外场(环境)对类胡萝卜素分子电子声子耦合的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
π共轭线性多烯分子是重要的光电材料,如研制光电二极管、太阳能电池、场效应晶体管等。类胡萝卜素分子为线性多烯类生物分子,具有光合作用,具有光能采集、吸收三重态能量,猝灭单态氧等功能。它的光电性质与其结构及其有序程度,即π电子离域程度密切相关。研究类胡萝卜素分子在共振拉曼过程中的电子—声子耦合可以获得电子、原子振动相互作用规律,对丰富分子光谱学内容、研制高质量多烯光电材料既有重要理论价值又有光明应用前景。外场对电子声子耦合影响等很多规律有待认知,很多实际应用有待开发。
     本文利用共振拉曼光谱、可见吸收光谱技术、依据量子力学、分子光谱相关理论,分别研究了:β胡萝卜素溶于1,2二氯乙烷溶液温度区间为83K到323K范围内,溶液相变对β胡萝卜素拉曼光谱基频、和频、倍频强度及线宽的影响,β胡萝卜素溶于二甲基亚砜溶液中25-81oC温度范围内的拉曼和吸收光谱特性,分析了温度对电子—声子耦合的影响;研究了温度对β胡萝卜素溶于极性溶剂1,2二氯乙烷和非极性溶剂环己烷中20-60oC温度范围内,溶剂极性对β胡萝卜素电子—声子耦合的影响;研究了压强对二硫化碳中β胡萝卜素分子电子—声子耦合的影响,取得如下创新性成果:
     1.利用变换温度的方法研究了β胡萝卜素溶于1,2二氯乙烷中323K到83K范围内温度对拉曼光谱基频、和频、倍频强度及线宽的影响。研究的创新之处为相变期间,和频和倍频的相对强度一直增加。这主要是由于电子声子耦合增加量大于相干弱阻尼CC键振动的减少量。
     测量多烯分子β胡萝卜素在二甲基亚砜溶液中的可见吸收和拉曼光谱,分析了温度对β胡萝卜素紫外吸收带峰位,构型能,黄昆因子及电子声子耦合的影响。结果表明:随着温度的升高,β胡萝卜素CC单键和双键的拉曼散射截面值降低,可见吸收光谱发生蓝移。黄昆因子增加,拉曼半高宽增加。这是由于温度增加引起分子热运动加剧,溶液不稳定,导致β胡萝卜素熵降低,另外,温度升高所引起的有效共轭长度降低,也是吸收光谱发生蓝移的原因之一。此外,随着温度的升高,β胡萝卜素分子的结构有序性下降,CC各单、双键的键长差增加,导致半高宽增加。根据不同温度的吸收和拉曼谱,我们计算了电子声子耦合系数,随着温度的增加,有效共轭长度降低,改变了晶格振动,拉曼的电子声子耦合系数降低。
     (2)研究了β胡萝卜素在极性溶剂1,2-二氯乙烷和非极性溶剂环己烷不同温度范围的电子吸收光谱和拉曼光谱,通过分析实验的光谱变化规律及理论计算,得出不同极性溶剂对β胡萝卜素分子结构有序性、π-电子离域、黄昆因子、电子声子耦合等有很大影响,在非极性溶剂环己烷中,分子间相互作用力及其种类少,分子结构有序性好,有效共轭长度大,π电子离域扩展容易, R. Tubino提出的带量纲电子声子耦合常数V小,相干弱阻尼电子-晶格振动强,拉曼活性好。在极性溶剂1,2-二氯乙烷中,存在着静电诱导能等多种作用使β胡萝卜素分子结构有序性差,有效共轭长度小,π电子离域范围小,有量纲的电子-声子耦合大,拉曼活性差。实现了电子能隙对碳碳键振动的调制作用。
     (3)测量了β胡萝卜素溶于CS_2溶液中0.04-0.6Gpa下的高压紫外—可见吸收光谱和高压拉曼光谱,实验结果表明,随着压强的增加,溶液的密度和折射率的增大。分子被压缩并有序性下降,π电子能隙减小,使紫外-可见吸收光谱红移;由于压强增大,使溶质溶剂之间的相互作用增大,S1态的振动弛豫时间缩短,00带吸收光谱变宽。黄昆因子随着压强的增大而增加。随着压强的增大,由于电子能隙对碳碳键振动的调制作用变大,使得拉曼光谱中CC键的散射截面减小;根据吸收和拉曼光谱的各参数,我们计算了R. Tubino提出的带量纲电子声子耦合常数V,随着压强的增大,电子声子耦合常数增加。
     综上所述,本论文通过改变温度、溶剂极性、压强等外界环境来研究电子声子耦合参数随外场(环境)变化规律,掌握其产生光学现象的机理,深入了解分子结构和分子内、分子间相互作用。明确线性多烯分子各种光电特性及光谱学机理,既能丰富多烯分子光谱学内容,也为研制高性能光电材料提供依据和参考。
π-Conjugated linear polymers are highly interesting subjects due to theiroptoelectronic applications, such as in light-emitting diodes, solar cells, andfield-effect transistors. Carotenoids have multiple roles in the photosynthetic process.They harvest incoming photons at wavelengths that chlorophyll molecules do notabsorb and are capable of accepting the energy of chlorophyll triplet states, which caninduce the formation of harmful singlet oxygen species. Its electro-optical propertiesare closely related to the structure ordered, that is π-electron delocalization extent.The researches on electron-phonon coupling of all-trans-β-carotene in resonantRaman scattering contain the important regularity between the electron and atomvibration. At the same time, it has theoretical value and bright application prospect forenriching molecule spectroscopy content and developing the high-quality polyenephotoelectric material. We need have deeper research on electron-phonon coupling,we need develop some practical application on it.
     We use the resonance Raman and visible absorption spectroscopy technology toresearch following work according to the theory of quantum mechanics and molecularspectrum. We got resonance Raman spectra of the all-trans-β-carotene dissolved in1,2-dichloroethane in the83K to323K temperature range. The fundamental,combination and harmonic modes and width of CC bonds vary with temperature. Wemeasure the Raman and absorption spectra of all-trans-β-carotene in dimethylsulfoxide (DMSO) at the temperature range from25to81oCand analysis the effectof temperature on electron-phonon coupling. The absorption and resonance Ramanspectra of all-trans-β-carotene in nonpolar cyclohexane and polar1,2-dicholoroethaneat the temperature range from20to60oChave been measured to analysis the effectof solvent’s polar on electron-phonon coupling. The effect of pressure onelectron-phonon coupling of all-trans-β-carotene in CS2has been discussed. We gotthe following innovative achievements.
     1. We got resonance Raman spectra of the all-trans-β-carotene dissolved in1,2-dichloroethane through varying temperature and obtain the temperature effect onfundamental, combination and harmonic modes and width of CC bonds. The innovateresearch describes that during the solid-liquid phase transition, the Raman ScatteringCross Section(RSCS) of the fundamental CC bonds rapidly decreases but the rate ofrelative intensities increases sharply as the temperature decreases. The observed highRaman activity in segment s can be attributed to the greater electron-phonon couplingthat can rapidly arise in all-trans-β-carotene.
     The temperature dependence (25-81oC) of the visible absorption and Ramanspectra of all-trans-β-carotene extremely diluted in dimethyl sulfoxide (DMSO) isinvestigated to clarify the effects of temperature on the absorption wavelength,characteristic energy, Huang-Rhys (HR) factor and electron-phonon coupling. Aprominent feature of the temperature evolution of all-trans-β-carotene is theacceleration of molecular movement, which results in a decrease in entropy andcauses the solution to become unstable. Weakening of the coherent weakly dampedCC stretching vibrations of all-trans-β-carotene caused by a decrease in thestructurally ordered properties of the molecules leads to decreases in the RSCS. Wemeasure the absorption spectra of all-trans-β-carotene at different temperatures. Aprominent feature of the all-trans-β-carotene absorption spectrum is the blueshift withincreases in temperature. We interpret the phenomenon with Lorentz-Lorenz function.Therefore, with increasing temperature, the blueshift of the all-trans-β-caroteneabsorption spectrum in the visible region could be interpreted as arising fromconcomitant decreases in the liquid density and refractive index by theLorentz-Lorenz function. The decrease in effective conjugation length (ECL) withincreasing temperature can lead to the blueshift of absorption spectra. Inaddition, we also calculated an important parameter: Huang-Rhys (HR) factor, itdescribes the degree of electron-phonon coupling. The HR factor trend in theabsorption indicates that excitons have strengthened coupling with the primaryphonon with energy of E_p when temperature is increased. The full width at half maximum (FWHM) of the Raman peak increases monotonically with increasingtemperature. We calculate electron–phonon coupling parameter combine the Ramanand absorption spectra. With increasing temperature, the degree of effectiveconjugation length, modifying the lattice configuration, electron–phonon couplingdecreases.
