冠心康抗镉染毒致动脉硬化作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉(Cadmium,Cd)是工业上常用的一种二价重金属。自然界中天然存在的镉丰度并不高,但随着现代工业的发展,镉污染越来越成为威胁人类健康的重要危险因素[1]。镉主要通过消化道和呼吸道吸收,通过血液循环释放到全身组织器官中。一般认为镉的生物半减期是10~30年,因此具有很强的蓄积性。近年研究表明,镉中毒是引起动脉硬化、高血压病等心脑血管的原因之一,而西医治疗尚无可靠方法。中医虽没有镉中毒的记载,但在动脉硬化的防治中具有一定的优势,因此探索镉中毒诱发动脉硬化的中医病因病机和中医防治方法具有很好的现实意义和可能性。
     目的:
     1.通过体外培养HUVECs构建镉染毒损伤血管内皮细胞模型,对比观察冠心康和硫酸锌对镉染毒人脐静脉内皮细胞一氧化氮(NO)、细胞间黏附因子-1( ICAM-1)等血管内皮活性物质及细胞色素C(Cyt C)、细胞增殖率、细胞凋亡率等指标的变化,分析冠心康对镉染毒致血管内皮细胞损伤的保护机制;
     2.通过大鼠整体动物实验,对比观察冠心康和硫酸锌对镉染毒大鼠血清一氧化氮(NO)、细胞间黏附因子-1( ICAM-1)和主动脉病理及ICAM-1免疫组织化学的影响,分析冠心康对镉染毒致大鼠动脉硬化的保护作用,同时通过对比分析冠心康和硫酸锌对镉染毒大鼠心、肝、肾镉蓄积以及钙、锌含量变化的影响,分析冠心康对镉染毒大鼠抗镉蓄积和调节镉染毒大鼠钙锌稳态的保护作用的可能途径,为重金属中毒提供新的防治措施。
     材料与方法:
     实验一体外细胞培养实验
     60只健康Wister大鼠,随机分为6组,按药物血清制备通法制备药物血清。冠心康低、中、高浓度组按人的每日等效剂量的1O、2O及4O倍给药量折算出大鼠每日灌胃量,分别为0.8g/ml、1.6g/ml和3.2g/ml,按2 ml/(次·只)大鼠灌胃;正常对照组和模型组以生理盐水等量灌胃;西药组按人的每日等效剂量的1O倍,硫酸锌浓度1mg/ml,2 ml/(次·只)灌胃。1次/d,连续3 d。末次灌胃给药1 h后,腹主动脉采血,取含药血清。人脐静脉内皮细胞体外培养,随机分为空白组、模型组、补锌组,及冠心康低、中、高剂量组,分别以空白血清、1、5、10、30和60μM不同浓度镉(CdCl2)血清、不同浓度CdCl2及硫酸锌血清,以及不同浓度CdCl2和冠心康血清培养24h、48h、72h,荧光倒置显微镜下观察细胞表面及内部形态的变化,同时收集培养液,硝酸还原酶法测定一氧化氮(NO)浓度,免疫学酶联免疫吸附法测定细胞间黏附因子(ICAM-1)、细胞色素C(Cyt C),细胞生物学MTT法检测细胞增值率;流式细胞术(FCM)检测细胞凋亡率。
     实验二整体动物实验
     Wister雄性大鼠72只(250±50g),随机分6组,即空白组、模型组、补锌组、冠心康低、中、高剂量组。空白组饮水为正常自来水;模型组:饮水为0.05 mg/kg镉溶液,2周后改为正常饮水;补锌组造模同时,每天1mg/ml硫酸锌溶液2 ml灌胃;冠心康低、中、高剂量组造模同时,冠心康颗粒分别按1.5 g/kg/d、3 g/kg/d、6 g/kg/d,蒸馏水稀释至2 ml灌胃。试验期为60 d。观察大鼠存活率,试验结束后各组大鼠腹主动脉取血,分离血清,硝酸还原酶法测定一氧化氮(NO)含量,免疫学酶联免疫吸附法测定细胞间黏附因子(ICAM-1),主动脉取病理,,进行HE染色镜下观察,ICAM-1免疫组织化学检验,原子吸收法进行心、肝和肾中镉、锌、钙含量测定。
     结果:
     实验一体外细胞培养实验结果
     1.各组HUVECs细胞功能指标比较:
     模型组1μM、5μM、10μM、30μM和60μM各组HUVECs镉染毒24h后,一氧化氮(NO)分泌量均较正常组明显减少(P<0.01),48h后略有回升,随后明显下降,且随镉染毒浓度升高一氧化氮(NO)分泌减少,30μΜ和60μΜ镉组一氧化氮(NO)水平明显高于1μM、5μM、10μM组(P<0.05,P<0.01),与模型组相比,冠心康各剂量组和补锌组均可明显改善镉染毒后HUVECs的一氧化氮(NO)分泌浓度(P<0.01)。
     模型组各镉浓度组HUVECs镉染毒24h后,细胞间黏附因子-1( ICAM-1)分泌量较正常组明显增加(P<0.01),48h时ICAM-1分泌量继续升高(P<0.01),此后明显下降(P<0.01),但与空白组比较仍明显增高(P<0.01),不同染镉浓度对ICAM-1分泌量的影响有随镉染毒浓度升高而增加的趋势,且随染毒时间延长,增加趋势明显。与模型组比较,补锌与添加各剂量冠心康均可明显改善镉染毒后HUVECs的ICAM-1分泌量(P<0.01)。
     2.各组HUVECs细胞凋亡及细胞增殖指标比较:
     染镉后,镜下见模型组细胞出现较多凋亡细胞,以60μM组最明显,补锌组及冠心康各组细胞体积减小,但未见明显细胞死亡;ELLISA法测定细胞色素C(Cyt C)结果显示,各组细胞CytC分泌量均有不同程度升高,且与染镉浓度和染镉时间呈正相关,其中模型组细胞色素C(Cyt C)分泌量升高最明显(P<0.01),补锌组及冠心康有明显改善(P<0.05),并以冠心康中、高剂量组改善最明显;流式细胞术测定细胞凋亡率(AR)结果显示,模型组细胞凋亡率明显升高,且随染镉时间和浓度升高而升高(P<0.01),60μM模型组荧光染色细胞沉淀图片可见大量晚期凋亡细胞和死亡细胞存在,明显高于空白组和其他处理组(P<0.01)。补锌组、冠心康各剂量组与模型组比较AR明显降低(P<0.01),除冠心康高剂量-60μM染镉浓度组外,其余各处理组AR与空白组比较无统计学意义(P>0.05),各处理组组间比较无明显差异(P>0.05)。
     MTT法测定细胞增殖率(PR)结果显示,低剂量(30μM以下组)、短时间(24h)镉染毒可致HUVECs细胞增值率增高,大剂量(60μM组)、长时间(48h后)镉染毒各组均出现持续下降(P<0.01)。补锌组及冠心康各组PR有明显改善(P<0.01),且冠心康组优于补锌组(P<0.05)。
     实验二整体动物实验结果
     1.血清学检测结果:
     试验结束后,模型组与空白组比较大鼠血清一氧化氮(NO)水平明显降低(P<0.01),细胞间黏附因子-1( ICAM-1)水平明显升高(P<0.01);补锌组和冠心康低、中、高剂量组一氧化氮(NO)水平均明显高于模型组(P<0.01),ICAM-1水平较模型组均明显降低(P<0.01),其中冠心康高剂量组一氧化氮(NO)水平比空白组增高(P<0.05),ICAM-1水平高于空白组和其他处理组(P<0.01),冠心康中剂量组细胞间黏附因子-1( ICAM-1)水平比空白组比较无统计学意义(P>0.05)。
     2.病理、免疫组化结果:
     主动脉横断面HE染色,模型组可见内膜增厚,局部破裂、脱落,脂肪空泡,平滑肌细胞增生;补锌组和冠心康各组内膜较完整平坦,平滑肌细胞形态明显优于模型组。
     免疫组化结果显示,空白组主动脉内膜层及外膜层偶见细胞间黏附因子-1( ICAM-1)阳性表达,模型组各层均见较多ICAM-1阳性表达,主要存在于粥样斑块区,补锌组及冠心康各剂量组主动脉内膜及平滑肌层均可见少量ICAM-1阳性表达信号,但信号强度明显弱于模型组,且平滑肌细胞形态及排列明显优于空白对照组,尤以冠心康中剂量组改善明显。
     3.器官内镉蓄积量及钙、锌含量测定结果:
     模型组镉染毒后心、肝、肾中镉含量明显高于空白组(P<0.01),锌含量明显低于空白组(P<0.01),钙含量明显高于空白组(P<0.01);补锌组及冠心康各剂量组镉蓄积量明显减少(P<0.01),锌含量明显提高(P<0.01),与空白组无明显差异(P>0.05),且冠心康各剂量组中提供锌量明显低于补锌组(P<0.01),钙含量明显减少(P<0.01),其中冠心康低、中剂量组与空白组无明显差异(P>0.05)。
     结论:
     1.镉中毒可引起维持内皮细胞重要功能的一些关键性内稳定平衡失调,既出现血管内皮功能障碍,主要表现为血管舒张受损、细胞黏附因子增加、细胞凋亡相关因子释放,继而出现内皮细胞凋亡及内膜增生,机体出现动脉粥样硬化,说明镉染毒致动脉硬化与多个途径有关,它们之间是相互关联、相互作用的。
     2.以黄芪为君,栝楼、丹参为臣的冠心康可明显改善镉染毒造成的血管内皮损伤,增加血管内皮保护因子一氧化氮(NO)的释放,降低细胞黏附因子水平,抑制镉染毒造成的细胞内皮凋亡,多靶点共同发挥抗镉染毒致动脉粥样硬化作用;同时,冠心康对减少机体镉蓄积和维持锌、钙稳态亦有保护作用,为镉中毒的中医防治提供了新的途径。
     3.环境毒邪损失人体正气,造成气虚痰瘀可能是镉染毒诱发动脉粥样硬化的中医主要病机。
Cadmium is a bivalent heavy metal used in industry. Although the concentration of it is relative low in natural environment, Cadmium has become an increasingly important environmental pollutant during the past century. It and its compounds have been extensively used in the smelting and electroplating industries, and in the manufacturing of batteries, dyes, paints, plastics, pesticide and fertilizes. Tobacco contains significant amounts of Cd and smoking is also one of the primary sources of Cd exposure in the general population. It currently ranks 7th on the United States Environmental Protection Agency’s priority list of hazardous substances, and Japan and China are the major countries of Cd exposure in the world.
     Exposure to Cd can result in a varity of adverse effects in humans and animals. With regard to the cardiovascular system, that has been associated with a wide varity of cardiovascular pathologies including atherosclerosis, hypertension and cardio- myopathy. At the same time, reliability and available therapies have not been established in modern medicine. Although the traditional Chinese Medicine(TCM) has not the recordation about Cd toxicology, the therapeutic benefits of TCM to cure atherosclerosis and to maintain health is there. Thus, studying on the Chinese medical pathology and treatment to Cd induced atherosclerosis is regarded with practical significance and probability.
     Purpose:
     1.Probe the protecting mechanism of GuangXinKang dissolvable powder to Cadmium exposure-induced functional impairment of the endothelium.
