海水中浮游植物粒径分布及浓度原位监测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游植物是海洋生态系统中最主要的生产者和能量转换者,其过度的增殖会造成海洋环境的恶化和“赤潮”的频发。对浮游植物种群结构、生物量变化等的原位测量可以及时监测海洋生态环境的变化,对“赤潮”等自然灾害起到预警的作用。粒径是表征浮游植物的一个重要参数,浮游植物的新陈代谢、光合作用、能量利用等生理特性都与其粒径大小和分布有关。在对浮游植物现场监测方法和粒径测量方法深入研究的基础上,本文研制了海水中浮游植物浓度及其粒径分布的原位实时自动监测系统,实现了海洋浮游植物粒径分布及种群密度的实时、定点、快速监测。
     本文所设计的监测系统采用激光激发荧光与激光差分多普勒技术相结合的方法,由激光激发荧光信号确定浮游植物的存在和经过测量区域的时间宽度,由差分多普勒信号确定粒子的速度,计算得到浮游植物的粒径和浓度。系统由激光器、激光光纤耦合装置、水下光学探头、光电检测和数据处理四部分构成。本文的工作是对系统的四部分进行了具体的设计和调试;进行了系统联调和定标;系统实验室的性能测试和数据分析,现场的原位测量。具体的工作包括:
     1.在深入研究基于激光激发荧光和激光差分多普勒技术相结合的浮游植物粒径测量方法的基础上,设计了测量系统的总体结构;选择、确定了激光器、加工了传输光纤;研究了高斯光束的特性和高斯光束单透镜变换特性,设计、调试了激光光纤单透镜耦合装置,对于芯径是3.5m,数值孔径是0.13,长度是100m的单模光纤,耦合效率可达到50%,为光学探头的测量提供了良好的入射光信号。
     2.研制了适合于现场原位测量的水下测量装置:水下光学探头。首先设计、调试了水下光学探头的内部光路。在光路设计上,将激发荧光信号的接收方向和激光多普勒信号的接收方向设计成和入射光传输方向成90°角,位于入射光传输方向的两侧,使接收到的激发荧光信号和激光多普勒信号同步,粒径分布的计算更准确;采用横向分束器设计了一鲁棒性较好的分束装置,即使装置安装有轻微的倾斜或海水的涌动使入射光的方向变化也不会影响输出光束的稳定性。其次设计、加工了一密封性良好的光学探头密封舱和探头固定支架,实验室和现场实验表明,光学探头密封舱和固定支架都符合系统的测量要求。
     3.设计了水上光电检测电路和基于DSP的水上数据采集装置的硬件,编写了针对于硬件的采集软件和上位机的数据处理、存储和显示软件。
     4.对设计的系统进行了联调,形成了测试仪器样机,对系统的可靠性进行了测试,分析了系统的误差,进一步调整了系统。在实验室,用培养的三种形状不同粒径大小的12种浮游植物培养液进行了单一藻种和混合藻种的比测,用高斯函数对粒径分布进行了拟合。将样机和CASY-TT型细胞分析仪的测试结果做了分析对比,给出了系统样机的单一藻种粒径分布误差和浓度误差。粒径范围在5~50m的椭球和球形的藻种,粒径分布统计分布误差在10%以内;细胞分析仪和样机的粒径均值和峰值都有较好的线性相关性;混合藻种的浓度误差在5%左右。
     5.在青岛近海进行了2次多个站点的现场原位测量,测量结果表明,系统样机能够测得海水中浮游植物的粒径分布和浓度信息,测量探头可以放入深至14米的水下,仪器调试好后系统可以长时间自动运行。可用于现场原位的连续、实时的监测。从测试数据来看,测试水域的粒子浓度变化不大,和显微镜观察的结果误差在可接受的范围内。
     本文所设计、研制的海水中浮游植物浓度和粒径分布原位测量系统,测量的核心部件光学探头完全由光学器件搭建,不需供电,完全密封,可长时间放入水下,由光纤传输测量信号,可实现长时间连续的现场原位监测。和已有其他的浮游植物现场原位测试系统相比,系统结构简单,放置方便,不需要经过复杂算法分析,可直接测得浮游植物单粒子的粒径,系统实时性较好。该系统可望在海洋环境监测与评价、赤潮研究、海洋生态过程研究、水质监测等领域发挥作用。
Phytoplankton is the major producer and energy transducer of marine ecosystems,and its excessive proliferation will worsen the marine environment and lead to more“red tides”. The in situ measurement of phytoplankton population structure andbiomass can be used to monitor the change in marine environment and to predict “redtides” and other natural disasters. As an important parameter, particile size distributionis related to the physiological properties of phytoplankton, such as metabolism,photosynthesis and energy use. In this thesis, an in situ measurement system isdeveloped to achieve real-time and automatic monitoring of phytoplankton sizedistribution and population density in coastal seawaters.