     (2) We measure the absorption and resonance Raman spectra ofall-trans-β-carotene in nonpolar cyclohexane and polar1,2-dicholoroethane at thetemperature range from20to60oC. We get the effect of solvent polar on structureordered, πelectron delocalization, HR factor and electron–phonon coupling ofall-trans-β-carotene. The few species of interaction force between the molecules makethe structure ordered better in a non-polar solvent cyclohexane. The ECL increases,πelectron delocalization extended and coherent weakly electron-lattice vibrationenhanced lead to the high Raman activity. The electron-phonon coupling constant ofall-trans-β-carotene in non-polar solvent cyclohexane is smaller than that in polarsolvent1,2-dicholoroethane. However, the electrostatic induction ofall-trans-β-carotene in decreases the structural ordered, shorten the ECL, diminishedπelectron delocalization. All-trans-β-carotene has low Raman activity in polar solvent1,2-dicholoroethane.
     (3) Visible absorption and Raman spectra of all-trans-β-carotene are measured inCS2at pressure range from0.04-0.6Gpa. The results indicated that the visibleabsorption spectra are red-shifted, FWHM increases, the RSCS decreases,Huang-Rhys factor increases, the electron-phonon coupling constants of CC bondvibration modes increases. The reasons for these phenomena are the molecularstructural order of β-carotene decreased and π electron energy gap diminished withthe pressure increased. The visible absorption spectra are red-shifted. Otherwise, thedensity and refractive index increase with the increasing pressure. It makescontribution on the red shift. The FWHM of the0-0peak increases monotonicallywith increasing pressure. The intermolecular electrostatic interactions enhanced withthe increasing pressure. The broader bandwidth of this band in S1relative to its width in S_0is ascribed to the shorter vibrational relaxation time in the S1state. Thevibrational relaxation is due to the intermolecular electrostatic interactions betweenthe transition dipoles of the solute molecules. Weakening of the coherent weaklydamped CC stretching vibrations of all-trans-β-carotene caused by a decrease in thestructurally ordered properties of the molecules leads to decreases in the Ramanscattering cross section. We combine the absorption spectra with the Raman spectra tocalculate the electron-phonon coupling constants. The electron-phonon couplingconstant of CC bond vibration modes which is proposed by R. Tubino increases withincreasing pressure.
     In summary, we analyse the effect of external field such as temperature, solventpolarity, pressure on electron-phonon coupling parameter. The mechanism ofgenerating optical phenomenon and the interactions between intramolecular andintermolecular have been grasped. It has theoretical value and bright applicationprospect for enriching molecule spectroscopy content and developing the high-qualitypolyene photoelectric material.
引文
[1] WACKENRODER H W F. über das oleum rad. Danci aethereum,das Carotin, denCarotlenzucher und den officinellum succus Danci[J]. Mag Pharm,1831,33:144-148.
    [2] BERZELIUS J.über de gelbe Farbe der Blaetter im Herbste[J]. Ann der Pharm,1837,21:257-262.
    [3] BERZELIUS J. Einige Untersuchungen ueber die Farbe, welche das Laubverschiedener Baumgattungen im Herbste vor dem Abfallen annimmt[J].Annalen der Physik und Chemie,1837,42:422-433.
    [4] FREMY E. Recherches sur la matière colorante verte des feuilles[M]. ComptRend,1860.
    [5] KOHL F G. Untersuchungen ueber das Carotin und seine physiologischeBedeutung in der Pflanze[M]. Borntraeger,1902.
    [6] STRAIN H H. Leaf Xanthophylls[M]. Stanford:Carnegie Institute of WashingtonPublication,1938.
    [7] BOGERT M T. Carotenoids[M]. New York: Organic Chemistry,1938.
    [8] TSWETT M. Adsorptionsanalyse und Chromatographische Methode. Anwendungauf die Chemie des Chlorophylls[J].Ber Deutsch Botan Ges,1906,24:384-393.
    [9] TSWETT M. über den makro-und microchemischen Nachweis des Carotins[J].Ber Deut Botan Ges,1911,29:630-636.
    [10] KüHN R. Plant Pigments[J]. Ann Rev Biochem,1935,4:479-496.
    [11] DUTTON H J,MANNING. Evidence for carotenoid-sensitized photosynthesis inthe diatom Nitzschia closterium[J]. Am J Bot,1941,28:516-526.
    [12] GRIFFITHS M,SISTROM WR,COHEN-BAZIRE G et al. Function ofcarotenoids in photosynthesis[J]. Nature,1955,176:1211-1214.
    [13]FRANCK J. Elementary processes of photochemical reactions.Trans Faraday Soc[J].1925,21:536-542.
    [14]FRANCK J. über eine Rotverschiebung der Resonanzfluoreszenz durch vielfachwiederholte Streuung[J]. Naturwiss.,1927,15:236-238.
    [15] OMENN G S,GOODMAN G E,THON GQU IST M D et al. Effects of aCombination of Beta Carotene and Vitamin A on Lung Cancer andCardiovascular Disease[J].New En gl. M ed.,1996,334(18):1150-1155.
    [16]赵文恩,韩雅珊,乔旭光.类胡萝卜素清除活性氧自由基的机理[J].化学通报,1999,4:25-27.
    [17]欧阳顺利.类胡萝卜素分子电子声子耦合的研究[D].长春:吉林大学,2011.
    [18]赵文恩,韩雅珊,王其顺.类胡萝卜素抗氧化作用的研究[D].郑州:郑州大学,2001.
    [19]陈东升.类胡萝卜素抗癌作用的研究概述[J].杨家驹第三军医大学营养卫生学教研室中国公共卫生学报,1992,11:189-191.
    [20]朱俊东.细胞间隙连接通讯与癌变及类胡萝卜素抗癌作用的关系研究概述[J].杨家驹第三军医大学国外医学(卫生学分册),1996,23:5-8.
    [21] ZIEGIER R G. A review of epidemiologic evidence that carotenoids reduce therisk of cancer[J]. Nature,1989,119(1):1116-122.
    [22] PAGANINI-HILL A, et al.Vitamin A,β-carotene and the risk of cancer: Aprospective study [J]. JNCI,1987,79(3):443-448.
    [23] BYERS T E, GRAHAM S, HAUGHEY B P, et al. Diet and lung cancer risk[J].Am. J.Epidemio.,1987,125(3):351-363.
    [24] BENDICH A. Carotenoids and immune response[J]. Nature,1989,119(1):112-115.
    [25]赵文恩,康保珊,焦凤云.类胡萝卜素的抗癌作用与基因表达的联系[J].生物学杂志,2006,23(2):1-6.
    [26]张修全,彭恕生.类胡萝卜素与视黄醇类的化学防癌作用[J].现代预防医学.1991,18(1):52-56.
    [27]黄承钰,曹令福,彭恕生,洪君蓉,何涛,王朝俊,杨屏.富含类胡萝卜素蔬菜的抗癌作用:中国, R730.5[P].1999-01-01.
    [28]颜少宾,张妤艳,马瑞娟.桃果实类胡萝卜素测定方法的研究[J].果树学报,2012,29(6):1127-1133.
    [29]崔培,姜志强.崔宽宽.类胡萝卜素对鱼类功能的作用及影响鱼类着色效果的因素[J].天津水产,2012,3(1):4-9.
    [30]刘伟龙. β-胡萝卜素的高压稳态和超快光谱研究[D].哈尔滨:哈尔滨工业大学,2009.
    [31]王业勤,李勤生.天然类胡萝卜素研究进展、生产、应用[M].北京:中国医药科技出版社,1996:125-132.
    [32]姜建国,王飞,陈倩.类胡萝卜素生物功效与生物技术[M].北京:化学工业出版社.2007:27-56.
    [33]惠伯棣.类胡萝卜素化学及生物化学[M].北京:中国轻工业出版社.2005:241-280.
    [34]赵晓辉,马菲,吴义室.飞秒时间分辨拉曼光谱用于研β-胡萝卜素单重激发态内转换和振动弛豫过程[J].物理学报,2008,57:298-305.
    [35]张蕾,全冬晖,汪力,杨国桢,翁羽翔.全反式类胡萝卜醛(All-Trans-β-Apo-8’-Carotenal)的飞秒时间分辨瞬态吸收光谱[J].中国科学G,2004,34:1-14.
    [36] WENG Y X, LI L, LIU Y, et al. Surface-Binding Forms of Carboxylic Groups onNanoparticulate TiO2Surface Studied by the Interface-Sensitive TransientTriplet-State Molecular Probe[J]. Phys.Chem. B,2003,107:4356-4363.
    [37] ZHANG L, YANG J, WANG L, et al. Direct Observation of Interfacial ChargeRecombination to the Excited-Triplet State in All-Trans-Retinoic Acid SensitizedTiO2Nanoparticles by Femtosecond Time-Resolved Difference AbsorptionSpectroscopy[J]. J. Phys. Chem. B,2003,107:13688-13697.
    [38]王水才,蔡霞,贺俊芳.从捕光天线到反应中心分子能量传递研究[J].光子学报,2003,32:641-645.
    [39]王水才,蔡霞,贺俊芳.从核心天线到反应中心分子传能研究[J].光子学报,2003,32:848-852.