     2. Explore the protective effects of GuangXinKang dissolvable powder on the level of NO and ICAM-1 of serum, the pathological section and immunohistochemical staining of aorta, fetal rat and accumulating Cd of heart, liver and kidney and its impact of the concentration of Zn and Ca on the Cd exposured rat, so as to find an ideal pathway of protecting Cd-feed-rat.
     Material and Methods:
     1. Extrabody Cell Culture Test
     After fed 3 days adaptively, sixty rats are randomly divided into six groups by weight: the control group and the model group are fed city water, the low dose Guanxinkang group is fed Guanxinkang 0.8g/ml, the moderate dose group ia fed Guanxinkang 1.6g/ml, and the high dose group is fed Guanxinkang 3.2g/ml, the Zinc group is fed zinc sulfate 1mg/ml, 2ml each time orally, and 2 times per day. The rats are fed 3 days. Collect of blood serum from rat’s abdominal aorta and freeze at one hour after the rats take the last drug of 3 days.
     The HUVECs are randomly divided into six groups: the control group, the model group, the zinc group and the low, moderate and high dose Guanxinkang group. The control group does not add Cd, the other groups add 1, 5, 10, 30 and 60μmol/L Cd respectively, and cultured respectively with rat’s blank serum or serum of Zinc or different concentration of Guanxinkang for 24, 48, 72 hours. Respectively, the changes of cellular morphology were detected under the inverted fluorescence microscope, the NO concentration, the intercellular adhesion molecule-1(ICAM-1) expression , Cytochrome C(Cyt C), the proliferation rate (PR) and the apoptosis rate (AR) were observed.
     2. Animal Test
     72 adult male Wister rats(250±50g) were randomly divided into six groups of 12 animals each by weight: the control group, the model group, the zinc group and the low, moderate and high dose Guanxinkang group. The control group was fed city water; the model group taked orally Cd (0.05mg/kg) from water for 2 weeks before city water; the Zinc group also taked orally Cd (0.05mg/kg) from water for 2 weeks before city water, and was fed zinc sulfate 1mg/ml, 2ml each time orally everyday; the low, moderate and high dose Guanxinkang groups taked orally Cd (0.05mg/kg) from water for 2 weeks before city water ,meantime ,were respectively fed Guanxinkan1.5 g/kg/d、3 g/kg/d and 6 g/kg/d . The rats were fed 60 days and were observed survival rate. After the last treatment, blood were collected from rat’s abdominal aorta. The serum was obtained after centrifugation and used for NO and ICAM-1 measurements, the aorta was excised immediately for pathology and ICAM-1 immunohistochemistry test, the heart, liver and kidney were excised immediately for determination of Cd, Zn and Ca content by atomic absorption spectrometry(AAS).
