硅提高甘蔗抗旱性的生理及分子基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蔗是我国第一大糖料作物,甘蔗糖占我国食糖总产量90%以上,而我国甘蔗多种植在丘陵旱地上,蔗区土壤保水力不强,不能充分利用自然降水,干旱给甘蔗生产造成巨大的损失,成为限制我国甘蔗产量的主要因素之一。在生产上,可通过抗旱育种和基因改造来提高甘蔗抗旱性,但甘蔗遗传背景复杂,所需周期比较长,因此必须兼顾其它途径解决甘蔗抗旱性问题。本研究采用抗旱性强的甘蔗品种ROC22和抗旱性弱的甘蔗品种ROCl6,研究干旱胁迫下Si提高甘蔗抗旱性的生理生化效应,并利用荧光定量PCR技术、双向电泳和质谱分析技术,探讨Si提高甘蔗抗旱性的分子机制。主要研究结果如下:
     1.PEG胁迫下Si对甘蔗生理生化特性的影响
     在PEG及PEG加Si条件下,甘蔗叶片相对含水量随着胁迫加剧而逐渐下降,加Si能提高甘蔗保水能力。在水分胁迫下,甘蔗叶内脯氨酸、H2O2、丙二醛(MDA)含量增加,加Si处理能使渗透调节物质含量处于更高水平,并降低MDA含量,缓解其积累给细胞带来的伤害。在PEG胁迫条件下,H202积累伴随着抗氧化系统相关酶SOD、POD、CAT、GR和APX活性提高,加Si处理能进一步提高上述酶活性而使活性氧清除能力得到增强,表明在干旱条件下,加Si处理能增强甘蔗抗氧化防护系统,从而提高其抗旱性。
     2.PEG胁迫下Si对甘蔗叶绿素荧光参数和矿质养分吸收的影响
     在PEG胁迫下,甘蔗叶片的叶绿素含量、叶绿素荧光参数Fv/Fm值及ΦPSⅡ值均比对照显著下降。加硅处理后,能缓解叶绿素降解,减轻干旱对最大光能转化效率(Fv/Fm)、PSⅡ实际量子效率(ΦPSⅡ)的影响。同时,加Si处理提高了甘蔗地上部、根系中Si的含量,ROC22的吸硅能力强于ROCl6。在PEG胁迫条件下,ROC22和ROC16的地上部和根系中N、P、K、Ca、Mg和微量元素的含量均下降,而加硅缓解了这些营养元素含量的下降,使之回复到与对照接近或高于对照的水平,抗旱性较弱的品种ROC16受PEG模拟干旱的影响较大。可见,硅提高甘蔗的抗旱性与光合作用的改善和矿质养分的调节有关。
     3.PEG胁迫下Si对甘蔗幼苗叶片蛋白质表达的影响
     利用蛋白质双向电泳分析,得到两个甘蔗品种PEG胁迫和加Si处理下差异蛋白点32个,质谱成功鉴定其中23个。根据前人已鉴定的功能蛋白对这23个蛋白进行功能分类,可分为6类。其中参与光合作用的蛋白6个,占26.09%,包括细胞色素b6-f复合体铁硫亚基、叶绿体a-b结合蛋白、核酮糖-1,5-二磷酸羧化加氧酶小亚基、23kD多肽光合系统Ⅱ、叶绿体Ptr-TOxA结合蛋白;参与氧自由基清除的保护酶6个,占26.09%,包括M型硫氧还蛋白、醌还原酶、超氧化物歧化酶、谷胱甘肽硫转移酶、叶绿体CU/Zn超氧化物歧化酶、温度诱导指钙蛋白;参与蛋白加工的蛋白3个,占13.04%,包括BRII-KD互作蛋白、肽基脯氨酰顺反异构酶、蛋白酶体α亚单位6型;抗逆相关蛋白3个,占13.04%,包括热激蛋白17.2、干旱诱导蛋白22kD、核苷二磷酸激酶;参与细胞生长和分裂的蛋白2个,占8.70%,包括生长素结合蛋白、角蛋白;未知功能蛋白3个,占13.04%,为假定蛋白。
     4.抗旱相关基因的克隆与表达分析
     通过克隆获得了甘蔗核苷二磷酸激酶基因cDNA全长为686bp,甘蔗热激蛋白基因cDNA全长为659bp,甘蔗干旱诱导蛋白基因cDNA全长为402bp,细胞色素b6-f复合体铁硫亚单位基因cDNA全长为796bp。以25S rRNA基因为内参基因,利用荧光定量PCR技术研究了SoNDPK1、SosHSP、SoDIP、SoCYT基因在PEG胁迫和加Si处理下在甘蔗中的动态表达模式。结果表明:在PEG胁迫下,SoNDPK1基因表达均呈先升高后降低的趋势;加Si后,SoNDPK1基因的表达量始终高于未加Si处理的;sHSP受到了PEG胁迫的诱导表达,PEG和PEG+Si处理的SosHSP的表达量在前期均下降后期升高,PEG处理的SosHSP在96h时达到最大,比对照升高了13.56倍,在96h后迅速下降;而PEG+Si在处理144h时才出现最大值,比对照增加了44.64倍。SoCYT基因在两种处理中的表达趋势都一致,均为下降趋势,加Si处理能减缓SoCYT基因表达的下降速度;在PEG处理中,SoDIP基因的表达随胁迫时间逐渐缓慢上升而后下降,PEG加Si处理中,SoDIP基因的表达在前期就急剧上升,在30h时达到最大,并且表达量始终高于PEG处理。加Si处理能够调节这4个基因在PEG胁迫下表达量的上升或下降速度,使得这些基因所介导的信号转导作用增强,并阻止蛋白质的变性,帮助变性蛋白重新折叠,保护细胞结构稳定,减轻对膜的损伤,使甘蔗自身的抗氧化防护能力提高,从而提高甘蔗抗旱性。
Sugarcane is the most important sugar crop, and cane sugar occupies over90%of sugar production in China. However, sugarcane crop is planted in hilly unpland areas, where irrigation is not available, and drought has become one of the major limiting factors for sugarcane production in China. It is most effective to breed drought tolerant sugarcane varieties to improve the drought resistance of sugarcane in commercial sugarcane production. However, the efficiency of sugarcane breeding is low because of the complex genetic background of sugarcane, it is necessary to exploit other supplementary approaches to improve the drought resistance of sugarcane in practice. In the present study, seedcane setts were cultured in solution to investigate the physiological and molecular mechanisms of drought resistance improvement in sugarcane enhanced by Si application using real-time PCR,2-DE and MS with two sugarcane varieties, i.e. strong drought resistant variety ROC22and weak drought resistant variety ROC16. The main results were as follows.