    [40]郭立俊,郭俊华,刘源.高等植物外周捕光天线LHCⅡ中的超快光动力学过程[J].发光学报,2004,25:242-246.
    [41]赵文恩,康保珊,焦凤云.类胡萝卜素的抗癌作用与基因表达的联系[J].生物学杂志,2006,23:1-6.
    [42]任丹丹,彭光华,黄红霞.菹草类胡萝卜素抗癌作用与机理的研究华[J].中农业大学学报(自然科学版),2006,2:199-202.
    [43]杨美英,贺红霞,王艳.番茄茄红素β-环化酶基因高效沉默载体构建[J].分子植物育种,2007,5:43-46.
    [44]檀琮萍,梁成伟,苏忠亮.雨生红球藻β-胡萝卜素酮化酶基因克隆、分析及叶绿体表达载体构建[J].海洋通报,2007,26:35-40.
    [45]SCHULTEN K, KARPLUS M. On the Origin of a Low-Lying ForbiddenTransition in Polyenes and Related Molecules[J]. Chem.Phys.Lett.,1972,14:305-309.
    [46] PNRIEER R. A Semi-Empirical Theory of the Electronic Spectra and ElectronicStructure of Complex Unsaturated Molecules[J]. J. Chem. Phys.,1953,21:466-471.
    [47]PARISER R, PARR R G. A Semi-Empirical Theory of the Electronic Spectra andElectronic Structure of Complex Unsaturated Molecules[J]. J. Chem. Phys.,1953,21:767-776.
    [48]TAVAN P, SCHULTEN K, Electronic Excitations in Finite and InfinitePolyenes[J]. Phys. Rev. B.,1987,36:4337-4358.
    [49]POLIVKA T, SUNDSTR V M. Ultrafast Dynamics of Carotenoid ExcitedStates-From Solution to Natural and Artificial Systems[J]. Chem.Rev.,2004,104:2021-2071.
    [50]WASIELEWSKI M R, KISPERT L D. Direct Measurement of the Lowest ExcitedSinglet State Lifetime of All-Trans-β-Carotene and Related Carotenoids[J]. Chem.Phys. Lett.,1986,128:238-243.
    [51]SASHIMA T, NAGAE H, KUKI M, et al. A New Singlet-Excited State ofAll-Trans-Spheroidene as Detected by Resonance-Raman Excitation Profiles[J].Chem. Phys. Lett.,1999.299:187-194.
    [52]ZHANG J P, INABA T, WATANABE Y, et al. Excited-State Dynamics among the1Bu+,1Bu and2Ag States of All-Trans-Neurosporene as Revealed byNear-Infrared Time-Resolved Absorption Spectroscopy[J]. Chem. Phys. Lett.,2000,332:351-358.
    [53]BILLSTEN H H, ZIGMANTAS D, SUNDSTR V M, et al. Dynamics ofVibrational Relaxation in the S1State of Carotenoids Having11ConjugatedC=CBonds[J]. Chem. Phys. Lett.,2002,355:465-470.
    [54] FUJII R, INABa T, WaTaNABE Y, et al. Two Different Pathways of InternalConversion in Carotenoids Depending on the Length of the Conjugated Chain[J].Chem. Phys. Lett.,2003,369:165-172.
    [55]SUTRESNO A, KAKITANI Y, ZOU P, et al. Presence and Absence of ElectronicMixing in Shorter-Chain and Longer-Chain Carotenoids: Assignment of theSymmetries of1Bu-and3Ag-States Located just below the1Bu+State[J]. Chem.Phys., Lett.,2007,447:127-133.
    [56]NGAE H, KAKITANI Y, KOYAMA Y. Theoretical Description of DiabaticMixing and Coherent Excitation in Singlet-Excited States of Carotenoids[J].Chem. Phys. Lett.,2009,474:342-351.
    [57]NIEDZWIEDZKI D, KOSCIELECKI J F,CONG H, et al.Ultrafast Dynamics andExcited State Spectra of Open-Chain Carotenoids at Room and LowTemperatures[J]. J. Phys. Chem. B,2007,111:5984-5998.
    [58]CONG H, NIEDZWIEDZKI D M, GIBSON G N, et al. Ultrafast Time-ResolvedSpectroscopy of Xanthophylls at Low Temperature[J]. J. Phys. Chem.B,2008,112:3558-3567.
    [59]GRADINARU C C,KENNIS J T M, PAPAGIANNAKIS E, et al. An UnusualPathway of Excitation Energy Deactivation in Carotenoids: Singlet-to-TripletConversion on an Ultrafast Timescale in a Photosynthetic Antenna[J]. Proc. Natl.Acad. Sci. U.S.A.,2001,98:2364-2369.
    [60]LARSEN D S, PAPAGIANNAKIS E, VAN STOKKUM I H M, et al. ExcitedState Dynamics of β-Carotene Explored with Dispersed Multi-Pulse TransientAbsorption[J]. Chem. Phys. Lett.,2003,381:733-742.
    [61]FRANK H A, BAUTISTA J A, JOSUE J, et al. Effect of the Solvent Environmenton the Spectroscopic Properties and Dynamics of the Lowest Excited States ofCarotenoids[J]. J. Phys. Chem. B,2000,104:4569-4577.
    [62]VASWANI H M, HSU C P, GORDON M. H,et al. Quantum Chemical Evidencefor an Intramolecular Charge-Transfer State in the Carotenoid Peridinin ofPeridinin-Chlorophyll-Protein[J].J. Phys. Chem. B,2003,107:7940-7946.
    [63]ORLANDI G, ZERBETTO F, ZGIERSKI M Z. Theoretical Analysis of Spectra ofShort Polyenes[J]. Chem. Rev.,1991,91:867-891.
    [64]WASIELEWSKI M R, JOHNSON D G, BRADFORD E G, et al. TemperatureDependence of the Lowest Excited Singlet-State Lifetime ofAll-Trans-β-Carotene and Fully Deuterated All-Trans-β-Carotene[J]. J. Chem.Phys.,1989,91:6691-6697.
    [65] CONNORS R E, BURNS D S, FARNOOSH R, et al. Computational Studies ofthe Molecular Structure and Electronic Spectroscopy of Carotenoids[J]. J. Phys.Chem.,1993,97:9351-9355.
    [66] WEESIE R J, MERLIN J C, LUGTENBURG J, et al. Semiempirical and RamanSpectroscopic Studies of Carotenoids[J]. Biospectrosc,1999,5:19-33.
    [67] GARAVELLI M, BERNARDI F, OLIVUCCI M, et al. DFT Study of theReactions between Singlet-Oxygen and a Carotenoid Model[J]. J. Am. Chem.Soc.,1998,120:10210-10222.
    [68]HIMO F. Density Functional Theory Study of the β-Carotene Radical Cation[J]. J.Phys. Chem. A,2001,105:7933-7937.
    [69]GUO J D, LUO Y, HIMo F. Density Functional Theory Study of theCanthaxanthin and Other Carotenoid Radical Cations[J].Chem. Phys. Lett.,2002,366:73-81.
    [70]NIEDZWIEDZKI D M, SULLIVAN J O, POLIVKA T, FemtosecondTime-Resolved Transient Absorption Spectroscopy of Xanthophylls[J]. J. Phys.Chem. B,2006,110:22872-22885.
    [71]PENDONIZ D, SULLIVANL O, VAN DER HOEF I, et al. Stereoisomers ofCarotenoids: Spectroscopic Properties of Locked and Unlocked Cis-Isomers ofSpheroidene[J]. Photosynth. Res.,2005,86:5-24.
    [72] VASWANI H M, HSU C P, GORDON M H, et al. Quantum Chemical Evidencefor an Intramolecular Charge-Transfer State in the Carotenoid Peridinin ofPeridinin-Chlorophyll-Protein[J]. J. Phys. Chem. B,2003,107:7940-7946.
    [73] GAO Y, FOCSAN A L, KISPERT L D, et al. Density Functional Theory Study ofthe β-Carotene Radical Cation and Deprotonated Radicals[J]. J. Phys. Chem. B,2006,110:24750-24756.
    [74] AMARIE S, STANDFUSS J, BARROS T, et al. Carotenoid Radical Cations as aProbe for the Molecular Mechanism of Nonphotochemical Quenching inOxygenic Photosynthesis[J]. J. Phys. Chem. B,2007,111:3481-3487.
    [75] SCHETTINO V, GERVASIO F L, CARDINI G, et al. Density FunctionalCalculation of Structure and Vibrational Spectra of Polyenes[J]. J. Chem. Phys.,1999,110:3241-3250.
    [76] DOKTER A M, VAN HEMERT M C, VELT C M I, et al. Resonance RamanSpectrum of All-Trans-Spheroidene. DFT Analysis and Isotope Labeling[J]. J.Phys. Chem. A,2002,106:9463-9469.
    [77] SCHLüCKER S, SZEGHALMI A, SCHMITT M, et al. Density Functional andVibrational Spectroscopic Analysis of β-Carotene[J]. J.Raman Spectrosc.,2003,34:413-419.
