden M, et al. Detection of acute tubulointerstitial rejection by proteomic analysis of urinary samples in renal transplant recipients [J]. Am J Transplant.2005,5(10):2479-2488.
    [31]Nguyen MT, Ross GF, Dent CL, et al. Early prediction of acute renal injury using urinary proteomics [J]. Am J Nephrol.2005,25(4):318-326.
    [32]Chutipongtanate S, Nakagawa Y, Sritippayawan S, et al. Identification of human urinary trefoil factor 1 as a novel calcium oxalate crystal growth inhibitor [J]. J Clin Invest.2005,115(12):3613-3622.
    [33]Mosley K, Tam FW, Edwards RJ, et al. Urinary proteomic profiles distinguish between active and inactive lupus nephritis [J]. Rheumatology (Oxford). 2006,45(12):1497-1504.
    [34]Park MR, Wang EH, Jin DC, et al. Establishment of a 2-D human urinary proteomic map in IgA nephropathy [J]. Proteomics.2006,6(3):1066-1076.
    [35]Khurana M, Traum AZ, Aivado M, et al. Urine proteomic profiling of pediatric nephrotic syndrome [J]. Pediatr Nephrol.2006,21(9):1257-1265.
    [36]Liu BC, Zhang L, Lv LL, et al. Application of antibody array technology in the analysis of urinary cytokine profiles in patients with chronic kidney disease [J]. Am J Nephrol.2006,26(5):483-490.
    [37]Ngai HH, Sit WH, Jiang PP, et al. Serial changes in urinary proteome profile of membranous nephropathy:implications for pathophysiology and biomarker discovery [J]. J Proteome Res.2006,5(11):3038-3047.
    [38]Woroniecki RP, Orlova TN, Mendelev N, et al. Urinary proteome of steroid-sensitive and steroid-resistant idiopathic nephrotic syndrome of childhood [J]. Am J Nephrol.2006,26(3):258-267.
    [39]Khositseth S, Kanitsap N, Warnnissorn N, et al. IgA nephropathy associated with Hodgkin's disease in children:a case report, literature review and urinary proteome analysis [J]. Pediatr Nephrol.2007,22(4):541-546.
    [40]Ngai HH, Sit WH, Jiang PP, et al. Markedly increased urinary preprohaptoglobin and haptoglobin in passive Heymann nephritis:a differential proteomics approach [J]. J Proteome Res.2007,6(8):3313-3320.
    [41]Hegedus CM, Skibola CF, Warner M, et al. Decreased urinary beta-defensin-1 expression as a biomarker of response to arsenic [J]. Toxicol Sci. 2008,106(1):74-82.
    [42]Malard V, Gaillard JC, Berenguer F, et al. Urine proteomic profiling of uranium nephrotoxicity [J]. Biochim Biophys Acta.2009,1794(6):882-891.
    [43]Bottini PV, Ribeiro Alves MA, Garlipp CR. Electrophoretic pattern of concentrated urine:comparison between 24-hour collection and random samples [J]. Am J Kidney Dis.2002,39(1):E2.
    [44]Hoorn EJ, Pisitkun T, Zietse R, et al. Prospects for urinary proteomics:exosomes as a source of urinary biomarkers [J]. Nephrology (Carlton).2005,10(3):283-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700