     1Effects of Si application on physiological and biochemical parameters in sugarcane under PEG stress
     The relative water content was dramatically decreased by PEG treatment but it could maintain higher in PEG+Si treatment. Both PEG and PEG+Si treatments could result in an increase in proline, H2O2and malondialdehyde (MDA) content but the plants applied with Si were found to reduce the accumulation of MDA. The overproduction of H2O2in plants treated with PEG stress was accompanied with higher activities of SOD, POD, CAT, GR and APX, but this increase was further promoted by Si treatment. The results suggest that though the tolerant variety showed an enhanced protective system against drought condition, application of Si further improved its tolerance by continuously triggering the over expression of antioxidative defense system.
     2Effects of Si application on chlorophyll fluorescence parameters and mineral nutrient absorption in sugarcane under PEG stress
     The PEG stress was found to reduce the chlorophyll content, maximal PS II efficiency (Fv/Fm) and quantum efficiency of PS II (ΦPSⅡ) in sugarcane, while Si application decreased the degradation of chlorophyll, and counteracted, at least in part, the decrease in Fv/Fm and ΦPSⅡ.The silicon content in shoot and root was significantly increased by the Si treatment. The silicon content in the drought resistant variety ROC22is higher than the weak drought resistant variety ROC16. In addition, the PEG stress decrease the mineral nutrient level in sugarcane, and the Si application decreased the degradation of mineral nutrient content. The change of mineral nutrient level in ROC16is greater than that in ROC22under PEG stress. These results suggested that silicon application is useful to alleviate the PEG stress on sugarcane plants through enhancing the photochemical efficiency and adjusting the mineral nutrient absorption in sugarcane.
     3. Effects of Si application on protein expression in sugacane under PEG stress
     The results of2-D gel electrophoresis analysis showed that32differential protein spots were detected under PEG stress and PEG stress plus Si application conditions in the two sugarcane varieties, and23of them were successfully identified through mass spectrometry. The23proteins were devided into six categories. Six proteins participate in photosynthesis, accounted for26.09%, including cytochrome b6-f complex iron-sulfur subunit, chlorophyll a-b binding protein, ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit,23kD polypeptide of photosystem II and chloroplast-localized Ptr ToxA-binding protein;6proteins participate in defense responses, accounted for26.09%, including thioredoxin M-type, quinone reductase, super-oxide dismutase, Cu/Zn superoxide dismutase glutathione S-transferase and temperature-induced lipocalin;3proteins participate in protein processing, accounted for13.04%, including BRII-KD interacting protein peptidyl-prolyl cis-trans isomerase and proteasome subunit alpha type6, putative;3proteins participate in stress resistance, accounted for13.04%, including heat shock protein17.2, nucleoside-diphosphate kinase-like protein, drought inducible22kD protein;2protein participate in cell growth an division, accounted for8.70%, including auxin-binding protein and keratin; and3proteins are unclassified, accounted for13.04%, which are hypothetical proteins.
     4. Cloning and expression analysis of drought resisitance genes
     Four drought resistance genes were cloned by RT-PCR. A full length of SoNDPK1gene was obtained and the cDNA had686bp. A full length of SosHSP gene was obtained and the cDNA had659bp. A full length of SoDIP gene was obtained and the cDNA had402bp. A full length of SoCYT gene was obtained and the cDNA had796bp. The results of quantitative real-time PCR analysis showed that the mRNA of SoNDPK1was increased initially and then decreased with time of PEG stress. SoNDPK1gene increased significantly in the Si treatment. The mRNA of HSP was decreased initially and then increased with time under drought stress. SosHSP gene had the most abundant expression at96h after water stress treatment, while in the PEG+Si treatment, the highest increase appeared at144h. The mRNA of CYT was decreased with time under drought stress. The Si application decreased the degradation of SoCYT gene. SoDIP had the most abundant expression at30h after PEG+Si treatment, and expression of SoDIP in the PEG+Si treatment is higher than in the PEG treatment. It indicated that the expressions of the four genes were increased in different extent under Si treatment, which refleted that the role of these genes mediating signal transdution was enhanced, the capacity of antioxidant defense was increased, and the structure of membrane was relatively stable, thereby increased the drought resistance of sugarcane.
引文
[1]蔡德龙,陈常友,小林均.硅肥对水稻硅吸收影响初探.地域研究与开发.2000,19(4):69-71.
    [2]曹慧,兰彦平,王孝威,等.果树水分胁迫研究进展.果树学报,2001,18(2):110-114.
    [3]陈建军,韩锦峰,王瑞新,等.水分胁迫下烟草光合作用的气孔与非气孔限制.植物生理学通讯,1991,27(6):415418.
    [4]陈建勋,王晓峰.植物生理学实验指导(第二版).广州:华南理工大学出版社,2006,72-73.
    [5]陈林波,房超,王郁,等.茶树抗逆相关基因ERF的克隆与表达特性分析.茶叶科学,2011,31(1):53-58.
    [6]陈少裕,陈如凯,陈启锋,等.自由基清除剂的保护作用与甘蔗的抗旱性.作物学报,1994,20(2):149-155.
    [7]陈伟,蔡昆争,陈基宁.硅和干旱胁迫对水稻叶片光合特性和矿质养分吸收的影响.生态学报,2012,32(8):2620-2628.
    [8]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制.生物工程学报,200l,17(2):121-126.
    [9]方智振,赖钟雄,赖呈纯,等.龙眼体细胞胚发生中期的蛋白质组学研究.中国农业科学,2011,44(14):2966-2979.
    [10]陆燕元.干旱胁迫及复水过程中转Cu/Zn SOD和APX基因甘薯生理生化响应机制研究.西北农林科技大学博士学位论文,2010.
    [11]宫海军,陈坤明,陈国仓,等.硅对小麦生长及其抗氧化酶系统的影响.土壤通报,2003,34(1):55-57.
    [12]古谢夫著,王统正译.植物水分状况的若干规律.北京:科学出版社,1959,1-32.
    [13]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯,1995,31(4):293-297.