    [78] WIRTZ A C,VAN HEMERT M C,LUGTENBURG J,et al. Two Stereoisomers ofSpheroidene in the Rhodobacter Sphaeroides R26Reaction Center: A DFTAnalysis of Resonance Raman Spectra[J]. Biophysic. J.,2007,93:981-991.
    [79]刘伟龙.β胡萝卜素的高压稳态和超快光谱研究[D].哈尔滨:哈尔滨工业大学,2009.
    [1]李云,邢生凯,赵学庄.共轭多烯及其取代物的模糊对称性[J].南开大学学报,2011,44:80-89.
    [2]黄宗浩,王荣顺,赵成大.共轭多烯分子极化率的量子化学研究[J].高等学校化学学报,1991,12:1075-1078.
    [3]唐教庆等.分子轨道图形理论[J].科学出版社,1980.
    [4] YAMADE T, TANAKA K, TERAMA-E H, et al. Electronic properties of pureand doped polyacetylenes[J]. J.Phys.C1979,12:L257-L262.
    [5]孙仁安.聚乙炔一维共轭多烯半导体[J].辽宁师范大学学报,1988,3:44-48.
    [6] WHANGBO M H, HOFFMANN R, WOODWARD R B. Conjugated one and twodimensional polymers[J]. Proc. R. soc. Lond. A,1979,366(1724):23-46.
    [7] SEIFERT G, ESCHRIG H. LCAO X. Calculations of transition metal clustersPhys. stat. sol. b,1985,127(11):573-585.
    [8]CHEMLA D S, ZYSS J. Nonlinear Optical Properties of Organic Molecules andCrystals, Academic Press, Orlando,1987
    [9] OUDER J L, HIERLE R. An efficient organic crystal for nonlinear optics:methyl‐(2,4‐dinitrophenyl)‐aminopropanoate[J]. J. Appl.Phys.,1977,48:2699-2705.
    [10]ZYS J, CHEMAA D S, NICOUD J F. Demonstration of efficient nonlinear opticalcrystals with vanishing molecular dipole moment: Second‐harmonic generationin3‐methyl‐4‐nitropyridine‐1‐oxide[J]. J. Chem. Phys.,1981,74:4800-4811.
    [11] TWEIG R, AZEMA A,JAIN K, et al. Organic materials for non-linearoptics nitropyridine derivatives[J]. Chem. Phys. Lett.,1982,92(2):208-211.
    [12] SUN M, KJELLBERG P, MA F, et al. Excited state properties ofacceptor-substitute carotenoids:2D and3D real-space analysis, Chem. Phys.Lett.,2005,401:558–564.
    [13] SINGER K D, SOHN J E, KING L A, et al. Second-order nonlinear-opticalproperties of donor-and acceptor-substituted aromatic compounds[J]. J. Opt. Soc.Am. B,1989,7:1339-1350.
    [14] KERKOC P, ZGONIK M, SUTTER K, et al.4-(N,N-Dimethylamino)-3-acetamidonitrobenzene single crystals for nonlinear-optical applications[J]. J. Opt. Soc.Am. B,1990,7(3):313-319.
    [15] LI E Q, RATNER M A, MARKS T J, et al. Molecular and MacromolecularNonlinear Optical Materials. Probing Architecture/ElectronicStructure/Frequency Doubling Relationships Via An Scf-Lcao Meci. Pi. ElectronFormalism[J]. J. Am. Chem. Soc.,1988,110(6):1707-1715.
    [16] RAMASESHA S, DAS P K. Second harmonic generation coefficients inpush-pull polyenes: A model exact study[J]. Chem. Phys.,1990,145:343-353.
    [17] LALAMA S J, GARITO A F. Origin of the nonlinear second-order opticalsusceptibilities of organic systems[J]. Phys. Rev. A.,1979,20:1179-1194.
    [18] WAITE J, PAPADOPOULOS M G. The variation of calculated electricpolarisabilities and hyperpolarisabilities, in cycloocta-1,5-diene, annulene, theiranions and several of their derivatives, induced by changes in molecular structureand charge: A comparative study[J]. Journal of Molecular Structure:THEOCHEM,1984,108(3):247-262.
    [19] HUTTER J, WAGNIERE G. Nonlinear optical properties of organic molecules:a theoretical study with semi-empirical methods[J]. Journal of MolecularStructure,1988,175:159-164.
    [20] ZYSS J. Hyperpolarizabilities of substituted conjugated molecules. I. PerturbatedINDO approach to monosubstituted benzene[J]. J. Chem. Phys.,1979,70:3333-3339.
    [21] MAZELY T L, HETHERINGTON W M. Second-order susceptibility tensors ofpartially ordered molecules on surfaces[J]. J. Chem. Phys.,1987,86:3640-3645.
    [22] YASUKAWA T, KIMURA T, UDA M. An AM1study of the effects ofintermolecular interactions on hyperpolarizability ofp-nitroanilines[J].Chem. Phys. Lett.,1990,169(3):259-262.
    [23] CHOPRA P, CARLACCI L, KING H F, et al. Ab initio calculations ofpolarizabilities and second hyperpolarizabilities in organic molecules withextended. pi.-electron conjugation[J]. J. Phys. Chem.,1989,93(20):7120-7130.
    [24]曹阳,王友良,王学业.分子二阶极化率计算程序[J].计算机与应用化学,1991,8(3):161-165.
    [25] CHEMLA D S, OUDAR J L, JERPHAGNON J. Origin of the second-orderoptical susceptibilities of crystalline substituted benzene[J]. Phys. Rev. B,1975,12(10):4534-4538.
    [26] ZYSS J. Hyperpolarizabilities of substituted conjugated molecules. III. Study ofa family of donor–acceptor disubstituted phenyl‐polyenes[J]. J. Chem. Phys.,1979,71:909-911.
    [27] OUDAR J L, CHEMLA D S. Hyperpolarizabilities of the nitroanilines and theirrelations to the excited state dipole moment[J]. J. Chem. Phys.,1977,66:2664.
    [28] PROSS A, RADOM L. A theoretical approach to substituent interactions insubstituted benzenes[J]. Prog. Phys. Org. Chem.,1981,13:1-61.
    [29] TURENER D W, BAKER O, BAKER A D, et al. Molecular PhotoelectronSpectroscopy Part VII. The vertical lonisatisn potentials of benzene and some ofits monosubstituted and I. Wiley: New York,1970, Chapter11.
    [30] WILLIAMS D J. Nonlinear optical properties of organic and polymericmaterials[M]. Amer Chemical Society,1983.
    [31] NANBA O, SATOH K. Isolation of a photosystem II reaction center consistingof D-1and D-2polypeptides and cytochrome b-559[J]. Proc. Natl. Acad. Sci.,1987,84(1):109-112.
    [32] BARBER J. Trends in Photosynthesis Research, Edited by J Barber,1992b,29,Intercept Ltd, PO Box716, Andover, Hampshire SP101YG, U K.
    [33] CHAPMAN D J, GOUNARIS K, BARBER J. Electron-transport properties ofthe isolated D1-D2-cytochromeb-559Photosystem II reaction centre[J].Biochim. Biophys. Acta.,1988,933(3):423-431.
    [34] VAN DORSSEN R J, BRETON J, PLIJTER J J, et al. Spectroscopic propertiesof the reaction center and of the47kDa chlorophyll protein of photosystem II[J].Biochim. Biophys. Acta,1987,893(2):267-274.
    [35] LUTZ M, AGALIDIS I, HERVO G, et al. On the state of carotenoids bound toreaction centers of photosynthetic bacteria: a resonance Raman study[J].Biochim. Biophys. Acta,1978,503(2):287-303.
    [36] LU R H, KUANG T Y, YU Z B, et al. The Resonance Raman Spectra of-Carotene Molecules in the Photosystem I Reaction Center D1/D2/Cyt b-559Complex[J]. Acta Botanica Sinica,1996,38:180-185.
    [37] BARBER J, ANDERSSON B. Too much of a good thing: light can be bad forphotosynthesis[J]. TIBS.,1992,17(2):61-66.
    [38]赵金涛,单际修. SERS在光合作用光破坏机理中的应用[J].科学通报,1999,44(2):181-184.
    [39]赵金涛,谭红琳,张鹏翔.复合物拉曼散射的研究[J].云南大学学报(自然科学版,1998,20:179-181.
    [40]赵金涛,张鹏翔,徐存英.活体植物中β-胡萝卜素分子的二级拉曼散射谱[J].光谱学与光谱分析,2002,22(5):790-792.
    [41] TAVAN P, SCHULTEN K. Electronic excitations in finite and infinitepolyenes[J]. Phys. Rev. B,1987,36(8):4337-4358.
    [42] ZECHMEISTER L. Cis-trans isomeric carotenoids, vita-min A andarylpolyenes[J]. Academic Press, London,1962,38-155.
    [43] TSUKIDA K, SAIKI K, TAKII T, et al. Separation and determination ofcis/ trans-β-carotenes by high-performance liquid chromatography[J].Journal of Chromatography A,1982,245(3):359-364.
