半导体纳米材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米材料因其独特性质和各种量子效应,使得其在各种功能器件的应用中发挥着重要作用,对未来社会信息化的发展也有着至关重要的影响。
     本文叙述了两种半导体纳米材料的制备过程、表征和相关光学性能的测试。
     第一,利用模板法制备AlN纳米线宏观阵列的过程。首先利用自主装生长出单层有序的PS球模板;然后利用蒸发法在PS球模板上制备出单分散Al纳米颗粒模板。通过扫描电子显微镜观察,对不同实验条件下所制备出的PS球模板和Al纳米颗粒模板进行形貌表征,从而提出了一套制备单分散金属纳米颗粒模板的最有效方法;采用模板法,在温度1100℃,恒温时间240min, N2气600torr条件下,制备出取向规律,且直径均匀、可控的AlN纳米线宏观阵列。
     第二,利用溶胶凝胶法制备ZnO薄膜的过程。以二水合醋酸锌颗粒做为原料,乙二醇甲醚做为溶剂,乙醇胺作为稳定剂,按照一定的摩尔比配成溶液;在60℃水浴中充分搅拌制成溶胶;采用离心匀胶机旋涂2-3min后成ZnO薄膜;再将上述薄膜放入快速升温管式炉内,在300℃下烧结10min,自然冷却最终成膜。本论文主要研究采用不同旋涂转速对所制备薄膜的结构、光学性质的影响。采用X射线衍射仪分析薄膜样品晶相结构,结果表明用此法制备的ZnO薄膜具有c轴择优取向,且随旋涂转速的增大,(100)和(101)晶面族的衍射峰逐渐消失,(002)衍射峰增强且宽化,说明旋涂转速对薄膜的晶向成长有一定的影响。利用紫外-可见光分光光度计测试ZnO薄膜的透射光谱,研究表明该法制得的ZnO薄膜具有很好的透光性,透光率高达92%,并利用吸收系数与禁带宽度的关系计算了薄膜的禁带宽度,结果显示ZnO薄膜的光学带隙随着旋涂转速升高而增大,表明旋涂转速可以在一定范围内实现对ZnO薄膜光禁带的可调。
Because semiconductor nanomaterials'unique nature and quantum effect, it plays the influential role in many of functional devices, and it also have the very important influence to the development of future society.
     This article reported preparation process of two semiconductor nanomaterials, characterization and the optical performance test:
     First, preparation of AlN nanowires array studied by template method. Using self-loading to prepare orderly arrangement of PS template; then Al nanoparticles template is prepared on the PS template. In the results of different experimental condition, observing PS and Al nanoparticles template by SEM, the most efficacious method of preparation Al nanoparticles template can be confirmed; AlN nanowires array can be prepared under the best condition.The condition is 1100℃, constant time 240min, and 600torr.
     Second, preparation processes of ZnO thin films studied by sol-gel. C4H6O4Zn'2(H2O) is raw material, CH3OCH2CH2OH is solvent, H2NCH2CH2OH is a stabilizer, the solution were madeup according to a certain mol ratio, stiring in 60℃water bath; the ZnO thin films is synthesized using a centrifugal spin coating machine; then the film is put into the rapid heating furnace, set 10min and 300℃, natural cooling into the final films. In this thesis, different speed is researched on the structure of films, optical properties. X-ray analysis can analyse the crystalline structure of thin film samples, the results show that ZnO thin films prepared by this method has the c-axis preferred orientation, and with the spin speed increases, the (100) and (101) diffraction peak gradually disappeared, (002) diffraction peak is enhanced and broadened, account for spin-coating speed have a certain impact on the growth of crystal films. Transmitted spectrum of ZnO thin films was test by ultraviolet-visible spectrophotometer, showing that ZnO thin films has good transparency, light transmitted rate of up to 92%, and using the absorption coefficient and relationship calculates band gap of the film. With the increase of spin speed, the optical band gap increased, and the band gap of ZnO Films is adjustable.
引文
[1]Keldysh LV et al. Pisma Zh. Eksp.Feor.Fiz.1979,29:716.