     The monitoring system combines laser-induced fluorescence detection and laserdifferential Doppler velocimetry. The former is used to identify the phytoplanktonparticles passing the detection zone, and to determine the time it take for thephytoplankton particles to transverse interference fringes in the laser intersectionvolume, while the latter is used to obtain the velocity parameter of the phytoplanktonparticles passing the detection zone, thus the size and concentration can be deduced.The system consists of a laser, a laser-fiber coupling device, an underwater opticalprobe and a data acquisition&processing part. In the thesis, the designing&debugging of all the whole system, the systematic calibration, laboratory tests, dataanalysis and in situ measurements was described. Specific works done are as follows.
     1. By in-depth research on the measuring method, an overall scheme of themeasurement system was determined. A532nm laser was selected; and a laser tosingle-mode fiber coupling device was made on the the basis of the characters ofGaussian beam and its transformation characters through an aspheric lens, which canachieve the coupling efficiency of50%for a100m single-mode fiber with a core diameter of3.5m and a numerical aperture of0.13.
     2. An underwater optical probe, a watertight chamber housing the optical sensingsystem, was developed. The laser transmitted by a single-mode fiber entered thechamber, then split into two parallel beams and intersected with each other outside thechamber. The beam intersection defines the measurement volume in the seawater. Thedirections of±90o deviating from the transmission direction of laser beams arerespectively chosen to receive laser-induced fluorescence and laser Doppler signals inorder to keep both signals synchronic to get accurate size distribution. A robustbeam-splitting device, with output intensity insensitive to the incident beam directionchange caused by slight incident inclination and sea waves, was designed, using alateral displacement beamsplitter. Lab and field experiments proved that the opticalprobe chamber with its support system met the measurement requriements.
     3. Photoelectric detection circuits and data acquisition&processing hardwareswere designed. DSP programs&PC software units for data processing, storage anddisplay were designed and completed.
     4.The measurement system prototype was debugged, tested, further adjusted inthe laboratory, and the error analysis was done. In the laboratory tests and calibrationexperiments,12phytoplankton species in3different kinds of shapes cultured in the labwere used. Gaussian curve-fitting method was adopted to study the phytoplankton sizedistribution data. The results of lab experiments were compared with that measured byCASY-TT cell counter+analyser system. Corresponding size distribution andconcentration errors for all kinds of phytoplankton measured in the tests were given.Statistical distribution errors of size distributions for spherical or ellipticalphytoplankton with a size range of5-50m were less than10%. The average size valuemeasured by the prototye was well linearly relevant with the one measured byCASY-TT, The concentration measurement errors of mixed phytoplankton were around5%.
     5. The prototype in situ experiments were done twice at different stations inQingdao coastal waters, and the results proved that the designed system can be used for in situ measurement of size distribution and concentration information of marinephytoplankton, The adjusted system can also do real-time monitoring at a fixedposition for a long time. The experimental data demonstrated no distinct change ofphytoplankton concentration in the measured waters. Compared with microscopesobservation results, the measurement errors are within an acceptable range.
     The system developed in the thesis is capable of real-time size distribution andconcentration measurement for phytoplankton particles. The underwater opticalsensing probe does not rely on electrical power, instead, it uses optical fibers totransmit laser and the measured optical signals. The sensing probe can stay submergedfor long period of time, making a long-term real-time in situ monitoring possible. In thesame time, compared with the other measurement methods, the system needs neithercomplicated optics nor complex algorithms, so it is of outstanding real-timeperformance. The system has a promising application in marine environmentmonitoring and evaluation,“red tide” research, marine ecosystem process research andwater quality monitoring.