    [44] KUKI M, KOYAMA Y, NAGAE H. Triplet-sensitized and thermalisomerization of all-trans,7-cis,9-cis,13-cis and15-cis isomers of.beta.-carotene: configurational dependence of the quantum yield of isomerizationvia the T1state[J]. The Journal of Physical Chemistry,1991,95(19):7171-7180.
    [45] HU Y HASHIMOTO H MOINE G, et al. Unique properties of the11-cis and11,11′-di-cis isomers of β-carotene as revealed by electronic absorption,resonance Raman and1H and13C NMR spectroscopy and by HPLC analysis oftheir thermal isomerization[J]. Journal of the Chemical Society, PerkinTransactions2,1997(12):2699-2710.
    [46] KOYAMA Y, TAKII T, SAIKI K, et al. Configuration of the carotenoid in thereaction centers of photosynthetic bacteria.2) Comparison of the resonanceRaman lines of the reaction centers with those of the14different cis-transisomers of β-carotene[J]. Photobiochem Photobiophys,1983,5:139-150.
    [47] KOYAMA Y, TAKATSUKA I, NAKATA M, et al. Raman and infrared spectraof the all‐trans,7‐cis,9‐cis,13‐cis and15‐cis isomers of β‐carotene:Key bands distinguishing stretched or terminal‐bent configurations formcentral‐bent configurations[J]. J. Raman Spectros.,1988,19(1):37-49.
    [48] SUZUKA I, MIKAMI N, UDAGAWA Y, et al. Raman Spectrum of PyrazineCrystal Excited by the Light of the Absorption Edge[J]. J. Chem. Phys.,1972,57:4500-4501.
    [49] KARAGOUNDIS G, ISSA R. Raman Spectra of Adsorbed Molecules:Quenching of Fluorescence by Adsorption[J]. Nature,1962,195:1196-1197.
    [50] KANEMOTO K, SUDO T, AKAI I, et al. Intrachain photoluminescenceproperties of conjugated polymers as revealed by long oligothiophenes andpolythiophenes diluted in an inactive solid matrix[J]. Phys. Rev. B,2006,73:235203(1-11).
    [51] YU P Y, SHEN Y R, PETROFF Y, et al. Resonance Raman Scattering at theForbidden Yellow Exciton in Cu2O [J]. Phys. Rev. Lett.,1973,30(7):283-286.
    [52] WASIELEWSKI M R, JOHNSON D G, BRADFORD E G, et al. Temperaturedependence of the lowest excited singlet-state lifetime of all-trans-fl-caroteneand fully deuterated all-trans-fl-carotene[J]. J. Chem. Phys.,1989,91(11):6691-6697.
    [53] HIRSCHFELD T, HIRSCHFELD T. Raman microprobe: vibrationalspectroscopy in the femtogram range[J]. J. Opt. Soc. Am.1973,63(4):1309-1311.
    [54] EHRENFREUND E, VARDENY Z, BRAFMAN O, et al. Amplitude and phasemodes in trans-polyacetylene: Resonant Raman scattering and induced infraredactivity[J]. Phys. Rev. B,1987,36(3):1535-1537.
    [55] GUSSONI M, CASTIGLIONI C, ZERBI G. Vibrational spectroscopy ofpolyconjugated materials: polyacetylene and polyenes[J]. Advances inspectroscopy,1991,19:251-353.
    [56] ORLANDI G, ZERBETTO F, ZGIERSKI M Z. Theoretical analysis of spectraof short polyenes[J]. Chem. Rev.,1991,91(5):867-891.
    [57] ALBRECHT A C. On the theory of Raman intensities[J]. J. Chem. Phys.,1961,34:1476-1480.
    [58] TANG J, ALBRECHT A C. Developments in the theories of vibrational Ramanintensities[J]. J. Raman Spectros.,1970,2:33-40.
    [59] KUZMANY H, SURJAN P R, KERTESZ M. Electronic transition moments andoptical absorption fortrans-polyacetylene[J]. Solid state communications,1983,48(3):243-247.
    [60] KEIL T H. Shapes of impurity absorption bands in solids[J]. Phys. Rev.,1965,140(2A):A601-A605.
    [61] PEETERS E, RAMOS A M, MESKERS S C J, et al. Singlet and tripletexcitations of chiral dialkoxy-p-phenylene vinylene oligomers[J]. J. Chem. Phys.,2000,112:9445-9454.
    [62] HAGLER T W, PAKBAZ K, VOSS K F, et al. Enhanced order and electronicdelocalization in conjugated polymers oriented by gel processing inpolyethylene[J]. Phys. Rev. B,1991,44(16):8652-8666.
    [63] YU J, HAYASHI M, LIN S H, et al. Temperature effect on the electronic spectraof poly (p-phenylenevinylene)[J]. Synth. Met.,1996,82(2):159-166.
    [64] WOO H S, LHOST O, GRAHAM S C, et al. Optical spectra and excitations inphenylene vinylene oligomers[J]. Synth. Met.,1993,59(1):13-28.
    [65] BAHNICK D A, PERSON W B, Raman Intensity Studies on CCL in VariousSystems[J]. J. Chem. Phys.,1968,48(3):1251-1261.
    [66] KUZMANY H. Structural aspects of polyacetylene from resonance Ramanscattering[J]. Le Journal de Physique Colloques,1983,44(C3): C3-255-C3-260.
    [67] LEE P A, RICE T M, ANDERSON P W. Conductivity from charge or spindensity waves[J]. Solid State Communications,1974,14(8):703-709.
    [68] HOROVITS B, GUTFREUND H, WEGER M. Infrared and Raman activities oforganic linear conductors[J]. Phys. Rev. B,1978,17:2796-2799.
    [69] RICE M J. Dynamical properties of the Peierls-Fr hlich state on themany-phonon-coupling model[J]. Solid State Communications,1978,25(12):1083-1086.
    [70] LONGUET-HIGGINS H C, SALEM L. The alternation of bond lengths in longconjugated chain molecules[J]. Proceedings of the Royal Society of London.Series A. Mathematical and Physical Sciences,1959,251(1265):172-185.
    [1]张寒奇,王芬蒂,金钦汉,等.光谱化学分析[M].长春:吉林大学出版社,1996.
    [2] PARSON W W. Modern Optical Spectroscopy: With Example From Biophysicsand Biochemistry [M]. Berlin: Springer,2006:109-182.
    [3] SCHULTEN K, KARPLUS M. On the origin of a low-lying forbidden transitionin polyenes and related molecules[J]. Chem. Phys. Lett.,1972,14:305-309.
    [4] BRITTON G. In Carotenoids[M]. Birkh user Verlag: Basel,1995
    [5] HEMLEY R, KOHLER B E. Electronic structure of polymers related to the visualchromophore: a simple model for the observed band shapes[J]. Biophys. J.,1977,20:377-382.
    [6] CHRISTENSEN R L, GOYETTE M, GALLAGHER L, et al. S1and S2states ofapo-and diapocarotenes[J]. J. Phys. Chem. A,1999,103:2399-2407.
    [7] POL VKA T, SUNDSTRUM V. Ultrafast Dynamics of Carotenoid ExcitedStates-From Solution to Natural and Artificial Systems[J]. Chem. Rev.,2004,104:2021-2071.
    [8] PARKER S F, TAVENDER S M, DIXON N M, et al. Raman Spectrum ofbeta-Carotene Using Laser Lines from Green (514.5nm) to Near-Infrared (1064nm): Implications for the Characterization of Conjugated Polyenes[J]. Appl.Spectrosc.,1999,53(1):86-91.
    [9] SAITO S, TASUMI M. Normal-coordinate analysis of β-carotene isomers andassignments of the Raman and infrared bands [J]. J. Raman Spectrosc.,1983,14:310-321.
    [10]曲冠男,李东飞,李占龙等,溶剂密度对β-胡萝卜素拉曼散射截面的影响[J].物理学报,2010,59(5):242-246
    [11] NAGAMATSU J, NAKAGAWA N, MURANAKA T, et al. Akimitsu J.Superconductivity at39K in magnesium diboride[J]. Nature,2001,410(6824):63-64.
    [12] CHOI H J, ROUNDY D, Sun H, et al. The origin of the anomaloussuperconducting properties of MgB_2[J]. Nature,2002,418(6899):758-760.
    [13] NAKAHARA M, MAKI K. Quantum corrections to solitons in polyacetylenePhys. Rev. B,1982,25:7789-7797.
    [14] VARDENY Z V, EHRENFREUND E, BRAFMAN O, et al. Resonant RamanScattering from Amplitude Modes in trans-(CH)x and-(CD)x[J]. Phys. Rev. Lett.1983,51:2326-2329.
    [15] VARDENY Z V, EHRENFREUND E, BRAFMAN O, et al. Amplitude and phasemodes in trans-polyacetylene: Resonant Raman scattering and induced infraredactivity[J]. Phys. Rev. B,1987,36:1535-1553.