    [14]郭彦军,郭芸江,唐华,等.紫外线辐射与土壤干旱胁迫对紫花苜蓿.草业学报,201l,20(6):77-84.
    [15]郝岗平,吴忠义,曹呜庆,等ATHK1基因调节拟南芥渗透胁迫信号转导过程.植物生理与分子生物学学报,2004,30(5):553-560.
    [16]扈晓杰.硅提高黄瓜白粉病抗性的生理机制研究.浙江大学硕士学位论文.2007.
    [17]黄昌勇,沈冰.硅对大麦铝毒的消除和缓解作用研究.植物营养与肥料学报,2003,9(1):98-101.
    [18]黄诚梅.甘蔗脯氨酸积累与△-1-吡咯啉-5-羧酸合成酶(ScP5CS)基因克隆及转化研究.广西大学博士学位论文,2007.
    [19]黄诚梅,杨丽涛,江文,等.聚乙二醇胁迫对甘蔗生长前期叶片水势及脯氨酸代谢的影响.干旱地区农业研究,2008,26(1):205-208.
    [20]黄海荣.硅肥对甘蔗生长和土壤理化性状的效应.广西大学硕士论文,2009.
    [21]黄益宗,张文强,招礼军,等.Si对盐胁迫下水稻根系活力、丙二醛和营养元素含量的影响.生态毒理学报,2009,4(6):860-866.
    [22]姬谦龙.不同基因型美国黑核桃对干旱胁迫的适应机制研究.山东农业大学博士论文,2002.
    [23]季明德,黄湘源,鄢非.硅元素对甘蔗增产和增糖作用机理的研究-甘蔗中不同形态硅元素的定量测定方法的研究.南昌大学学报(理科版),1997,17(4):50-54.
    [24]冀鹏飞,薛斌,刘志华,等.干旱胁迫下葡萄根系的生理生化变化与抗旱性的关系.北方园艺,2012,(4):17-20.
    [25]江泽普,廖青,韦广泼,等.硅磷互作对甘蔗生长及产量效应研究.南方农业学报,2011,42(9):1091-1095.
    [26]姜慧芳,任小平.干旱胁迫对花生叶片SOD活性和蛋白质的影响.作物学报,2004,30(2):169-174.
    [27]李冰,刘宏涛,孙大业,等.植物热激反应的信号转导机理.植物生理与分子生物学学报,2002,28(1):1-10.
    [28]李长宁,Srivastava M K,农倩,等.水分胁迫下外源ABA提高甘蔗抗旱性的作用机制.作物学报,2010,36(5):863-870.
    [29]李妮亚,高俊凤,汪沛洪.小麦幼芽水分胁迫诱导蛋白的特征.植物生理学报,1998,24(1):65-71.
    [30]李清芳,马成仓,季必金.硅对干旱胁迫下玉米水分代谢的影响.生态学报,2009,29(8):4163-4168.
    [31]李杨瑞.现代甘蔗学.北京:中国农业出版社,2010,1-39,264-273.
    [32]李杨瑞,杨丽涛.20世纪90年代以来我国甘蔗产业和科技的新发展.西南农业学报,2009,22(5):1469-1476.
    [33]李永健,杨丽涛,李杨瑞,等.不同时期喷施乙烯利对甘蔗生长、主要农艺性状及抗旱性的影响.甘蔗,2002,9(1):12-18.
    [34]梁丽琼,谭裕模,曾洁清,等.甘蔗叶片生态特征及脯氨酸含量、膜透性与抗旱性关系研究.甘蔗,1995,2(4):14-19.
    [35]梁永超,娄运生.硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系.中国农业科学,2003,36(7):813-817.
    [36]梁永超,丁瑞兴,刘谦.硅肥对大麦耐盐性的影响及其机制.中国农业科学,1999,32(6):75-83.
    [37]梁峥,骆爱玲,赵原,等.干旱和盐胁迫诱导甜菜碱叶中甜菜碱醛脱氢酶的积累.植物生理学报,1996,22(2):161-164.
    [38]梁峥.植物对渗透胁迫的响应和适应.见:匡廷云、吴相钰主编.植物生理及分子生物学进展.1996,45-48.
    [39]廖芬,林鉴钊,李杨瑞,等.乙烯利对甘蔗叶片结构的影响及其与抗旱性的关系.西南农业学报,2003,16:45-48.
    [40]刘娥娥,宗会,郭振飞,等.干旱、盐、低温胁迫对水稻幼苗脯氨酸含量的影响.热带亚热带植物学报,2001,8(3):235-238.
    [41]刘国琴,何嵩涛,樊卫国,等.土壤干旱胁迫对刺梨叶片矿质营养元素含量的影响.果树学报,2003,20(2):96-98.
    [42]刘建新,赵国林.干旱胁迫下骆驼蓬抗氧化酶活性与渗透调节物质的变化.干旱地区农业研究,2005,23(5):127-131.
    [43]刘少华,陈国祥,胡艳,等.高产杂交稻“两优培九”之功能叶抗氧化系统对水分胁迫的响应.作物学报,2004,30(22):1244-1249.
    [44]卢少云,陈斯平,陈斯曼,等.三种暖季型草坪草在干旱条件下脯氨酸含量和抗氧化酶活性的变化.园艺学报,2003,30(3):303-306.
    [45]陆燕元.干旱胁迫及复水过程中转Cu/Zn SOD和APX基因甘薯生理生化响应机制研究.西北农林科技大学博士学位论文,2010.
    [46]罗海斌,曹辉庆,魏源文,等.干旱胁迫下甘蔗苗期根系全长cDNA文库构建及EST序列分析.南方农业学报,2012,43(6):733-737.
    [47]罗俊,张木清,林彦铨,等.甘蔗苗期叶绿素荧光参数与抗旱性关系研究.中国农业科学,2004,37(11):1718-1721.
    [48]罗明珠,刘子凡,梁计南,等.甘蔗抗旱性与叶片某些生理、生化性状的关系.亚热带农业研究,2005,1(1):14-16.
    [49]马双艳,姜远茂,彭福田,等.干旱胁迫对不同板栗品种叶片渗透调节物质含量及光合的影响.干旱地区农业研究,2003,21(3):114-118.
    [50]马同生.我国水稻土硅素养分与硅肥施用研究现况.土壤学进展,1990,18(4):1-5.