     Results:
     1. Extrabody Cell Culture Test
     1.1 Comparison of HUVECs cell function index for each group
     Compared with the control group, the exposure of HUVECs with Cd(1μM、5μM、10μM、30μM and 60μM) for 24h significantly(P<0.01)decreased concentration of NO and significantly(P<0.01)elevated protein level of ICAM-1 in model groups. The level of NO slight recovered and the level of ICAM-1 continue to rise at 48 hours, and then significant decreased in the level of of NO and ICAM-1 with the concentration of Cd-exposure, but the latter still significantly increased when compared with the control group. In contrast, upon administration of different dose Guanxinkang or Zn to Cd-treated HUVECs, significant(P<0.01)increases in NO and significant(P<0.01)decreases ICAM-1 expression were observed.
     1.2 Comparison of HUVECs cell apoptosis index and proliferation rate for each group
     The results showed that Cd exposure led to more apoptotic cells appeared under the inverted microscope in the model group, especially in 60μM Cd-treated model group, and less apoptotic cells appeared in the Zinc group and the different dose Guanxinkang groups, besides little small shape. Cd induces also the increase of the Cyt C level of each Cd-exposure groups, which increased with the concentration of Cd, and the most obvious increase was in the model group(P<0.01), whereas Zinc and Guanxinkang significantly caused inhibition of Cyt C oversecretion , which was distinctest in the middle and high dose Guanxinkang groups. FCM also showed that Cd induced increase of apoptotic rate(AR) , especially in 60μM Cd-treated model group. but Zinc and Guanxinkang inhibited the increase of AR. The AR of the Zinc group and Guanxinkang group, in addition to 60μM Cd-Guanxinkang group, had no significant difference compared with the control group(P>0.05).
     Interestingly, MTT showed Cd exposure inceased the PR of low concentrations of Cd ions (5-30μM)during short exposure time (24h) but continued to decline at higher concentrations(60μM)or longer exposured time(48-72h), which also showed the improvement in zinc group and Guanxinkang groups, and the latter was better than the former.
     2. Animal Test
     2.1 Comparison of Serological test results
     Subcutaneous administration of Cd showed a significant(P<0.01) reduction in NO with a significant(P<0.01) increase in ICAM-1 in rat plasma. In addition, the level of NO in the Zinc group and the different dose Guanxinkang group were significantly higher than the model group(P<0.01), and the level of ICAM-1 were significantly lower than the model group(P<0.01), meanwhile, the level of NO in the high dose Guanxinkang group were higher than the control group(P<0.05),and the level of ICAM-1 were higher than the control group and the other treatment groups(P<0.01),moreover, the level of ICAM-1 in the middle dose Guanxinkang group was similar with the control group(P>0.05).
     2.2 Comparison of pathological and immunohistochemical results
     The pathological of aortic cross-section in HE staining showed intima got thickening, partially rupture or loss, with fat vacuoles under the endometrial, and vascular smooth muscle cell(VSMC) became proliferation.
     Immunohistochemical results showed that immunohistochemically visualized ICAM-1 occasionally expressed on aortic intima and adventitia of the control group, but expression increased significantly in the intima, the middle and outer membranes of aortic, espectly concentrated on the AS. Immunohistochemically visualized ICAM-1 also expressed on aortic intima and smooth muscle layer of the Zinc group and the different dose Guanxinkang group, but signal strength were significantly weaker than the model group, meanwhile, the shape and arrangement of smooth muscle cells was better than the model group, especially in the middle dose Guanxinkang group.
     2.3 Comparison of Cd, Zn and Ca assay results in organs
     The concentrations of Cd and Ca in heart, liver and kidney of rats in Cd feed group were significantly higher than that of control group (P<0.01), with Zn concentration reversed (P<0.01). Compared to Cd feed group, Cd concentrations in heart, liver and kidney of rats in the Zn group and the different dose Guanxinkang group were significantly decreased(P<0.01). Likewise, Ca concentrations were significantly decreased either even though there were not differences between low and medium dose Guanxinkang groups. Meanwhile, the treatment of Cd-exposed HUVECs with different dose Guanxinkang significantly(P<0.01)elevated Zn concentration of the rat organ just as that of the Zinc group, with providing zinc significantly lower than the later(P<0.01).