    [16] HOROVITZ B. Infrared activity of Peierls systems and application topolyacetylene[J]. Solid State Commun.1982,41:729-734.
    [1] MCKENZIE J L, WAID M C, SHI R Y, et al. Decreased functions of astrocytes oncarbon nanofiber materials[J]. Biomaterials,2004,25:1309-1317.
    [2] CHOUDHURY K R, SAHOO Y, PRASAD P N, Hybrid Quantum-Dot–PolymerNanocomposites for Infrared Photorefractivity at an Optical CommunicationWavelength Advanced materials,2005,17:2877-2881.
    [3] RYSKULOV A A, LIOPO V A, OVCHINIKOV E V, Phase transformations intribosystems with metal-polymer components[J]. Journal of friction and wear2011,32(1):30-36.
    [4] ANDREEVA A, APOSTOLOVA I, VELITCHKOVA M. Temperature dependenceof resonance Raman spectra of carotenoids[J]. Spectrochimica Acta Part A,2011,78:1261-1265.
    [5] OSTROUMOV E E, MULLER M G, REUS M, et al. On the Nature of the “DarkS*” Excited State of β-Carotene[J]. J. Phys. Chem. A,2011,115(16):3698-3712.
    [6] BRITTON G, LIAAEN-JENSEN S, PFANDER H. Carotenoid Handbook[M]. AGBasel: Birkhauser Verlag,2004.
    [7] BRACKMANN C, BENGTSSON A, M L ALMINGER, et al. Visualization ofβ-carotene and starch granules in plant cells using CARS and SHGmicroscopy[J]. J. Raman Spectrosc.,2011,42:586-592.
    [8] QU G N, OUYANG S L, WANG W W, et al. Influence of the ordered structure ofshort-chain polymer molecule all-trans-β-carotene to Raman scattering crosssection in liquid[J]. Chinese Physics B,2011,20:037803(1-6).
    [9] OUYANG S L, SUN C L, ZHOU M, et al. Effect of the structural order ofall-trans-β-carotene on the Raman scattering cross section at lowconcentrations[J]. J. Raman Spectrosc.,2010,41:1650-1654.
    [10] HAGLER T W, PAKBAZ K, VOSS K F, et al. Enhanced order and electronicdelocalization in conjugated polymers oriented by gel processing inpolyethylene[J]. Phys. Rev. B,1991,44:8652-8666.
    [11] DUDIK J M, JOHNSON C R, ASHER S A. Wavelength dependence of thepreresonance Raman cross sections of CH3CN, SO42-, CIO4-, and NO3-[J]. J.Chem. Phys,1985,82(4):1732-1740.
    [12] BISWAS N, UMAPATHY S. Simple Approach to Determining Absolute RamanCross Sections Using an Optical Parametric Oscillator[J]. Appl. Spectrosc.,1998,52(4):496-499.
    [13] PARASCHUK D Y, KOBRYANSKII V M.Coherent Electron-Lattice Vibrationsin Trans-Nanopolyacetylene Probed by Raman Scattering[J]. Phys. Rev. Lett,2001,87(20):207402(1-4).
    [14] ORLANDI G, ZERBETTO F, ZGIERSKI M Z. Theoretical analysis of spectraof short polyenes[J]. Chem. Rev.,1991,91(5):867–891.
    [15] KIRTMAN B, DYKSTRA C E, CHAMPAGNE B. Major intermolecular effectson nonlinear electrical response in a hexatriene model of solid statepolyacetylene[J].Chem.Phys. Lett.,1999,305(1-2):132-138.
    [16] PARASCHUK D Y, KOBRYANSKII V M. Synchronous electron-nuclearvibrations in a π-conjugated nanopoly (acetylene) chain[J]. JETP Letters,2001,73(3):152-155.
    [17] GIERSCHNER J, MACK H G, LUER L, et al. Fluorescence and absorptionspectra of oligophenylenevinylenes: Vibronic coupling, band shapes, andsolvatochromism[J]. J. Chem. Phys.,2002,116(19):8596-8609.
    [18] RENGE I, VAN GRONDELLE R, DEKKER J P. Matrix and temperature effectson absorption spectra of β-carotene and pheophytin a in solution and in greenplant II[J]. J.Photochem.Photobiol.A:Chemistry,1996,96(1-3):109-121.
    [19] HENDERSON B, IMBUSCH G F. Optical Spectroscopy of Inorganic Solids[M].Clarendon:Oxford,1989.
    [20] PEETERS E, RAMOS A M, MESKERS S C J, et al. Singlet and tripletexcitations of chiral dialkoxy-p-phenylene vinylene oligomers[J]. Chem. Phys.,2000,112(21):9445-9454.
    [21] HAGLER T W, PAKBAZ K, VOSS K F, et al. Enhanced order and electronicdelocalization in conjugated polymers oriented by gel processing inpolyethylene[J]. Phys. Rev. B.1991,44(16):8652-8666.
    [22] FRANK H A, YOUNG A J, BRITTON G, et al. Advances in Photosynthesis [M].Dordrecht: Kluwer Academic Publishers,1999.
    [23] NIEDZWIEDZKI D M, ENRIQUEZ M M, LAFOUNTAIN A M, et al. Ultrafasttime-resolved absorption spectroscopy of geometric isomers of xanthophylls[J].Chem. Phys.,2010,373(1-2):80-89.
    [24]FUJIMATSU H, IDETA Y, NAKAMURA H, et al. Coloration of PolypropyleneGel and Temperature Conditions for Gel Formation[J]. Polym. J.,2001,33(8):543-546.
    [25] NAGAE H, KUKI M, COGDELL R J, et al. Shifts of the1A g→1B+uelectronicabsorption of carotenoids in nonpolar and polar solventS[J]. J. Chem. Phys.,1994,101(8):6750-6765.
    [26] BICKNELLD R T M, DAVIES D B, LAWRENCE K G. Density, refractive index,viscosity and1H nuclear magnetic resonance measurements of dimethylsulphoxide at2°C intervals in the range20-60°C. Structural implications[J]. J.Chem. SOC. F, araday Trans. I,1982,78:1595-1601.
    [27] YU J, HAYASHI M, LIN S H, et al. Temperature effect on the electronic spectraof poly(p-phenylenevinylene)[J]. Synth. Met.,1996,82(2):159-166.
    [28] WOO H S, LHOST O, GRAHAM S C, et al. Optical spectra and excitations inphenylene vinylene oligomers Synth. Met.,1993,59(1):13-28.
    [29] HENLEY R, KOHLER B E. Electronic structure of polyenes related to the visualchromophore. A simple model for the observed band shapes[J]. Biophys. J.,1977,20(3):377-382.
    [30] KANEMOTO K, AKAI I, SUGISAKI M, et al.Temperature effects onquasi-isolated conjugated polymers as revealed by temperature-dependent opticalspectra of16-mer oligothiophene diluted in a sold matrix[J]. J.Chem.Physics,2009,130(23):234909(1-7).
    [31] KANEMOTO K, SUDO T, AKAI I, et al. Intrachain photoluminescenceproperties of conjugated polymers as revealed by long oligothiophenes andpolythiophenes diluted in an inactive solid matrix[J]. Phys. Rev. B,2006,73(23):235203(1-11).
    [32] GUSSONI M, CASTIGLIONI C, ZERBI G. in Spectroscopy of AdvancedMaterials, Edited by R. J. H. Clark and R. E. Hester, John Wiley&Sons,1991.
    [33] ZHENG L X, HESS B C, BENNER R E. Resonant Raman-scatteringspectroscopy of polydiacetylene films at high pressure[J]. Phys. Rev. B,1993,47(6):3070-3077.
    [34]HARADA I, TASUMI M, SHIRAKAWA H, et al. Raman spectra ofpolyacetylene and highly conducting iodine-doped polyacetylene[J]. Chem. Lett.,1978,12:1411-1414.
    [35]HARADA I, FURUKAWA Y, TASUMI M, et al. Spectroscopic studies on dopedpolyacetylene and β-carotene[J]. J. Chem. Phys.,1980,73(10):4746-4757.
    [36]KUZMANY H. Resonance Raman scattering from neutral and dopedpolyacetylene[J]. Phys. Status Solidi B,1980,97(2):521-531.
    [37] KOLODZIEJSKI M, WALISZEWSKA G, ABRAMCZYK H. Vibrationaldephasing in bromocyclohexane: how to separate contributions from differentmechanisms[J]. Chem.Phys.,1996,213(1-3):341-356.
    [38]ABRAMCZYK H, KOLODZIEJSKI M, WALISZEWSKA G. Vibrationalrelaxation of β-carotene in acetonitrile solution and in carrot in situ[J]. J. Mol.Liq,1999,79(3):223-233.
    [39] HAGLER T W, PAKBAZ K, VOSS K F, et al. Enhanced order and electronicdelocalization in conjugated polymers oriented by gel processing inpolyethylene[J]. Phys. Rev. B,1991,44(16):8652-8666.