    [51]聂华堂,陈竹生,计玉.水分胁迫下柑桔的生理变化与抗旱性的关系.中国农业科学,1991,24(4):14-18.
    [52]潘瑞炽(主编).植物生理学(第五版).北京:高等教育出版社,2004,56-57.
    [53]阮松林,马华升,王世恒,等.植物蛋白质组学研究进展Ⅰ-蛋白质组关键技术.遗传,2006,28(11):1472-1486.
    [54]邵玲,陈向荣.热激蛋白与植物的抗逆性.北方园艺,2005,(3):73-74.
    [55]邵艳军,山仑.植物耐旱机制研究进展.中国生态农业学报,2006,14(4):16-20.
    [56]束良佐,刘英慧.硅对盐胁迫下玉米幼苗叶片膜脂过氧化和保护系统的影响.厦门大学学报,2001,40(6):1295-1300.
    [57]孙彩霞,沈秀瑛,刘志刚,等.作物抗旱性生理生化机制的研究现状和进展.杂粮作物,2002,22(5):285-288.
    [58]孙钦秒,冷静,李良璧,等.高等植物光系统Ⅱ捕光色素蛋白复合体结构与功能研究的新进 展.植物学通报,2000,17(4):289-301.
    [59]孙学成.钼提高小麦抗寒力的生理基础及分子机制.华中农业大学博士论文,2007.
    [60]覃鹏,杨志稳,孔治有,等.干早对烟草旺长期光合作用的影响.亚热带植物科学,2004,33(2):5-7.
    [61]鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000.
    [62]王厚鑫,刘鸣达,张惠,等.施硅对草地早熟禾生长特性和抗旱性的影响.北方园艺,2007,(9):135-137.
    [63]王晓荣,周禾.高羊茅不同品种生长初期抗旱性的比较研究.四川草原,200l,(4):25-29.
    [64]魏国强.硅提高黄瓜白粉病抗性和耐盐性的生理机制研究.浙江大学博士论文,2004.
    [65]吴庆丰,王崇英,王新宇,等.山黧豆叶片蛋白质双向电泳技术的建立.西北植物学报,2006,26(7):2l-25.
    [66]夏德习,管清杰,金淑梅.拟南芥硫氧还蛋白M1型基因(AtTRX ml)与环境逆境之间的关系.分子植物育种,2007,5(1):21-26.
    [67]肖清铁,戎红,周丽英,等.水稻叶片对镉胁迫响应的蛋白质差异表达.应用生态学报.2011,22(4):1013-1019.
    [68]许树成,祝雪兰,张丽.蛋白激酶组在玉米叶片ABA和H202诱导抗氧化防护中的作用.植物分类与资源学报,2011,33(3):275-286.
    [69]杨华,唐茜,黄毅,等.名山白毫对干旱胁迫的生理生态响应研究.西南农业学报,2010,23(5):1497-1053.
    [70]杨丽涛,张保青,朱秋珍,等.应用飞机大面积喷施抗旱型甘蔗增糖增产剂的效果研究.热带作物学报,2011,32(2):189-197.
    [71]杨艳芳,梁永超,娄运生,等.硅对小麦过氧化物酶,超氧化物歧化酶和木质素的影响及与抗白粉病的关系.中国农业科学,2003,36(7):813-817.
    [72]姚秋菊,张晓伟,吕中伟,等.硅对盐胁迫下黄瓜幼苗根系质膜、液泡膜酶活性的影响.华北农学报,2008,23(6):125-129.
    [73]余晓华,张巨明,王明祖,等.四种结缕草属草坪草对土壤干旱胁迫的响应及抗旱性研究.北方园艺,2008,(5):121-124.
    [74]曾宪录,梁计南,谭中文.硅肥对甘蔗叶片一些光合特性的影响.华中农业大学学报,2007,26(3):330-334.
    [75]张海娜,李小娟,李存东,等.过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响.作物学报2008,34(8):1403-1408.
    [76]张积森,郭春芳,王冰梅,等.甘蔗水分胁迫响应相关醛脱氢酶基因的克隆及其表达特征分析.中国农业科学,2009,42(8):2676-2685.
    [77]张明生,彭忠华,谢波,等.甘薯离体叶片失水速率及渗透调节物质与品种抗旱性的关系.中国农业科学,2004,37(1):152-156.
    [78]张秋英,李发东,高克昌,等.水分胁迫对冬小麦光合特性及产量的影响.西北植物学报,2005,25(6):1184-1190.
    [79]张永强,毛学森,孙宏勇,等.干旱胁迫对冬小麦叶绿素荧光的影响.中国生态农业学报,2002,10(4):13-15.
    [80]周秀杰,赵红波,马成仓.硅对严重干旱胁迫下黄瓜幼苗叶绿素荧光参数的影响.华北农学报,2007,22(5):79-81.
    [81]张智,夏宜平,徐伟韦.两种观赏草的自然失水胁迫初步研究.园艺学报,2007,34(4):1029-1032.
    [82]赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响.应用生态学报,2005,16(7):1261-1264.
    [83]赵世杰,刘华山,董新纯.植物生理学实验指导.北京:中国农业科技出版社,1998,120-164.
    [84]赵姝丽,陈温福,徐正进.水分胁迫对水稻剑叶气孔特性的影响.华北农学报,2010,25(1):170-174.
    [85]赵天宏,沈秀瑛,杨德光,等.水分胁迫对不同抗旱性玉米幼苗叶片蛋白质的影响.沈阳农业大学学报,2002,33(6):408-410.
    [86]郑明珠,刘金荣,秦伟志,等.硅对干旱胁迫下草地早熟禾形态及生理特性的影响.草业科学,2011,28(6):1009-1013
    [87]周桂,靳晓芸,邓光辉,等.壳寡糖诱导甘蔗叶多酚与防御酶活性的变化.南方农业学报,2011,42(8):874-877.
    [88]周桂,丘立杭,邹成林,等.水分胁迫对甘蔗根系蛋白质差异表达的影响.西南农业学报,2010,23(5):1455-1459.
    [89]周桂,李杨瑞,杨丽涛,等.乙烯利对聚乙二醇胁迫下甘蔗叶类黄酮及相关酶活性的影响.华中农业大学学报,2009,28(4):404-408.
    [90]周桂.渗透胁迫和乙烯利处理对甘蔗蛋白质差异表达的影响.广西大学博士论文,2010.