引文
[1]沈国英,施并章.海洋生态学(第二版).北京:科学出版社,1984.39~42
    [2]李冠国,范振刚.海洋生态学.北京:高等教育出版社,2004.249
    [3]王世忠,李继刚,高志,等.海水藻类和悬浮物浓度测量仪应用研究.海洋技术,2001,20(1):97~103
    [4]张滨,乔然.赤潮.海洋预报,1994,(3):31
    [5]金海龙.基于荧光机理的海藻识别方法与研究:[博士论文].河北省秦皇岛市:燕山大学电气工程学院,2005
    [6] Fenchel T. Intrinsic rate of natural increase; the relationship with bodysize.Oecologia(Berl),1974,14:317
    [7] Finkel Z.V,Irwin A.J. Modeling size-dependent photosynthesis light absorption and theallometric rule.J.theor.Biol,2000,204,361~369
    [8] Blasco D,Packard T.T,Garfield P.C. Size dependence of growth rate,repiratory electrontransport system activity,and chemical composition in marine diatoms in the laboratory.J.Phycol.1982,18,58~63.
    [9]杨茹君.不同环境污染物条件下海洋浮游植物生长的粒径效应研究:[博士论文].山东省青岛市:中国海洋大学环境学院,2006
    [10]颜昌敬.植物组织培养手册.上海:上海科学技术出版社,1990.453~454
    [11] Montagnes D.J.S,Berges J.A,Harison P.J,Taylor F.J.R. Estimating cabon,nitrogen,protein,andchlorophyll a from volume in marine phytoplankton.Limnol.Oceanogr,1994,39(5),1044~1060
    [12] Garde K,Cailliau C. The impact of UV-B radiation and different PAR intensities ongrowth,uptake of14C,excretion of DOC,cell volume, and pigmentation in the marineprymnesiophyte,Emiliania huxleyi.Journal of Experimental Marine Biology andEcology,2000,247,99~112
    [13]晁敏,张利华,张经.流式细胞计在海洋浮游植物研究中的应用.海洋科学,2003,27(4):18~22
    [14] Arakawa H,Yaoit T,Koike,et al. Size of suspended particles caught by Manilaclam,Ruditapes philippinarum. Morinaga La Mer,1997,35(4):149~156
    [15] Ray S, Berec L, Straskraba M, Jorgensen S.E. Optimization of exergy and implications ofbody sizes of phytoplankton and zooplankton in an aquatic ecosystem model. EcologicalModelling,2001,140:219~234
    [16]梁志辉,朱慧芬,陈九武编著.流式细胞术基本原理与实用技术.武汉,华中科技大学出版社,2008.
    [17] Olson R. J, Zettle E.R., Chisholm S. W, Dusenberry J. A. Advances in oceanography throughflow cytometry. in: S.Demers, eds. Particle Analysis in Oceanography. Heidelberg:SpringerBerlin,1991.351~402
    [18] Vaulot D, Marie D, Olson R.J, Chisholm S.W. Growth of prochlorococcus, a photosyntheticprokaryote, in the equatorial pacifc ocean. Science.1995,268,1480~1482.
    [19] Vaulot D, Marie D. Diel variability of photosynthetic picoplankton in the equatorial pacifc.Journal of Geophy-sical Research.1999,104:3297~3310.
    [20] Li, W.K.W, Dickie P.M. Monitoring phytoplankton,bacterioplankton, and virioplankton in acoastal inlet (Bedford Basin) by fow cytometry. Cytometry,2001,44:236~246.
    [21] ChisholmS W, Olson R J, Zettler E R, et al. Anovel free-livingprochlorophyte occurs at highcell concentrations in the oceanic euphotic zone. Nature,1988,334:340~343
    [22] Olson R.J, Chisholm S.W, Zettler E.R, Altabet M.A,Dusenberry J.A. Spatial and temporaldistributions of prochlorophyte picoplankton in the NorthAtlantic Ocean. Deep-SeaResearch,1990,37:1033~1051
    [23] Olson R.J, Chisholm S.W, Zettler E.R, Armbrust E.V. Pigments, size, and distribution ofSynechoccus in the NorthAtlantic and Pacifc oceans. mnology and Oceanography,1990,35(1):45~58.