     Conclusion:
     1. Cadmium induces some disorders of endothelial cells’stable and equilibrium which is key to maintain important features, that is vascular endothelial dysfunction, mainly as impaired vasodilation, increased cell adhesion molecules, release of apoptosis-related cytokine, followed by endothelial cells withered Apoptosis and intimal hyperplasia, and results in atherosclerosis. The results suggest that Cd exposure induced atherosclerosis through multiple pathways, among which are interrelated and interact.
     2. Guanxinkang, with basis Huangqi and associate Gualou and Danshen, can effectively improve endothelial dysfunction and prevent atherosclerosis by restoring NO concentration, down-regulating VCAM expression, and decreasing the apoptosis rate of vascular endothelial cell(VEC)induced by Cd. Meanwhile, Guanxinkang can also decrease the accumulation of Cd in body and maintain constant concentrations of Zn and Ca. The effects indicating a new pathway to protect and cure Cd toxicosis by TCM.
     3.The environmental toxic influences invade the body with the internal organs, and weaken the body’s protective qi by destroyed the relatively balanced state of qi, blood and body fluid, plus pathological products of disease outcome, such as phlegmn-humor and blood stasis. Which may be the etiology and pathogenesis of traditional Chinese medicine(TCM)about how Cd induce AS.
引文
[1]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志, 2004.23(1): 65-72
    [2]孙铁珩,李培军,周启星.土壤污染形成机理与修复技术[M]. 2005.北京:科学出版社
    [3]余日安.镉与DNA损伤、癌基因表达、细胞凋亡[J].国外医学卫生学分册. 2000.27(6): 359-363
    [4]安红敏,郑伟,高扬.镉的健康危害及干预治疗研究进展[J].环境与健康杂志. 2007.24(9): 739-742
    [5]吴立玲.心血管病理生理学[M]. 2000.北京:北京医科大学出版社
    [6]Prozialeck W C., Edwards J R, Woods J M. The vascular endothelium as a target of cadmium toxicity [J]. Life Sciences, 2006.79: 1493–1506
    [7]Woods J M, Leone M, Klosowsk K, Lamar P C, Shaknovsky T J, Prozialeck W C. Direct antiangiogenic actions of cadmium on human vascular endothelial cells [J]. 2008.Toxicology in Vitro, 22: 643–651
    [8]Dong Z, Wang L, Xu J P, Li Y L, Zhang Y, Zhang S L, Miao J Y. 2009. Promotion of autophagy and inhibition of apoptosis by low concentrations of cadmium in vascular endothelial cells [J]. Toxicology in Vitro 23 (2009) 105–110
    [9]Templeton D M, Liu Y. Multiple roles of cadmium in cell death and survival [J]. Chemico-Biological Interactions, 2000.188: 267–275
    [10]Liu F, Ja K Y. DNA damage in arsenic and cadmium-treated bovine aortic endothelial cells [J]. Free Radical Biology & Medicine, 2000. 28 (1): 55–63
    [11]Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiologic Reviews, 2004,84 (3):869–901.
    [12]Vincent, Xiao, Buckley, Kowalczyk. VE-cadherin:adhesion at arm's length. American Journal of Physiology: Cell Physiology .2004,286 (5): 987–997.
    [13]Prozialeck W.C., 2000. Evidence that E-cadherin may be a target for cadmium toxicity in epithelial cells. Toxicology and Applied Pharmacology 164 (3),231–249.
    [14]Pearson, Lamar, Prozialeck. Effects of cadmium on Ecadherin and VE-cadherin in mouse lung. Life Sciences, 2003, 72 (11):1303–1320.
    [15] Harrington, Brunelle, Shannon, et al. Role of protein kinase C isoforms in rat epididymal microvascular endothelial barrier function. American Journal of Respiratory Cell and Molecular Biology. 2003,28 (5): 626–636.
    [16] Hirano, Sun, DeGuzman, et al. p38 MAPK/HSP25 signaling mediates cadmium-induced contraction of mesangial cells and renal glomeruli. American Journal of Physiology and Renal Physiology . 2005,288 (6):1133–1143.
    [17]Jiang, McCool, Parrish. Cadmium- and mercury-induced intercellular adhesion molecule-1 expression in immortalized proximal tubule cells: evidence for a role of decreased transforming growth factorbeta1. Toxicology and Applied Pharmacology .2002,179 (1), 13–20.