    [91]周琼,李杨瑞,林鉴钊,等.喷施乙烯利对甘蔗生长前期甘蔗叶片维管束结构及硅镁锌含量的影响.中国农学通报,2005,21:147-149.
    [92]邹承鲁.第二遗传密码——新生肽链及蛋白质折叠的研究.长沙:湖南科学技术出版社,1982.
    [93]Abravaya K, Phillips B, Morimoto R I. Heat shock 2 induced interactions of heat shock transcription factor and the human HSP70 promoter examined by in vivo foot printing. Mol Cell Biol,1991,11(1):586-592.
    [94]Agarie S,Hanaoka N, Ueno O, et al. Effects of silicon on tolerance to water deficit and heat stress in rice Plants (Oryza sativa L.),monitored by electrolyte leakage. Plant Production Science,1998, 1(2):96-103.
    [95]Ahsan N, Lee DG, Lee KW, et al. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem,2008,6:1062-1070.
    [96]Al-Aghabary K, Zhu J Z, Qin H S. Influence of silicon supply on chlorophyll content, chloroPhyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition,2004,27:2101-2115.
    [97]Ali G M, Komastu S J. Proteomic analysis reveals differences between Vitis vinifera L.cv. Chardonnay and ev.Cabemet Sauvignon and their responses to water deficit and salinity. Proteome Res.2006,5:396-403.
    [98]Almoguera C, Jordano J. Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNA. Plant Mol Biology, 1992,19:781-792.
    [99]Amme S, Matros A, Schlesier B, et al. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. J Exper Bot,2006, Plant Proteomics Special Issue,1-10.
    [100]Arnon D I, Whatley F R. Factors influencing oxygen production by illuminated chloroplast fragments. Archiv Biochem,1949,23(1):141-156
    [101]Arunyanark A, Jogloy S, Akkasaeng C, et al. Chlorophyll stability is an indicator of drought tolerance in peanut. Journal of Agronomy and Crop Science,2008,194(2):113-125.
    [102]Attipalli RR, Kolluru VC, Munusamy V. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plant. Journal of Plant Physiology,2004,161 (11):1189-1202
    [103]Balestrasse K B, Gardey L, Gallego S M, et al. Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stresss. Plant Physiol,2001,28:497-453.
    [104]Bartoli C G, Guiamet J J, KIDDLE, G The relationship between L-galactono-1,4-lactone dehydrogenase (GalLDH) and ascorbate content in leaves under optimal and stress conditions. Plant Cell and Environment,2005,28:1073-1111.
    [105]Bennett J. Phosphorylation of chloroplast membrane polypeptides. Nature,1977,269:344-346.
    [106]Bhushan D, Pandey A, Choudhary M K, et al. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Molecular and Cellular Proteomics,2007,6(11):1868-1884.
    [107]Biyaseheva A E, Molotkovskii Y G, Mamonov L K. Increase of free Ca2+ in the cytosol of plant protoplasts in response to heat shock as related to Ca2+ homeostasis. Russian Plant Physiol,1993, 40:540-544.
    [108]Bogre L, Ligterink W, Heberle BE, et al. Mechanosensors in plants. Nature,1996,383:489-490.
    [109]Bolouri-Moghaddam M R, Le Roy K, Xiang L, et al. Sugar signalling and antioxidant network connections in plant cells. FEBS J,2010,277:2022-2037.
    [110]Bolter B, Sharma R, Soll J. Localisation of Arabidopsis NDPK2-revisited. Planta,2007, 226(4):1059-1065.
    [111]Bota J, Flexas J, Medrano H. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol,2004,162:671-681.
    [112]Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol,1977,59:411-416.
    [113]Broin M, Rey P. Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS12-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress, Plant Physiol,2003,132 (3):1335-1343.
    [114]Bugos R C, Hieber A D, Yamamoto H Y. Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. Biol Chem,1998,273:15321-15324.
    [115]Cellar N A, Kuppannan K, Langhorst M L, et al. Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase. Chromatogr B Analyt Technol Biomed Life Sci,2008,861:29-39.
    [116]Chaitanya K, Jutur P, Sundar D, et al. Water stress effects on photosynthesis in different mulberry cultivars. Plan Growth Regulation,2003,40:75-78.
    [117]Chance B, Maehly A C. Assay of catalase and peroxidase. Methods Enzymol,1955,12:764-775.
    [118]Chang C, Stewart RC. The two-component system:Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol,1998,117:723-731.
    [119]Charron F J B, Breton G, Badawi M, et al. Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis. Plant Physiol 2002, 139:2017-2028
    [120]Charron J B F, Ouellet F, Houde M, et al. The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biology 2008,8:86-98.
    [121]Chen D Y, Yang C, Zhai Z H.50 ku keratin-like protein and β-microtublin coexist in higher plant. Chinese Science Bulletin,2000,45(2):164-168.
    [122]Chen W, Yao X Q, Cai K. Z, et al. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research,2011,142(1):67-76.
    [123]Choi G, Yi H, Lee J, et al. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature,1999,401(6753):610-613,
    [124]Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors. Biol Chem,2000,275:1723-1730.
    [125]DaCosta, M, Huang B R. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. Am Soc Horti Sci,2007,132:319-326.
    [126]DeJone TM. Leaf nitrogen content and CO2 assimilation capacity in peach. Amer Hort Sci,1982, 107:955-959..
    [127]Deng Z, Zhang X, Tang W, et al. A proteomics study of brassinosteroid response in Arabidopsis. Mol Cell Proteomics,2007,6:2058-2071.
    [128]Desclos M, Dubousset L, Etienne P, et al. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions. Plant physiol,2008,147(4):1830-1844.
    [129]Dharmasiri S, Harrington M, Dharmasiri N. Heat shock modulates phosphorylation status and activity of nucleoside diphosphate kinase in cultured sugarcane cells. Plant Cell Rep,2010,29: 1305-1314.
    [130]Dixon D P, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol,2002,3:1-10.
    [131]Downs C A, Ryan S L, Heckathorn S A. The chloroplast small heat-shock protein:Evidence fgeneral role in protecting photosystem II against oxidation stress and photoinhibition. Plant Physiol,1999,155:488-496
    [132]Dumas C, Lsacu I, Morera S, et al. X-ray structure of nucleoside diphosphate kinase. The EMBO J,1992,11(9):3203-3208.
    [133]Ellis R J. Molecular chaperones:the plant connection. Sci,1990,250:954-959.