    [24] Olson R J, Zettler E R., Chisholm S W. Advances in oceanography through fowcytometry. ParticleAnalysis in Oceanography.1991,351~399.
    [25] Olson R J, Zettler E R, DuRand M D. Phytoplankton analysis using fow cytometry. In:Kemp PF, Sherr B F, Sherr E B, Cole J J,eds. Aquatic Microbial Ecology. Boca Raton:LewisPublishers,1993.175~186.
    [26] Dubelaar G B J, GroenewegenAD C, Stokdijk W S, et al. Optical plankton analyzer:Aflowcytometer for plankton analysis. II: pecifications.Cytometry. Cytometry,1989,10:529~534
    [27] Peeters J C H, et al. Optical plankton analyzer: a flow cytometry for plankton analysis, I:design consideration. Cytometry,1989,10:522~588
    [28] Jacquet S, Partensky F, Lennon J, Vaulot D. Diel patterns of growth and division in marinepicoplankton in culture. Journal of Phycology,2001,7:357~369
    [29] ShalapyonokA, Olson R J, Shalapyonok LS. Arabian Sea phytoplankton during Southwestand North-east Monsoons1995: composition, size structure and biomass from individual cellproperties measured by fow cytometry. Deep-Sea Research (Part2, Topical Studies inOceanography).2001,48:1231~1262.
    [30] Dubelaar G B J, Gerritzen P L, Beeker A E R, Jonker R R, Tangen K. Design and frst resultsofcytobuoy: a wireless fow cytometer for in situ analysis of marine and fresh waters.Cytometry,1999,37:247~254.
    [31] Steven G, Ackleson et al. Distributions in phytoplankton refractive index and sizewithin the North Sea. Ocean Optics IX,1988,925
    [32] Eisert W G, Ostertag R, Niemann E G.. Simple Flow Microphotometer for Rapid CellPopulationAnalysis.Rev. Sci. Instrum.1975,46:1021
    [33] Mullaney P F, et al. Pulse-Height Light-Scatter Distributions Using Flow-SystemsInstrumentation. Cytometry,1976,24:98~105
    [34] Loken M R, Sweet R G, Herzenberger LA.Cell Discrimination by Multiangle LightScattering, J. Histochem. Cytochem.1976,24:284
    [35] Benson M C, McDougal D C, Coffey D S. TheApplication of Perpendicular and ForwardLight Scatter toAssess Nuclear and cellular Morphology.Cytometry,1984,5:515~523
    [36] Kachel V. Electrical Resistance Pulse Sizing(Coulter Sizing). in: Melamed M R, Mullaney PF, Lmendelson M, Eds.Flow Cytometry and Sorting. New York:wiley,1979.3
    [37] Salzman G C, Mullaney P F, Price B J. Light-ScatteringApproaches to Cell Characterization.in: Melamed M.R, Mullaney P F, Lmendelson M, Eds. Flow Cytometry and Sorting. NewYork:wiley,1979.61
    [38] Eisert W G. Nezel M. Internal Calibration toAbsolute Values in Flow-Throgh Particle SizeAnalysis. Rev. Sci. Instrum.1978.(49):1617
    [39] Tarran G A, Burkill PH, Kachel V. Ocean Monitoring: TheApplication of Flow Cytometryfor Analysis SingleAquatic Particles. Optics for Protection of Man and Environment againstNatural and Technological Disasters, Elsevier Science Publishers B.V.1993
    [40] Eisert W G.High Resolution Optics Combined with High Spatial Reproducibility inFlow.Cytometry1981,1:254
    [41] Li, et al. Shipboard analytical flow cytometry of oceanic ultraphytoplankton.Cytometry,1989,10:564~579
    [42] Vaulot D, et al. Simple method to preserve ocean-ic phytoplankton for flow cytometricanalyses.Cy-tometry,1998,10:629~635
    [43] Trousellier M, et al. Flow cytometric analysis of coastal lagoon bacterioplankton andpicophyto-plankton: fixation and storage effects.Estuarine.Coastal and shelf Science,40:621~633.