    [18]A. Szuster-Ciesielska, A. Stachura, M. Slotwinska, et al. The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures, Toxicology, 2000, 145:159–171.
    [19]C.M. Shih, W.C. Ko, J.S. Wu, et al. Mediating of caspase- independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts, J. Cell. Biochem. 2004,91:384–397.
    [20]M.P. Waalkes, L.A. Poirier, In vitro cadmium–DNA interactions: cooperativity of cadmium binding and competitive antagonism by calcium, magnesium, and zinc, Toxicol. Appl. Pharmacol. 1984,75:539–546.
    [21]陈珏,金泰廙,李凭建.镉对人脐静脉内皮细胞的不良效应.环境与职业医学,2004,21(3):165-169
    [22]Hechtenberg S, Schafer T, Benters J, et al. Effects of cadmium on cellular cadmium and proto-oncogene expression [J]. Ann Clin Lab Sci, 1996,26(6):512-521.
    [23] Dario CR, Lius DM, Eduardo M, et al . Biphasic effect of cadmium in non-cytotoxic conditions on the secretion of nitric oxide from peritoneal macrophages[J] . Toxicol ,1999 ,139:167-177
    [24]T. Fatur, T.T. Lah, M. Filipic, Cadmium inhibits repair of UV-, methyl methanesulfonate- and N-methyl-N-nitrosourea-induced DNA damage in Chinese hamster ovary cells, Mutat. Res. 2003,529:109–116.
    [25] J.J. Mukherjee, S.K. Gupta, S. Kumar, H.C. Sikka, Effects of cadmium on (+/–)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide-induced DNA damage response in human fibroblasts and DNA repair: a possible mechanism of cadmium’s cogenotoxicity, Chem. Res. Toxicol. 2004,17:287–293
    [26] M. Waisberg, P. Joseph, B. Hale, D. Beyersmann, Molecular and cellular mechanisms of cadmium carcinogenesis, Toxicology,2003,192:95–117.
    [27] M.V. Mikhailova, N.A. Littlefield, B.S. Hass, et al. Cadmium-induced 8-hydroxydeoxyguanosine formation, DNA strand breaks and antioxidant enzyme activities in lymphoblastoid cells, Cancer Lett. 1997,115:141– 148.
    [28] Y.H. Jin, A.B. Clark, R.J. Slebos, et al. Cadmium is a mutagen that acts by inhibiting mismatch repair, Nat. Genet. 2003,34: 326–329.
    [29] A. Hartwig, Carcinogenicity of metal compounds: possible role of DNA repair inhibition, Toxicol. Lett. 1998,102–103: 35–239.
    [30]J.E. Cleaver, J.C. States, The DNA damage-recognition problem in human and other eukaryotic cells: the XPA damage binding protein, Biochem. J. 1997,328:1–12.
    [31]R.J. Potts, R.D. Watkin, B.A. Hart, Cadmium exposure down-regulates 8-oxoguanine DNA glycosylase expression in rat lung and alveolar epithelial cells, Toxicology. 2003,18:189–202.
    [32]C.K. Youn, S.H. Kim, Y. Lee do, et al. Cadmium down-regulates human OGG1 through suppression of Sp1 activity, J. Biol. Chem. 2005,280: 25185–25195.
    [33]B. Demple, L. Harrison, Repair of oxidative damage to DNA: enzymology and biology, Annu. Rev. Biochem. 1994,63: 915–948.
    [34] Bertin G, Averbeck D. Cadmium: cellular effects,modifications of biomolecules, modulation of DNA repair and genotoxic consequences(a review). Biochemistry, 2006,88:1549-1559.
    [35]赵伟,王强.镉对小鼠心肌细胞和肝细胞DNA的损伤.环境与职业医学, 2005,22(6):523-524.
    [36] Donovan M,Cotter TG.Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death.Biochim Biophys Acta,2004, 1644:133-147.
    [37]Daniel PT. Dissecting the pathways to death.Leukemia, 2000,14: 2035-2044.
    [38]付永锋,樊廷俊. Bcl-2家族蛋白与细胞凋亡.生物化学与生物物理学报, 2002, 34(4):389-394.
    [39]方希敏.细胞色素C与细胞凋亡.国外医学·临床生物化学与检验学分册, 2005, 26(1):43-46.
    [40] Choisy-Rossi C,Reisdorf P,May E,et al.Mechanisms of p53-induced apoptosis. Toxicol Lett, 1998,95(1):24.
    [41]Graziani G, Szabo C. Clinical perspectives of PARP inhibitors. Pharmacol Res, 2005, 52:109-118.