    [134]Ellis R J. Proteins as molecular chaperones. Nature,1987,328:378-379.
    [135]Epstein E. The anomaly of silicon in plant biology. Proc Natl Acad Sci USA,1994,91:11-17.
    [136]Epstein E. Silicon. Annu Rev Plant Physiol Plant Mol Biol,1999,50:641-664.
    [137]Errabii T, Gandonou C B, Essalmani H, et al. Growth, proline and ion accumulation in sugarcane callus cultures under drought-induced osmotic stress and its subsequent relief. African J Biotech, 2006,5:1488-1493.
    [138]Galvis E M L, Hkansson G, Alexciev K, et al. Cloning and characterisation of a pea mitochondrial NDPK. Biochimie,1999,81(12):1089-1096.
    [139]Galvis, E M L, Marttila, S, Hakansson G, et al. Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein. Plant Physiol, 2001,126:69-77.
    [140]Evans H. Some aspects of the problem of drought resistance in sugarcane. Proceedings of the International Society of Sugar Cane Technology,1935,6:802-808.
    [141]Finazzi G, Zito F, Barbagallo RP, et al. Contrasted effects of inhibitors of cytochrome b6f complex on state transitions inChlamydomonas reinhardtii:the role of Qo site occupancy in LHCⅡ kinase activation.J Biol Chem,2001,276:9770-9774.
    [142]Flexas J, Medrano H. Drought-inhibition of photosynthesisin C3 plant:stomatal and non-stomatal limitations revisited. Ann Bot,2002,89:183-189.
    [143]Fukamatsu Y, Yabe N, Hasunuma K. Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases. Plant Cell Physiol,2003,44:982-989.
    [144]Gao X P, Zou C Q, Wang L J, et al. Silicon improves water use efficiency in maize plants. J Plant Nutrition,2004,27(8):1457-1470.
    [145]Giannopolitis C N, Ries S K. Purification and quantitative relationship with water-soluble protein in seedling. Plant Physiology,1977,59:315-318.
    [146]Gilmour S J, Thomashow M F. Cold acclimation and cold regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol.1991,17:1233-1240.
    [147]Goldemberg J. Ethanol for a sustainable energy future. Sci,2007,135:808-810.
    [148]Goldgur Y, Rom S, Ghirlando R, et al. Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening.1, a water stress and salt stress regulated plant specific protein, from unfolded to folded state. Plant Physiol,2007,143(2):617-628.
    [149]Gong H J, Chen K M, Chen G C, et al. Effects of silicon on the growth of wheat under drought. J Plant Nutrition,2003,26(5):1055-1063.
    [150]Gong H J, Zhu X Y, Chen K M, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci,2005,169(2):313-321.
    [151]Haake V, Cook D, Riechmann JL, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol,2002,130:639-648.
    [152]Harris N, Taylor J E, Roberts J A. Isolation of a mRNA encoding a nucleoside diphosphate kinase from tomato that is up-regulated by wounding. Plant Mol Biol,1994,25:739-742.
    [153]Hattori T, Inanaga S, Araki H, et al. Application of silicon enhanced drought tolerance in sorghum bicolor. Physiologia Plantarum,2005,123(4):459-466.
    [154]Hattori T, Lux A, Tanimoto E, et al. The effect of silicon on the growth of sorghum under drought. Proceedings of the 6th Symposium of the International Society of Root Research. Nagoya, 2001:348-349.
    [155]Hayasaka T, FujiiH, Ishiguro K. The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology,2008,98 (9):1038-1044.
    [156]Heekathom S A, Downs C A, Sharkey T D, et al. The small methionine rich chloroplast heat-shock protein protest photosystem Ⅱ Electron transport during heat stress. Plant Physiol, 1998,116(1):439-444.
    [157]Hess J F, Bourret R B, Simon M I. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature,1988,336:97-125.
    [158]Hetmann A, Kowalczyk S. Nucleoside diphosphate kinase isoforms regulated by phytochrome A isolated from oat coleoptiles. Acta Biochim Pol,2009,56:143-153.
    [159]Hirel B, Gallais A. Rubisco synthesis, turnover and degradation:some new thoughts on an old problem. New Phytologist,2006,169(3):445-448.
    [160]Hong S H, Kim I J, Yang D C, et al. Characterization of an abscisic acid responsive gene homologous from Cucumis melo. Exp Bot.2002,53:2271-2272.
    [161]Hsiao T C. Physiological effects of plant in response to water stress. Ann Rev Plant Physiol,1973, 24:519-570.
    [162]Huang HR, Xu L, Bokhtiar SM, et al. Effect of calcium silicate fertilizer on soil characteristics, sugarcane nutrients and its yield parameters. Journal of Southern Agriculture,2011, 42(7):756-759.
    [163]Inman-Bamber N G, Smith D M. Water relations in sugarcane and response to water deficits. Field Crops Research,2005,92:185-202.
    [164]Iusem N D, Bartholomew D, Hitz W D, et al. Tomato transcript induced in water stress and ripening. Plant Physiol,1993,102:1353-1354.
    [165]Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K. Identification of a cis-regulatory region of a gene Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet,1995,247:391-398.
    [166]Jackson K, Soll D. Mutation in a new Arabidopsis cyclophilin distrapt its interaction with protein phosphatase 2A. Mol gen Genet,1999,262:830-938.
    [167]Jorge I, Navarro R M, Lenz C, et al. Variation in the holm oak leaf proteome at different plant developmental stages, between provenances and in response to drought stress. Proteomics,2006, 6(1):207-214.
    [168]Jucker E M, Foy C D, Paula J C, et al. Electron paramagnetic resonance studies of manganese toxicity tolerance, and amelioration with silicon in snap bean. Plant Nutr,1999,22:769-782.
    [169]Kaul S, Sharma S S, Mehta I K. Free radical scavenging potential of L-proline:Evidence from in vitro assays. Amino Acids,2008,34:315-320.
    [170]Kaya C, Tuna L, Higgs D. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr.2006,8:289-296.
    [171]Ke Y, Han G, He H, et al. Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun,2009,379:133-138.
    [172]Kim, D W, Rakwal, R, Agrawal G.K, et al, A hydroponic rice seedling culture modelsystem for investigating proteome of salt stress in rice leaf. Electroph,2005,26(23):4521-4539.
    [173]Kim K N, Cheong Y H, Granta J J, et al. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell,2003,15:411-423.