    [44]孙书存,陆健健,张利华.流式细胞仪在微型浮游植物生态学中的应用.生态学杂志,2000,19(1):72~78
    [45] Waite A. New measurements of phytoplankton aggregation in a flocculator usingvideographyand image analysis. Marine Ecology Progress Series,1997,155:77~88
    [46] Billones R G.,Tackx M L M,et al. Image analysis as a tool for measuring particulate matterconcentrations and gut content, bodysize, and clearance rates of estrrine copepods: validationand application. journal of Marine Systems,1999,22:179~194
    [47]王铌,于新生,唐颖等.图像自动识别技术在海洋浮游生物分析中的应用.海洋科学,2007,31(10):61~66
    [48]杨榕,张荣,孙松.基于图像处理技术的浮游生物自动分类研究.计算机仿真,2006,23(5):167~170
    [49]赵文仓,姬光荣,周立简等.浮游植物细胞识别方法的研究.计算机工程,2005,31(24):143~145.
    [50]王明时,王学民,张磊.显微图像分析技术在赤潮生物是识别中的应用[J].天津大学学报,2004,37(5):392~395
    [51]徐雷,于连生.赤潮藻的显微图像测量方法研究.海洋技术,2003,23(3):43~46
    [52]王学民,曹红宝,孙勇.荧光法在赤潮图像分析中应用.海洋工程,2005,25(3):100~114
    [53]汪振兴,余焱,姜建国.赤潮藻类图像自动识别的研究.海洋环境科学,2007,26(1):42~44.
    [54] Kim H H. New algae mapping technique by the use of an airbime fluorosensor.AppliedOptics,1973,12(7):1454~1459
    [55] ChekalyukAM,Gorbunov M Y. Laser remote sensing of phytoplankton Photosyntheticactivity and chlorophyll by using a shipboard lidar system. in Laser Stuty of MacroscopicBiosystems. Jyvaskyla/Finland,SPIE,1993
    [56] Gorbunov M Y,ChekalyukAM. Lidar in-situ study of sunlight regulation of PhytoplanktonPhotosynthetic activity and chlorophyll fluorescence.in Laser Stuty of Macroscopic Biosystems.Jyvaskyla/Finland: SPIE,1993
    [57] Mckee D, Cunningham A, Jones K. An integrated submersible Fluorometer/Nephelometer/Transmissometer: Design and Testing at Sea. Optics&Laser Technology,1997,29(1):35~39
    [58] John J Cullen, Aurea M ciotti, Richard F Davis. The Relationship between near-surfaceChlorophyll and solar-stimulated Fluorescence.biological Effects.SPIE1997(2963):272~277
    [59] Wild-Allen K, Tett P, Bowers D. Observations of diffuse upwelling irradiance and chlorophyllin case I waters near the canary Islands(Spain).Optics&Laser Technology,1997,29(1):3~8
    [60] Beutler M., Wiltshire K H, Meyer B, et al. Afluorom etric Method for the Differentiation of AlgalPopulations in vivo and in situ.Photosynthesis Research,2002,72(1):39~53
    [61]夏达英,王振先,夏敬芳等.海水叶绿素a现场测量仪研究.海洋与湖沼,1997,28(4):433~439
    [62]王荣,鲁北伟,余家栋.海水中叶绿素a含量的连续走航测定.海洋与湖沼,1996,27(3):296~301
    [63]王莉田,杨影,王玉田,等.光纤荧光海藻浓度测量仪的研究.传感技术学报,200126(02):119~122
    [64]郑龙江,王莉田,王玉田,等.海藻叶绿素浓度的光纤荧光在线测量系统.燕山大学学报,1999,23(02):165~167
    [65]王志刚,刘文清,等.LED激发光源的水体浮游植物浓度活体检测系统研究.大气与环境光学学报2008,(1)36~41
    [66] Davis C, Gallager S, Berman N,et al. The Video Plankton Recorder (VPR): design andinitial results. Arch. Hydrobiol. Beith.1992,36,67~81.