    [2]李凝芳,周毅.氮化铝及其制品的研究动向:材料导报,1993,7(5):42-44.
    [3]王建,石功奇,丁培道.氮化铝粉末制备工艺的研究.材料科学与工程,1993,11(2):37-43.
    [4]Jin B J, Bae SH, Lee S Y et al.Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laserdeposition.MaterSciEngB,2000,71(1-3):301-305.
    [5]陈鸣.电子材料.北京:北京邮电大学出版社,2006.
    [6]王春阳,金珑.低维ZnO纳米材料.山东农业大学学报(自然科学版),2006,37:39-42.
    [7]韩冬,任湘菱,陈东等.纳米ZnO的制备及其光催化性能研究.感光科学与光化学,2005,23:414-420.
    [8]赵玉涛,何维凤,李素敏,李长生.柔性透明导电薄膜的研究现状、应用及趋势江苏大学学报,2005,1:62-66.
    [9]楚珑晟,周祚万.氧化锌晶须电磁波吸收性能研究.功能材料,2006,1(37):47-49.
    [10]Koho K K. JP 42 788 (Cl.B60C1Π00),2004.
    [11]田清波,王钥,尹衍升.低维ZnO纳米材料.陶瓷.2005.12:21-23.
    [12]王小丹,铁绍龙.纳米氧化锌的性能及其在涂料中的应用.电镀与涂饰,2005,24(3):27-30.
    [13]Tang C C, Fan S S. do la Chapelle M L et al. Silica-assisted catalytic growth of oxide and nitride nanowires. Chemical Physics Letters,2001,333(1-2):12-15.
    [14]Wu Q, Hu Z, Wang X et al. Extended vapor-liquid-solid growth and field emission properties of aluminium nitride nanowires. Journal of Materials Chemistry,2003,13(8):2024-2027.
    [15]Wu Q, Hu Z, Wang X Z et al. A simple route to aligned A1N nanowires. Diamond and Related Materials,2003,13(1):38-41.
    [16]Haber J A, Gibbons P C. Buhro W E. Morphological control of nanocrystalline aluminum nitride: aluminum chloride-assisted nanowhisker growth. Journal of the American Chemical Society,1997, 119(23):5455-5456.
    [17]Haber J A, Gibbons P C, Buhro W E. Morphologically selective synthesis of nanocrystalline aluminum nitride. Chemistry of Materials,1998,10(12):4062-4071.
    [18]Xie T, Lin Y, Wu G et al. AlN serrated nanoribbons synthesized by chloride assisted vapor-solid route. Inorganic Chemistry Communications,2004,7(4):545-547.
    [19]Rao C N R, Deepak F L, Gundiah G et al. Inorganic nanowires. Progress in Solid State Chemistry, 2003,31(1-2):5-147.
    [20]Wang W W, Zhu Y J. Inorg. Chem. Commun.2004,7:1003-1005.
    [21]陈利娟,张晟卯,吴志中等.应用化学,2005,22:554-556.
    [22]Kim S, Jeong M C, Oh B Y, et al. J. Crystal G rowth,2006,290:485-489.
    [23]李玉国,薛成山,庄惠照等.半导体光电,2005,26:425-427.
    [24]张宇,王刚,崔一平等.氧化锌薄膜的电化学沉积法制备及受激发射研究中国激光,2004,31(1):97-100.
    [25]Okada T, K awashima K, Ueda M. Applied Phys. A,2005,81:907-910.
    [26]Xu Q Y, Hartmann L, Schmidt H, et al. Thin S olid Films,2006,515:2549-2554.
    [27]Li Z Q, Xie Y, Xiong Y J, et al. New J. Chem.2003,27(10):1518-1521.
    [28]Li Z Q, Xie Y, Xiong Y J, et al. Chem. Lett.2003,32 (8):760-761.
    [29]Li Z Q, Xiong Y J, Xie Y. Nanotechnology,2005,16 (10):2303-2308.
    [30]Gao P, Xie Y, Y ing C, et al. J. Nanoparticle Res.,2006,8(1):131-136.