    [42]Pulido MP, Parrish AR.Metal induced apoptosis: Mechanisms. Mutat Res, 2003, 533: 227-241.
    [43]Squier MKT, Sehnert AJ, Cohen JJ. Apoptosis in lerkolytes.J Leukoc Biol, 1995,57(3):2-5.
    [44]Arends MJ, Morris TG, Wyllie AH.Apoptosis: the role of the endonuclease. Am J Path,1990,136(1):593-595.
    [45]Brown DG, Sun XM, Cohen GM. Dexamethasone induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J Biol Chem,1993,268(7):3037-3040.
    [46]Oberhammer F, Wilson JW,Dive C,et al.Apoptotic death in epithelial cells: clevage of DNA to 300 and 50 kb fragments prior to in the absence of internuclaosomal fragmentation.EMBO J,1993,12(3):3679-3682.
    [47]Kerr JFT, Winterford CM, Harmon BY. Apoptosis: its significance in cancer and cancer therapy.Cancer,1994,73(2):2013-2015.
    [48]Wyllie AH, Kerr JFR, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol,1980,68(3):251-253.
    [49]Bursch W, Pafe S, Putz B, et al. Determination of the length of the histological stages of apoptosis hepatic foci of rats. Cancigenesis, 1990, 11(2):847-851.
    [50]Oberhammer F, Wilson JW, Dive C, et al. Apoptotic death in epithelial cells: clevage of DNA to 300 and 50 kb fragments prior to in the absence of internuclaosomal fragmentation. EMBOJ,1993,12(3):3679-3682
    [51]Gorczyca W, Gong J, Ardelt B, et al. The cell cycle related differences in susceptibility of HL260 cells to apoptosis induced by various antitumo agents. Cancer Res,1993,53(13):3186-3192.
    [52]Ormerod MG, Sun XM, Brown D, et al. Quantification of apoptosis and necrosis by flow cytometry. Acta Oncol, 1993,32(4):417-424.
    [53]VanEngeland M, Nieland LJ, Ramaekers FC, et al. Annexin V-affinit assay: a review on an apoptosis detection system based on phosphatidyl serine exposure. Cytometry, 1998,31(1):129.
    [54]Span LFR, Pennings AHM, Vierwinden G, et al. The dynamic process if apoptosis analyzed by flow cytometry using Annexin-V/Propidium Iodide and a modified in situ end labeling technique.Cytometry,2002,47:24-31.
    [55]Negoesu A, Lorimier P, Labat MF, et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. J Histochem Cytochem Cytochem, 1996,44(3):959-963.
    [56]曹玉广,Erdinger L,Sonntag H D,螯合剂DTPA和BAL对亚慢性镉染毒大鼠促排效果及组织分布的研究,同济医科大学学报,1997,26(1):41-44
    [57]陈敏,谢吉民,荆俊杰,五种螯合剂对镉致小鼠脏器脂质过氧化作用的影响,环境与职业医学,2003,20(3):222-224
    [58]Hamer D. Metallothionein. Annu Rev Biochem. 1986,55:913-951.
    [59]Barbier, Jacquillet, Tauc, et al. Effect of heavy metals on, and handling by, the kidney. Nephron Physiology. 2005.99(4):105–110.
    [60]Kara H, Karatas F, Canatan H, et al. Effects of exogenous metallothionein on acute cadmium toxicity in rats.Biol Trace Elem Res,2005,104:223-232.
    [61]Shimoda R, Nagamine T, Takagi H, et al. Induction of apoptosis in cells by cadmium: quantitative negative correlation between basal or induced metallothionein concentration and apoptotic rate. Toxicol Sci, 2001,64: 208-215.
    [62]王凤清,徐美华,连微峰,等.锌、钼对亚急性镉中毒肾损伤保护作用的比较.国外医学,临床生物化学与检验学分册.2004,25(3):207-208
    [63]Oteiza PI, Adongylo VN, Keen CL, et al. Cadmium-induced testes oxidative damage in rats can be influenced by dietary zinc intake〔J〕. Toxicology,1999, 137:13- 22
    [64]王强,微量元素硒对镉的拮抗作用的研究,纺织高校基础科学学报,1998,11(4):325-329
    [65]王俊改,吴南屏,马军.硒、镉对小鼠脂质过氧化作用的交互影响.卫生研究,1997,26(4):239-241
    [66]贺宝芝,徐臻,王淑青.有机硒防治镉中毒的实验研究.中华劳动卫生职业病杂志. 1999, 17(1): 42-43
    [67]Jones MM, Xu C, Ladd PA, et al. Selenite suppression of cadmiuminduced testicular apoptosis〔J〕. Toxicology 1997, 116: 169- 175
    [68]SaricMM, BlanusaM, PiasekM, et al. Effect of dietary calciumon cadmium absorption and retention in suckling rats〔J〕. Biometals, 2002, 15: 175-182.