    [40] PERRY S, ZERDA T W. JONAS J. Pressure and temperature Raman study ofreorientational relaxation of propyne in hydrogen bonded complexes[J]. J.Chem. Phys.,1985,75:4214-4223.
    [41]ALBRECHT A C. On the theory of Raman intensities[J]. J. Chem. Phys.,1961,34:1476-1484.
    [42] VARDENY Z V, EHRENFREUND E, BRAFMAN O, et al. Resonant RamanScattering from Amplitude Modes in trans-(CH)xand-(CD)x[J]. Phys. Rev.Lett.,1983,51:2326-2329
    [43] EHRENFREUND E, VARDENY Z V, BRAFMAN O, et al. Amplitude andphase modes in trans-polyacetylene: Resonant Raman scattering and inducedinfrared activity[J]. Phys. Rev. B,1987,36:1535-1553.
    [44] HOROVITZ B. Infrared activity of Peierls systems and application topolyacetylene[J]. Solid State Commun,1982,41(10):729-734.
    [45] PARASCHUK D Y, ARNAUTOV S A, SHCHEGOLIKHIN A N, et al.Temperature evolution of electronic and lattice configurations in highly orderedtrans-polyacetylene[J]. JETP Lett.,1996,64(9):658-663.
    [1] QIAN P, SAIKI K, MIZOGUCHI T, et al. Time‐dependent Changes in theCarotenoid Composition and Preferential Binding of Spirilloxanthin to theReaction Center and Anhydrorhodovibrin to the LH1Antenna Complex inRhodobium marinum[J]. Photochemistry and photobiology,2001,74(3):444-452.
    [2] LUER L, MANZONI C, CERULLO G, et al. Intra-chain exciton generation bycharge recombination in substituted polyacetylenes[J]. Chem. Phys. Lett.,2007,444(1):61-65.
    [3] ZHAO X H, MA F, WU Y S, et al. Ultrafast internal conversion and vibrationalrelaxation in singlet excited-state all-trans-β-carotene as revealed byfemtosecond time-resolved stimulated Raman spectroscopy[J]. Acta Phys. Sin.,2008,57(1):298-306.
    [4] JOHANSSON E M J, EDVINSSON T, ODELIUS M, et al. Electronic andmolecular surface structure of a polyene-diphenylaniline dye adsorbed fromsolution onto nanoporous TiO2[J]. J. Phys. Chem. C,2007,111(24):8580-8586.
    [5] WIDJAJA E, GARLAND M. Detection of bio-constituents in complex biologicaltissue using Raman microscopy. Application to human nail clippings[J]. Talanta,2010,80(5):1665-1671.
    [6] DE OLIVEIRA V E, CASTRO H V, EDWARDS H G M, et al. Carotenes andcarotenoids in natural biological samples: a Raman spectroscopic analysis[J]. J.Raman Spectros.,2010,41(6):642-650.
    [7] NIEDZWIEDZKI D M, ENRIQUEZ M M, LAFOUNTAIN A M, et al. Ultrafasttime-resolved absorption spectroscopy of geometric isomers of xanthophylls[J].Chem. Phys.,2010,373(1):80-89.
    [8] FRANK H A, YOUNG A J, BRITTON G, et al. Advances in Photosynthesis[J].The Photochemistry of Carotenoids, Kluwer Academic Publishers, Dordrecht,1999.
    [9] DI VALENTIN M, CEOLA S, AGOSTINI G, et al. Pulse ENDOR and densityfunctional theory on the peridinin triplet state involved in the photo-protectivemechanism in the peridinin–chlorophylla–protein from Amphidiniumcarterae[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2008,1777(3):295-307.
    [10] SHIMADA R, HAMAGUCHI H. Solute–solvent intermolecular vibroniccoupling as manifested by the molecular near-field effect in resonancehyper-Raman scattering[J]. J. Chem.Phys.,2011,134:034516.
    [11]李占龙,欧阳顺利,曹彪,等.溶剂折射率对β-胡萝卜素拉曼散射截面的影响[J].物理学报,2009,58(10):6908-6912.
    [12]曲冠男,李东飞,李占龙,等.溶剂密度对β胡萝卜素拉曼散射截面的影响[J].物理学报,2010,59(5):3168-3172.
    [13] HE Z F, GOSZTOLA D, DENG Y, et al. Effect of Terminal Groups, PolyeneChain Length, and Solvent on the First Excited Singlet States of Carotenoids[J].J. Phys. Chem. B,2000,104:6668-6673.
    [14] APPLEQUIST J. Theory of solvent effects on the visible absorption spectrum of.beta.-carotene by a lattice-filled cavity model[J]. J. Phys. Chem.,1991,95(9):3539-3545.
    [15] BRUSCHI M, LIMACHER P A, HUTTER J, et al. A Scheme for the Evaluationof Electron Delocalization and Conjugation Efficiency in Linearly π-ConjugatedSystems[J]. J. Chem. Theory Comput.2009,5:506-514.
    [16] Liu W L, Wang D M, Zheng Z R, et al. Solvent effects on the S0→S2absorptionspectra of β-carotene[J]. Chin. Phys. B,2010,19:013102(1-6).
    [17] KAKIMOTO M, FUJIYAMA T. Solvent Effects on the Absolute Intensities ofInfrared Absorption Bands and the Dipole-Dipole Interaction[J]. Bulletin of theChemical Society of Japan,1975,48(8):2258-2263.
    [18] TIAN Y J, ZUO J, ZHANG L Y, et al. Study of resonance Raman cross sectionof aqueous β-carotene at low concentrations[J]. Applied Physics B,2007,87(4):727-730.
    [19] RUMI M, ZERBI G, MULLEN K, et al. Nonlinear optical and vibrationalproperties of conjugated polyaromatic molecules[J]. J. Chem. Phys.,1997,106:24-30.
    [20] PARASCHUK D Y, KOBBRYANSKII V M, Coherent Electron-LatticeVibrations in Trans-Nanopolyacetylene Probed by Raman Scattering [J]. Phys.Rev. Lett.,2001,87:207402.
    [21] GIERSCHNER J, MACK H G, LUER L, et al. Fluorescence and absorptionspectra of oligophenylenevinylenes: Vibronic coupling, band shapes, andsolvatochromism[J]. The Journal of chemical physics,2002,116:8596-8599.
    [22] HERGES R, GEUENICH D, Delocalization of Electrons in Molecules[J]. J. Phys.Chem. A,2001,105:3214-3220.
    [23] PARASCHUK D Y, ARNAUTOV S A, SHCHEGOLIKHIN A N, et al.Temperature evolution of electronic and lattice configurations in highly orderedtrans-polyacetylene[J]. Journal of Experimental and Theoretical Physics Letters,1996,64(9):658-663.
    [24] PEETERS E, RAMOS A M, MESKERS S C J, et al. Singlet and tripletexcitations of chiral dialkoxy-p-phenylene vinylene oligomers[J]. The Journal ofChemical Physics,2000,112:9445-9450.
    [25] HAGLER T W, PAKBAZ K, VOSS K F, et al. Enhanced order and electronicdelocalization in conjugated polymers oriented by gel processing inpolyethylene[J]. Physical Review B,1991,44(16):8652.
    [26]BISWAS N, UMAPATHY S. Simple approach to determining absolute Ramancross sections using an optical parametric oscillator[J]. Applied spectroscopy,1998,52(4):496-499.
    [27]DUDIK J M, JOHNSON C R, ASHER S A. Wavelength dependence of thepreresonance Raman cross sections of CHCN, SO, ClO, and NO[J]. J. Chem.Phys.,1985,82:1732.
    [28]Tubio R, Dordinville R, Lam W, et al. Optical properties and photoexcitation of anovel liquid form of soluble polyacetylene[J]. Phys. Rev. B,1984,30:6601-6605.
    [29] BORGES C A M, MARLETTA A, FARIA R M, et al. Vibrational structure oforganic semiconductors: the role of conjugation length[J]. Brazilian journal ofphysics,2004,34(2B):590-592.
    [1] MAO H K, HEMLEY R J. Ultrahigh-Pressure Transitions in Solid Hydrogen[J].Rev. Mod. Phys.,1994,66(2):671-692.
    [2] SU W H, LIU S E, XU D P, et al. Effects of Local Mechanical Collision withShear Stress on the PhaseTransformation from Alpha-Quartz to Coesite Inducedby High Static Pressure[J]. Phys. Rev. B,2006,73(14):144110(1-7).
    [3] GREAUXA S,GAUTRONA L, ANDRAULT D, et al. Experimental high pressureand high temperature study of the incorporation of uranium in Al-rich CaSiO3perovskite[J]. Phys. Earth Planet.Interiors.,2009,174(1-4):254-263.
    [4] IMADA M, FUJIMORI A, TOKURA Y. Metal-Insulator Transitions[J]. Rev.Mod.Phys.,1998,70(4):1039-1263.
    [5] JIN C Q, ZHOU J S, GOODENOUGH J B, et al. High-pressure synthesis of thecubic perovskite BaRuO3and evolution of ferromagnetism in ARuO3(A=Ca,Sr, Ba) ruthenates [J]. Proc. Nat. Acad. Sci. USA,2008,105(20):7115-7119.