    [174]Kim S G, Kim KW, Park EW, et al. Silicon-induced cellwall fortifieation of rice leaves:a possible cellular mechanism of enhanced host resistance to blast. Phytopath,2002,92(10):1095-1103.
    [175]Kim Y-O, Pan S O, Jung C-H, et al. A Zinc Finger-Containing Glycine-Rich RNA-Binding Protein, atRZ-1a, Has a Negative Impact on Seed Germination and Seedling Growth of Arabidopsis thaliana Under Salt or Drought Stress Conditions.Plant Cell Physiol,2007, 48(8):1170-1181.
    [176]Knight H, Trewavas A J, Knight M R. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell,1996,8:489-503.
    [177]Knight H, Trewavas A J, Knight M. Calcium signaling in Aarbidopsis thaliana responding to drought and salinity. Plant J,1997,12:1067-1078.
    [178]Koller A, Washburn M P, Lange B M. Proteomic survey of metabolic pathways in rice, Proc Natl Acad Sci USA,2002,99:11969-11974.
    [179]Larcher W, Meindl U, Ralser E, et al. Persistent supercooling and silica deposition in cell walls of palm leaves. Plant Physiol,1991,139:146-154.
    [180]Lee B, Yoshida Y, Hasunuma K. Nucleoside diphosphate kinase-1 regulates hyphal development via the transcriptional regulation of catalase in Neurospora crassa. FEBS Lett,2009,583: 3291-3295.
    [181]Lee B H, Won S H, Lee H S, et al. Expression of chloroplast-localized small heat shock protein by oxidative stress in rice. Gene,2000,245:283-290.
    [182]Lee D G, Ahsan N, Lee S H, et al. Chilling stress-induced proteomic changes in rice roots. J Plant Physiol,2009,166:1-11.
    [183]Lee J S, Park J H, Han K S. Effects of potassium silicate on growth, photosynthesis and inorganic ion absorption in cucumber hydroponics.Journal of the Korean Society of Horticultural Science,2000,41(5):480-484
    [184]Lewin J, Reimann B E F. Silicon and plant growth. Annu Rev Plant Physiol,1969,20:289-304.
    [185]Li Y R, Solomon S. Ethephon:a versatile growth regulator for sugar cane industry. Sugar Tech, 2003,5:213-223.
    [186]Liang Y C, Sun W C. Resistance of cucumber against anthracnose induced by soluble silicon and inoculated Colletotrichum lagenarium. Scintia Agricultura Sinica,2002,35(3):267-271.
    [187]Liang Y C, Zhang W H, Chen Q, et al. Effects of silicon on tonoplast H+-ATPase and H+-PPase activity, fatty acid composition and fluidity in roots of salt stressed barley (Hordeum vulgare L.). Environ Exper Bot,2005,53(1):29-37.
    [188]Liang Y C. Effects of silicon on enzyme activity and sodium,potassium and calcium concentration in barley under salt stress. Plant and Soil,1999,209(2):217-224.
    [189]Liu H Y, Li B, Zhou R G, et al. Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol,2003,132(3):1186-1195.
    [190]Low D, Brandle K, Nover L, et al. Cytosolic heat-stress proteins HSP17.7 class land HSP17.3 class 11 of tomato act as molecular chaperones in vivo. Planta,2000,211(4):575-582.
    [191]Lux A, Luxov M, Hattori t, et al. Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant,2002,115:87-92.
    [192]Lux A, Luxov M, Morita S, et al. Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice (Oryza sativaL.).Can.J.Bot,1999,77:955-960.
    [193]Ma C C, Li Q F, Gao Y B, et al. Effects of silicon application on drought resistance of cucumber Plants. Science and Plant Nutrition.2004,50:623-632.
    [194]Madueno F, Napier J A, Cejudo F J, et al. Import and processing of the precursor of the Rieske FeS protein of tobacco chloroplasts.Plant Molecular Biology.1992,20:289-299.
    [195]Malgorzata G, Waldemar B. Effects of a short-term hypoxic treatment followed by re-aeration on free radicals level and anti-oxidative enzymes in lupine roots. Plant Physiol Biochem,2004,42: 233-240.
    [196]Malik K B. Some anatomical characteristics of sugarcane varieties in relation to drought resistance. Agricultural Research,1986,11:43-49.
    [197]Manning B D, Cantley L C. AKT/PKB signaling:Navigating downstream. Cell,2007,129: 1261-1274.
    [198]Mao Z, Jiang H, Wang Y, et al. Water balance of birch and larch leaves and their resistance to short and progressive soil drought. Russ J Plant Physiol,2004,51.697-701.
    [199]Martinez-Carrasco R, Sanchez-Rodriguez J, Perez P. Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia. Forst and Forst Photosynthetica,2002,40(3):363-368.
    [200]Meza-Basso L, Alberdi L, Raynl M, et al. Changes in protein synthesis in rapeseed (Brassica napus) seedlings during a low temperature treatment. Plant Physiol,1987,82:733-738
    [201]Milla M A R, Maurer A, Huete A R, et al. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways, Plant J, 2003,36(5):602-615.
    [202]Mittler R, Vanderauwera S, Suzuki N, et al. ROS signaling:the new wave? Trends in Plant Science,2011,16:300-309.
    [203]Moisyadi S, Dharmasiri S, Harrington H M, et al. Characterization of a low molecular mass autohosphorylated protein in cultured sugarcane cells and its identifications as a nucleoside diphosphate kinase. Plant Physiol,1994,104:1401-1409.
    [204]Moon H, Lee B, Choi G, et al. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA,2003,100(1):358-363.
    [205]Munne-Bosch S, Penuelas J. Drought-induced oxidative stress in strawberry tree(Arbutus unedo L.) growing in Mediterranean field conditions. Plant Sci,2004,166(4):1105-1110.
    [206]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol,1981,22:867-880.
    [207]Neumann D, Zur Nieden U. Silicon and heavy metal tolerance of higher Plants. Phytoehemistry, 2001,56:685-692.
    [208]Nomura T, Yatsunami K, Honda A, et al. The amino acid sequence of nucleoside diphosphate kinase I from spinach leaves, as deduced from the cDNA sequence. Archives of Biochemistry and Biophysics (Print),1992,297(1):42-45.