    [67] Akiba, Tatsuro, Nakamura, et al.On development of a submersible microscopes and imageprocessing system. Oceans Conference Record (IEEE),1998,3:1594~1598
    [68] Akiba, Tatsuro.Submersible microscopes and image processing technologies: A new way tolook at zooplankton types, sizes, distribution for more effective monitoring of oceanicecosystem dynamics. Sea Technology,1999,40(3)61~67
    [69] Akiba, Tatsuro. Design and testing of an underwater microscope and image processingsystem for the study of zooplankton distribution.(IEEE)Journal of Oceanic Engineering,2000,25(1):97~104
    [70] Akiba, Tatsuro,et al.Continuous monitoring technologies of plankton and SuspendedParticulate Matter. Ocean '04-MTS/IEEE Techno-Ocean '04: Bridges across the Oceans-Conference Proceedings,2004,3:1414~1417
    [71] Horiuchi, Tomohiro. Development of a continuous imaging system equipped with fluorescentimaging for classification of phytoplankton. Ocean '04-MTS/IEEE Techno-Ocean '04:Bridges across the Oceans-Conference Proceedings,2004,3:1410~1413
    [72] Tsechpenakis.G, Guigand.C,Cowen R.K. Image analysis techniques to accompany a new insitu ichthyoplankton imaging system(ISIIS). OCEANS2007
    [73] Watson J,Craig V, Chalvidan, etc. High resolution in situ holographic recording andanalysis of marine organisms and particles (HOLOMAR), in: Proceedings of the IEEEInternational Conference on OCEAN’98,1998,1599~1604.
    [74] Watson J, Alexander S,etc. A holographic system for subsea recording and analysis ofplankton and other marine particles (HOLOMAR).Teaming Toward the Future Oceans ConfRec IEEE Oceans Conference Record (IEEE)2003,830~837
    [75] Samson S, Hopkins T, Remsen A, etc. A system for high-resolution zooplankton imaging,IEEE Ocean. Eng.200126(4):671~676.
    [76] Tang X, Stewart W K,Vincent L, etc. Automatic plankton image recognition. Artificialintelligence review,1998,12(1–3):177~199
    [77] Feng Zhao, Feng Lin, Hock Soon Seah. Binary SIPPER plankton image classifcationusing random subspace. Neurocomputing,2010,73:1853~1860
    [78]Tang Xiaoou, Lin Feng, Samson Scott, etc.Feature extraction for binary plankton imageclassification.Proceedings of the International Conference on Imaging Science, Systems andTechnology. CISST Proc. Internat. Conf. Imaging Sci. Syst. Technol, CISST2003,702~707
    [79] Tang X, Lin F, Samson S, Remsen A. Binary plankton image classifcation. IEEE J. Ocean.Eng.2006,31(3):728~735.
    [80]Feng Zhao, Feng Lin. Hock Soon Seah. Bagging based plankton image classification. ImageProcessing (ICIP).200916th IEEE International Conference, in:2009,9,2081~2084
    [81] Zhao F. Binary plankton recognition using random sampling.[Ph.D. Dissertation]. HongKong: The Chinese University of Hong Kong,2006.
    [82] Stauber J L, Franklin N M, Adams M S. Applications of flow cytometry to ecotoxicity testingusing microalgae.Trends Biotechnol,2002,20(4):141~143.