    [6] JENNER G. Comparative Activation Modes in Organic Synthesis.The SpecificRole of High Pressure[J]. Tetrahedron,2002,58(26):5185-5202.
    [7] SCHETTINO V, BINI R. Molecules under Extreme Conditions: ChemicalReactions at High Pressure[J]. Phys. Chem.,2003,5:1951-1965.
    [8] HEMLEY R J. Effects of High Pressure on Molecules[J]. Annu. Rev. Phys. Chem.,2000,51:763-800.
    [9] WANG X S,TANG C H, LI B S, et al. Effects of High-Pressure Treatment onSome Physicochemical and Functional Properties of Soy Protein Isolates[J]. FoodHydrocolloid,2008,22(4):560-567.
    [10] LIM S Y, SWANSON B G., CLARK S. High Hydrostatic Pressure Modificationof Whey Protein Concentrate for Improved Functional Properties[J]. J. DairyScie.,2008,91(4):1299-1307.
    [11] GROSS M, JAENICKE R. Proteins under pressure:The Influence of HighHydrostatic Pressure on Structure, Function and Assembly of Proteins andProtein Complexes[J]. Eur. J. Biochem.,1994,221(2):617-630.
    [12] ELLERVEE A, LINNANTO J, FREIBERG A. Spectroscopic and QuantumChemical Study of Pressure Effects on Solvated Chlorophyll[J]. Chem. Phys.Lett.,2004,394(1-3):80-84.
    [13] TIMPMANN K,ELLERVEE A, PULLERITS T, et al. Short-Range ExcitonCouplings in LH2Photosynthetic Antenna Proteins Studied by High HydrostaticPressure Absorption Spectroscopy[J]. J. Phys. Chem. B,2001,105(35):8436-8444.
    [14] IHALAINEN J A, RATSEP M, JENSEN P E, et al. Red Spectral forms ofChlorophylls in Green Plant PSI-A Site-Selective and High-PressureSpectroscopy Study[J]. J. Phys. Chem. B,2003,107(34):9086-9093.
    [15] GONCHAROV A F, HEMLEY R J. Probing Hydrogen-Rich Molecular Systemsat High Pressures and Temperatures[J]. Chem. Soc. Rev.,2006,35:899-907.
    [16] BINNI R. Laser-Assisted High-Pressure Chemical Reactions[J]. Acc. Chem. Res.,2004,37(2):95-101.
    [17]刘云宏,朱文学,董铁有,等.食品高压杀菌技术[J].食品科学,2005,26:155-158.
    [18]刘世献,闫治成,刘弘等.高压加工技术在食品加工中的应用研究[J].食品科学,2000,21(12):171-172.
    [19] NIEDZWIEDZKI D M, ENRIQUEZ M M, LAFOUNTAIN A M, et al. Ultrafasttime-resolved absorption spectroscopy of geometric isomers of xanthophylls[J].Chem. Phys.,2010,373(1-2):80-89.
    [20] FRANK H A, YOUNG A J,BRITTON G., et al. The photochemistry ofcarotenoids[M]. Kluwer Academic,1999.
    [21] HO Z Z,MOORE T A,LIN S H, et al. Pressure Dependence of the AbsorptionSpectrum of β-Carotene[J]. J. Chem. Phys.,1981,74:873-881.
    [22] ELLERVEE A, FREIBERG A. Pressure Solvation of Photosynthetic Pigments[J].Diff.Def. Forum,2002,208:135-140.
    [23] CHAN I Y, HALLOCK A J. Absorption Study of an Aggregated Porphyrin underHigh Pressure[J]. J. Chem. Phys.,1997,107:9297-9301.
    [24] STEPHENS M D, SAVEN J G.,SKINNER J L. Molecular Theory of ElectronicSpectroscopy in Nonpolar Fluids: Ultrafast Solvation Dynamics andAbsorptionand Emission Line Shapes[J]. J. Chem. Phys.,1997,106:2129-2144.
    [25] GIERSCHNER J,MACK H G,LUER L, et al. Fluorescence and absorptionspectra of oligophenylenevinylenes: Vibronic coupling, band shapes, andsolvatochromism[J].The Journal of chemical physics,2002,116:8596-8599.
    [26] RENGE I,VAN GRONDELLE R, DEKKER J P. Matrix and temperature effectson absorption spectra of β-carotene and pheophytin a in solution and ingreen plant photosystem II[J]. J. Photochem. Photobiol. A: Chemistry,1996,96(1-3):109-121.
    [27] FUJIMATSU H,IDETA Y,NAKAMURA H, et al. Coloration of PolypropyleneGel and Temperature Conditions for Gel Formation[J]. Polymer Journal,2001,33(8):543-546.
    [28] NAGAE H, KUKI M, COGDELL R J, et al. Shifts of the A→B electronicabsorption of carotenoids in nonpolar and polar solvents[J]. J. Chem. Phys,1994,101:6750-6755.
    [29] LIU W L,ZHENG Z R,ZHU R B, et al. Effect of Pressure and Solvent on RamanSpectra of All-trans-β-Carotene[J]. J.Chem.Phys.,2007,111(40):10044-10049.
    [30] MACPHERSON A N, GILLBRO T. Solvent Dependence of the Ultrafast S2-S1Internal Conversion Rate of β-Carotene[J]. J. Phys. Chem. A,1998,102(26):5049-5058.
    [31] TORII H, TASUMI M. Vibrational Structure and Temperature Dependence ofThe Electronic Absorption (11Bu←11Ag) of All-Trans-β-Carotene[J]. J.Phys.Chem.,1990,94(1):227-231.
    [32] KOLODZIEJSKI M, WALISZEWSKA G, ABRAMCZYK H. Vibrationaldephasing in bromocyclohexane: how to separate contributions from differentmechanisms[J]. Chem. Phys.,1996,213(1-3):341-356.
    [33] ABRAMCZYK H, KOLODZIEJSKI M, WALISZEWSKA G., et al. Vibrationalrelaxation of β-carotene in acetonitrile solution and in carrot in situ[J]. Journal ofmolecular liquids,1999,79(3):223-233.
    [34]HENDERSON B, IMBUSCH G F. Optical Spectroscopy of Inorganic Solids,Clarendon[J]. Oxford University Press,1989.
    [35] PEETERS E, RAMOS A M, MESKERS S C J, et al. Singlet and tripletexcitations of chiral dialkoxy-p-phenylene vinylene oligomers[J]. J. Chem. Phys.,2000,112:9445.
    [36] HAGLER T W,PAKBAZ K,VOSS K F, et al. Enhanced order and electronicdelocalization in conjugated polymers oriented by gel processing inpolyethylene[J]. Phys. Rev. B,1991,44(16):8652-8666.
    [37] BISWAS N. Umapathy S. Simple approach to determining absolute Raman crosssections using an optical parametric oscillator[J]. Appl. Spectros.,1998,52(4):496-499.
    [38]DUDIK J M, JOHNDON C R, ASHER S A. Wavelength dependence of thepreresonance Raman cross sections of CHCN, SO, ClO, and NO[J]. J.Chem.Phys.,1985,82:1732-1736.
    [39] VARDENY Z V, EHRENFREUND E, BRAFMAN O, et al. Resonant RamanScattering from Amplitude Modes in trans-(CH)xand-(CD)x[J]. Phys. Rev. Lett.,1983,51:2326-2329.
    [40] KOYAMA Y, KUKI M, ANDERSON P O, et al. Singlet Excited States and theLight-Harvesting Function of Carotenoids in Bacterial Photosynthesis[J].Photochem Photobiolo.,1996,63:243-353.
    [41] FU W, HAAS Y, ZILBERG S, Twin states and conical intersections in linearpolyenes[J]. Chem. Phys.,2000,259:273-295.
    [42] PARASCHUK D Y,GOLOVNIN I V,SMEKHOVA A G, et al. Anomalouslyhigh raman scattering cross section for carbon-carbon vibrations intrans-nanopolyacetylene[J]. JETP Lett.,2002,76(9):572-574.
    [43] MA Y P, BAO P, YU Z H. Separation of DFT Energy and the Study onπ-Electron Delocalization Energy in Benzylideneaniline[J].2006,27(8):1526-1529.
    [44]SUN C L, ZHANG X Y, Li Z L, et al. Effect of Complex Formation onResonance Raman Scattering Cross Section of β-Carotene[J]. Chem.J.ChineseUniversities,2010,31(6):1218-1221.
    [45] REBANE K K. Impurity Spectra of Solids: Elementary Theory of VibrationalStructure[M]. Plenum Press,1970.
    [46] PERLIN Y E. Modern methods of multiphonon transition theory[J]. Usp. Fiz.Nauk,1963,80(4):553-595.
    [47] DELLEPIANE G, PISERI L, TUBINO R, et al. On two different approaches tothe theory of the resonant Raman effect[J]. J. Raman Spectrosc.,1982,13(2):153-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700