    [31]徐步衡,薛俊明,赵颖,等.MOCVD制备用于薄膜太阳电池的ZnO薄膜研究.光电子·激光,2005,16(5):515-518.
    [32]兰伟,朋兴平,刘雪芹等.溶胶凝胶法制备ZnO薄膜及性质研究.兰州大学学报(自然科学版),2006,42(1):67-71.
    [33]汪雷.ZnO薄膜生长技术的最新研究进展.材料导报,2002,16(9):33-36.
    [34]梁红伟,吕有明,中德振等.等离子体增强分子束外延生长ZnO薄膜及光电特性的研究.人工晶体学报,2003,32(6):579-584.
    [35]王兆阳.胡礼中,孙捷等.激光分子束外延技术及其在氧化锌薄膜制备中的应用.中国稀土学报,2003,21(增刊):141-143.
    [36]刘坤,季振国.氧化锌薄膜制备技术的评价.真空科学与技术,2002,22(4):282-286.
    [37]B C DILih, F J M Oura, IosdorzanO. Synthsis and characterization nano-scale alumhum nitride produced from vaporphase. Materials scbnceand Engineering C,2001,2(15):67-75.
    [38]T RebrA, J W Schultze, W O Sterle, ChrBuchal. Nucleation and growth of AIN nanocrystal lites prepared N+ implantation. Surface and Coatings Technology,1998,10(20):415-121.
    [39]常铁军,祁欣.材料近代分析测试方法.哈尔滨:哈尔滨大学出版社,2000.
    [40]王培铭,许乾慰等.材料研究方法.北京:科学出版社,2005.
    [41]金海波,王文忠,邹宗树等AlN粉末制备技术概述.鞍钢技术,1993,30(3):44-47.
    [42]张光寅,蓝国祥.晶格振动光谱学.北京:高等教育出版社,1992.
    [43]Carlone C, Lakin K M, Shanks H R. Optical Phonons of Aluminum Nitride. Applied Physics Letters.1984,55(11):4010-4014.
    [44]周灿栋,蒋国吕,尤静林.氮化铝结构的高温Raman光谱分析.光散射学报,2002,14(1):48-53.
    [45]C.M Mo, L Zhang, Z Yuan. Optical absorption of nanostructured Al2O3.Nanostructured Materials, 1995,5(1):95-99.
    [46]唐永炳.准一维AlN纳米材料的控制合成、物性研究及其应用探索:(博士学位论文).沈阳:中国科学院金属研究所,2007.
    [47]R.S. Wagner. W.C. Ellis. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters,1964,4(5):89-90.
    [48]A.M. Morales, C.M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science,1998,279 (5348):208-211.
    [49]Y.Y.Wu, P.D. Yang. Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society,2001,123 (13):3165-3166.
    [50]Y.W. Wang, G.W. Meng, L.D. Zhang et al. Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence. Chemistry of Materials,2002, 14(4):1773-1777.
    [51]X. Duan, C.M. Lieber. Laser-assisted catalytic growth of single crystal GaN nanowires. Journal of the American Chemical Society,2000,122(1):188-189.
    [52]X.S.Peng, L.D. Zhang, G.W.Meng et al. Photoluminescence and infrared properties of alpha-Al2O3 nanowires and nanobelts. The Journal of Physical Chemistry B,2002,106(43):11163-11167.
    [53]Z.W. Pan, Z.R. Dai, Z.L. Wang et al. Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. Journal of the American Chemical Society.2002, 124(8):1817-1822.
    [54]戴英.反应制备AlN基材料研究:(博十学位论文).武汉:武汉工业大学,1999.
    [55]Muscat J, Wander A, Harrison N M. On the prediction of band gaps from hybrid functional thcory.Chemical Physics Letters,2001,13:342-397.
    [56]X. S. Wang, Z.C. Wu, J.F. Webb, Z.G. Liu, Applied Physics A 77,561(2003).
    [57]Carballeda-Galicia D M,Castanedo-Perez R,Jimenez-Sandoval et al.Thin Solid Films, 2000,371:105.
    [58]F. Urbach. Phys. Rev.92,1324(1953).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700