    [83]刘昕,张俊彬,黄良民.流式细胞仪在海洋生物学研究中的应用.海洋科学,2007,31(1):92~96
    [84] Olson R J,Vaulot D,Chisholm S W. Marine phytoplankton distributions measured usingshipboard flow cytometry. Deep-Sea Res Pt II,1985,32:1273~1280
    [85] Olson R J,ShalapyonokA,Sosik H M. An automated submersible flow cytometer foranalyzing pico-and nanophytoplankton:Flow Cytobot. Deep-Sea Res Pt I,2003,50:301~315
    [86]梁志辉,朱慧芬,陈九武编著.流式细胞术基本原理与实用技术.武汉,华中科技大学出版社,2008.131~133
    [87]王雨,林茂,等.流式影像术在海洋浮游植物分类研究中的应用.海洋科学进展,2010,(4):266~274
    [88] Sieracki C K, Sieracki M E,Yentsch C S. An imaging-i n-flow system for automatedanalysis of marine microplanton. Marine Ecology Progress Series,1998,168:285~296
    [89] Edward J B, Cammi E J H. Use of FlowCAM for semi-automated recognition andenumeration of red tide cells(Karenia brevis)in natural plankton samples.HarmfulAlgae,2006,5:685~692
    [90] Robert D V,Christopher W B,Robert R I,et a1. Light backscattering properties of marinephytoplankton: relationships to cell size, chemical composition and taxonomy. Journal ofPlankton Research,2004,26(2):191~212
    [91] Jason H S, Lisa C,Tammi L R,et al. Combing new technogies for determination ofphytoplankton community structure in the northern gulf of Mexico. JournalPlankton,2005,41:305~310
    [92] Matthew B B,Caryh,Marwan A M,et a1. Automatic in situ identification of plankton. NewYork:IEEE Computer Society,2006
    [93]Campei L I,Walpert J N,Guinasso N L. A new buoy based in situ optical early warning systemfor harmful algal blooms in the Gulf of Mexico. Nova Hedwigia,2008,133(sup1):161~175
    [94] Idel K,Takshashi K, Kuwata A, et a1. A rapid analysis of copepod feeding using Flow-CAM.Journal Plankton Research,2008,30(3):275~281
    [95]戴君伟,王博亮,焦念志,等.海洋赤潮生物图像实时采集系统.高技术通讯,2006,16(12):1316~1320
    [96]Jeffrey S W, Mantoura R F C, Wright S W. Phytoplankton pigments in oceanography:guidelines to modern methods. UNESCO, France,1997,136~137
    [97] Falkowski P G, Kolber Z, Variations in chlorophyll fluorescence yields in phytoplankton inthe world oceans. Aust. J.Plant Physiol.1995,22:341–335
    [98]沈熊.激光多普勒测速技术及应用.北京:清华大学出版社,2004.7~110
    [99]特瑞恩L E著,王仕康,沈熊,周作元译.激光多普勒技术.北京:清华大学出版社,1990.20~87
    [100] Bruce J E, Demarest T F C.,Sommargren G E.Laser Doppler Velocimeter velocityand lenth.Appied Opitics,1984,23(1):67~73
    [101] Drain LE.The Laser Doppler Technique.John Wiley&Sons.1980,40~41
    [102]金国藩,李景镇.激光测量学.北京:科学出版社,1998.8~9
    [103] F.杜斯特,A.梅林,J.H.怀特洛著,沈熊,许宏庆等译.激光多普勒测速技术的原理和实践.北京:科学出版社,1992.81~88
    [104] Drain LE.The Laser Doppler Technique.John Wiley&Sons,1980.51~67
    [105] Eisert W G. High Resolution Optics Combined with High Spatial Reproducibility inFlow.Cytometry,1981(1):254~261
    [106] Schrader H W, Eidert W G. High Resolution particle sizing using the combination oftime-of-flight and light-scattering measurements. Applied Opitics,1986,25(23):153~161
    [107] Chan R K Y, Un K M. Real-time size distribution, concentration, and biomassmeasurement of marine phytoplankton with a novel dual-beam laser fluorescenceDoppler cytometer.Applied Optics,2001,40(18):2956~2965
    [108] Wang X Z, Chan R K Y, Cheng A S K. Underwater cytometer for in situ measurement ofmarine phytoplankton by a technique combining laser-induced fluorescence and laserDoppler velocimetry. Optics Letters,2005,30(10):1087~1089
    [109]阎吉祥.激光原理与技术.北京:高等教育出版社,2006.