    [69] Bannon DI, Abounader R, Lees PSJ, et al. Effect of DMT1 knockdown on iron,cadmium , and lead uptake in Caco-2 cells〔J〕. Am J Physiol, 2003, 284: 44- 50.
    [70]Vahter M, Berglund M, Akesson A, et al. Metals and women’s health〔J〕. Environ Res, 2002, 88: 145- 155.
    [71]廖惠珍,王章敬,黄端.维生素B1对镉致肾毒性干预作用研究〔J〕.营养学报, 2002, 24(2): 200- 202.
    [72]华平,苏敏,许庭良,等.维生素E对镉中毒小鼠睾丸生精细胞保护作用的形态学研究.解剖学研究, 2004, 26(4):252-254.
    [73]余彦,戈果,许庭良,等.维生素E和维生素C联合应用对慢性镉中毒小鼠黑质神经元的保护作用.中国实用医药,2008,3(8):3-6
    [74]吕团伟,刘孟宇,李淑红,等.中草药五加皮和茯苓的拮抗镉诱变作用.吉林大学学报(医学版),2008,4.
    [75]朱玉琢,庞慧民,刑沈阳,等.白头翁对硫酸镉诱发小鼠精子畸形的抑制作用.吉林大学学报(医学版), 2003,4 .
    [76]梁培育,李浩勇,许海波,等.黄芪拮抗镉诱导的大鼠脂质过氧化作用.中国公共卫生, 2004,2.
    [77]朱萍萍,王文祥,廖惠珍,等.复方冬虫夏草对大鼠镉致肾毒性的改善作用.福建医科大学学报,2007,41(6):521-523
    [78]阚周密,蔡原.甘草酸二铵对镉中毒小鼠肝损伤的防护作用.天津医药,2007,35(5): 361-362
    [79]刘秀英,王翔朴,曾庆善,等.甘草甜素和齐墩果酸对镉中毒肾损害的影响.中国公共卫生, 2002,18(6): 664-666.
    [80]朱萍萍,廖惠珍,王章敬,等.花粉枸杞对大鼠镉中毒性损伤的拮抗作用.毒理学研究,2005,19(3):270.
    [81]吴海涛,杨雅,俞芳,等.加味肾气汤防治慢性镉中毒大鼠肾脏损伤的实验研究.中华中医药学刊. 2007,25(12):2580-2582.
    [82]张勇,刘敏,宋莉君,等.解毒健脾中药提取物对镉中毒的预防作用.环境与健康杂志, 1999,16(6):343-345.
    [83]Nakagawa, Nishijo, Environmental cadmium exposure, hypertension and cardiovascular risk. Journal of Cardiovascular Risk. 1996, 3 (1): 11–17.
    [84]吴立玲.心血管病理生理学.第3版[M] .北京:北京医科大学出版社, 2000. 8.
    [85]Buttery LDK, Springall DR, Chester AH, et al: Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest 1996; 75: 77-85.
    [86] Kaji T ,Mishima A ,Yamamoto C ,et al . Effect of cadmiumon the monolayer maintenance of vascular endothelial cells in culture [J ] . Toxicology, 1992 ,71(3) :267-276.
    [87]Gogvadze V, Orrenius S, Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta, 2006, 1757 (5-6): 146-157.
    [88]曹玉广,Erdinger L,Sonntag H D,螯合剂DTPA和BAL对亚慢性镉染毒大鼠促排效果及组织分布的研究,同济医科大学学报,1997,26(1):41-44
    [89]陈敏,谢吉民,荆俊杰,五种螯合剂对镉致小鼠脏器脂质过氧化作用的影响,环境与职业医学,2003,20(3):222-224
    [90]ATSDR, 2003. http://www.atsdr.cdc.gov.clist.html.
    [91]Xie J M ,Funakoshi T,Shimada H,et a1.Comparative Effects of Chelating Agents on Pulmonary Toxicity of Systemic Nickel in Mice[J. ].J Appl Toxicol,1996(16):317—324.
    [92]陈敏,程晓农,谢吉民,等。镉对小鼠体内钙、铁稳态的影响[J.]。江苏理工大学学报(自然科学版),2000,21(3);67-69
    [93]刘杰,镉的毒性和毒理学研究进展[J]。中华劳动与职业病杂志,1998,16(1):2-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700