    [110]周炳琨,高以智,陈家骅,等.激光原理.北京:国防工业出版社,2004
    [111] Hakan Urey. Spot size,depth-of-focus,and diffraction ring intens truncated Gaussianbeams.Applied Optics,2004,43(3):620~625
    [112]郁道银,谈恒英.工程光学.北京:机械工业出版社,2003.102~104
    [113] Gordon R L,Forbes G.W. Optimal resolution with extrme depth of focus. Opticscommunications,1998,150:277~286
    [114]冷长林.基于多普勒技术的微机电系统运动检测:[博士学位论文].天津:天津大学,2006
    [115]张以谟.应用光学.北京:机械工业出版社,1988
    [116]邓秋华,龙青云,等.高斯光束在光纤间的透镜耦合.半导体光电,2006,27(5):602~604
    [117]杨齐民,王崇真,钟丽云,等.激光束与光纤耦合的研究.云南工业大学学报,1995,11(1):1~4
    [118]吴俊芳,王英,张凌.高斯光束在光纤间的耦合.激光技术,2004,28(2):181~183
    [119]杨祥林.光纤传输系统.南京:东南大学出版社,1991.130~150
    [120]王宇华,李志华,段发阶.光纤耦合效率与接收光强计算研究.光电工程,2005,32(7):42~44
    [121]肖志刚,李斌成.高斯光束到光纤的单透镜耦合.光电工程,2008,35(8):29~34
    [122]孙渝生.激光多普勒测量技术及其应用.上海:上海科技文献出版社,1995.95
    [123] DURST F著,清华大学力学系译.激光多普勒风速仪的原理和实践.北京:清华大学工程力学系,1979.92~95
    [124]黄德康,李彩荣,朱茂华.激光多普勒测速中散射粒子的大小对信噪比的影响.光学技术,2003,29(2):164~165
    [125]杜斯特F,梅林A,怀特洛J H著,沈雄,许宏庆,周作元译,激光多普勒测速技术的原理与实践,北京:科学出版社,1992.114~115
    [126] Hamamatsu Japan.Metal Package PMT H9656Series Data Book2010
    [127] Hamamatsu Japan.Side-on PMT H7732Series Data Book2010
    [128] Texas Instruments. THS4503Data Book.2004
    [129]Texas Instruments. ADS1605Data Book.2007
    [130]Texas Instruments. ADS1605andADS1606EVM User’s Guide.2004
    [131]彭晓东.基于PCI总线的DSP、CPLD运动控制器的设计与实现.硕士学位论文.成都:电子科技大学2005
    [132]Texas Instruments. TMS320C6713B Data Book Revised June2006
    [133]Texas Instruments. TMS320C67x/C67x+DSP CPU and Instruction Set Reference Guide.2005
    [134]葛君.基于DSP技术的PCI数据采集及实时处理卡的设计实现.[硕士论文].青岛:中国海洋大学.2010
    [135]Texas Instruments. TMS320C6000DSPHost Port Interface (HPI) Reference Guide2006
    [136]PLX. PCI9030Date Book Version1.42002
    [137]上海艾力特国际贸易(香港)有限公司.CASY-TT细胞活力分析仪操作手册.2002.4
    [138]袁美玲,王朝晖,杨宇峰.有害赤潮藻卡顿藻研究展.海洋科学,2009,33(11):100~104
    [139]孙颖颖.环境因子对球等鞭金藻生长的影响:[博士学位论文].大连:大连理工大学,2007
    [140]青岛海洋科学数据共享平台,中国外来海洋生物物种基础信息数据库.http://bioinvasion.fio.org.cn (中国外来生物入侵网)
    [141]中国科学院海洋研究所海洋生物种质库.单细胞藻种质分离、培养和应用的技术操作规范.
    [142] http://bioon.com
    [143] http://baike.baidu.com/view/480332.htm
    [144]吴电云,邹宁,等.球等鞭金藻的培养研究进展及应用前景.生命科学仪器,2011,9(1):39~42
    [145]杨汝君,王修林,等.海洋浮游植物粒径分布方法研究.高技术通讯,2004,(6):89~94
    [146] Enbang Li,Tieu K, Mackenzie M. Interference patterns of two cused Gaussian beams in anLDA measuring volume. Optics Lasers in Engineering,1997,27:395~407
    [147]邹泓,赵洋,激光多普勒测量中信号的误差分析,光学技术,2000,26(3):235~237
    [148]钟莹.微机电系统谐振器面内运动检测的多普勒方法.[博士学位论文].天津:天津大学,2005
    [149]Yang R J, Wang X L, Zhang Y Y,et al. Influence of cell equivalent spherical diameter on thegrowth rate and cell density of marine phytoplankton.Journal of Experimental MarineBiology and Ecology,2006,331:33~40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700