    [209]Nordin K, Heino P, Palva E T. Separate signal pathways regulate the expression of a low-temperature-induce gene in Arabidopsis thaliana (L.) Heynh Plant Mol Biol,1991, 16:1061-1071.
    [210]Osborne B A. Effect of nitrate nitrogen limitation on photosynthesis of the diatom Phaeodactylum tricornutum Bohlim. Plant Cell Eviron,1986,9:617-625.
    [211]Pan L, Kawai M, Yano A, et al. Nucleoside diphosphate kinase required for coleoptile elongation in rice. Plant Physiol,2000,122:447-452.
    [212]Park H S, Cho S G, Kim CK, et al. Heat shock protein HSP72 is a negative regulator of apoptosis signal regulating kinase 1. Mol Cell Biol,2002,22(22):7721-7730.
    [213]Parry M A, Andralojc P J, Khan S, et al. Rubisco activity:Effects of drought stress. Ann Bot,2002, 89:833-839.
    [214]Patade V Y, Bhargava S, Suprasanna P. Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress:growth, osmolytes accumulation, and antioxidative defense. J Plant Interact, 2011,6:275-282.
    [215]Peltier J B, Cai Y, Sun Q, et al. The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cellul Proteo,2006,5(1):114-133.
    [216]Price A H, Hendry G A F. Drought-induced oxidative stress in wheat. Biochem Soc Tran,1989, 17:493-494.
    [217]Prochazkova D, Sairam R K, Srivastava G C, et al. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci,2001,161:765-771.
    [218]Quigley F R. Arabidopsis thaliana gene for nucleoside diphosphate kinase. EMBI Database. Accession number X69376, ID At-NDK13 AC.1992.
    [219]Saad R B, Zouari N, Ben Ramdhan W, et al, Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zincnger"AlSAP"gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol,2010,72:171-190.
    [220]Ranjeva R, Boudet A M. Phosphorylation of protein in plants:regulatory effects and potential involvement in stimulus/response coupling. Annu Rev Plant Physio,1987,38:73-93.
    [221]Renaut J, Lutts S, Hoffmann L, et al. Responses of poplar to chilling temperatures:proteomic and physiological aspects. Plant Biol,2004,6:81-90.
    [222]Rensburg, L V, Kruger G H J. Evaluation of components of oxidative stress metabolism for use inselection of drought tolerant cultivars of Nicotiana tabacum L. J Plant Physiol,1994, 143:730-737.
    [223]Reviron M P, Vartanian N, Sallantin M, et al. Characterization of a movel protein induced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiology,1992, 100:1486-1493.
    [224]Rodrigues F, Jurick W M, Datnoff L E, et al. Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe griseainteractions. Physiol Mol Plant Pathol, 2005,66(4):144-159.
    [225]Rolda N A, Diaz-Vivancos P, Hernandez J A, et al. Superoxide dismutase and total peroxidase activities in relation to droughtrecovery performance of mycorrhizal shrub seedlings grown in anamended semiarid soil. Plant Physiol,2008,165(7):715-722.
    [226]Roxas V P, Smith R K Jr, Allen E R, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol,2000,41(11): 1229-1234.
    [227]Roxas V P, Smith R K Jr, Allen E R, et al. Overexpression of glutathione S transferase/glutathione peroxide enhances the growth of transgenic tobacco seedling during stress. Nature Biotech,1997,15:988-991.
    [228]Rutherford R S. The assessment of proline accumulation as a mechanism of drought resistance in sugarcane. Prec S Afric Sug Tech Assoc,1989,136-141.
    [229]Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved involed in dehydration and cold-inducible gene expression. Bioch Biophys Res Commun,2002,290:998-1009.
    [230]Salekdeh G H, SioPongco J, Wade L J, et al. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics,2002,2:1131-1145.
    [231]Sato Y, Yokoya S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep,2008,27(2):329-334.
    [232]Schaedle M, Bassham J A. Chloroplast glutathione reductase. Plant Physiol,1977,59:1011-1012.
    [233]Schenk H, Klein M, Erdbrugger W, et al. Distinct effects of thioredoxin and antioxi-dants on the activation of transcription factors NF-kappa B and AP-1. Proc Natl Acad Sci USA,1994,91(5): 1672-1676.
    [234]Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants. Sci,1996,274: 1089-1092.
    [235]Shinozaki K, Yajuaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling Pathways. Current Opinion Plant Biol, 2000,3:217-233.
    [236]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opinion Plant Biol,2003,6:410-417.
    [237]Smirnoff N, Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes. Phytochem, 1989,28:1057-1060.
    [238]Sofo A, Tuzio A C, Dichio B, et al. Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids. Plant Sci,2005, 169:403-412.
    [239]Soto A, Allona I, Collada C, et al. Heterologous expression of a plant small heat-shock protein enhances Escherichia viability under heat and cold stress. Plant Physiol,1999,120:521-528.
    [240]Spetea C, Hundal T, Lundin B, et al. Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen. Proc Natl Acad Sci USA,2004,101(5):1409-1414.
    [241]Steppuhn J, Rother C, Hermans J, et al. The complete amino-acid sequence of the rieske FeS-precursor protein from spinach chloroplasts deduced from cDNA analysis. Mol Gen Genet, 1987,210:171-177.
    [242]Stone JH, Walker JC. Plant protein kinase families and signal transduction. Plant Physiol, 1995,108:451-457
    [243]Struglics A, Hakansson G. Purification of a serine and histidine phosphorylated mitochondrial nucleoside diphosphate kinase from Pisum sativum. Eur J Biochem,1999,262(3):765-773.
    [244]Sweetlove L J, Mowday B, Hebestreit H F, et al. Nucleoside diphosphate kinase III is localized to the inter-membrane space in plant mitochondria. FEBS Letters,2001,508(2):272-276.
    [245]TaiichirO H, Shinobu I, Hideki A, et al. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum,2005,123(4):459-466.
    [246]Tanaka N, Ogura T, Noguchi T, et al. Phytochrome-mediated light signals are transduced to nucleoside diphosphate kinase in Pisum sativum L. cv. Alaska. J Photochem Photobiol, B:Biol, 1998,45(2-3):113-121.
    [247]Tang L, Kim M D, Yang K S, et al. Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Res,2008, 17(4):705-715.
    [248]Tezara W, Lawlor D W. Effects of water stress on the biochemistry and physiology of photosynthesis in sunflower. In:Mathis P, ed. Photosynthesis:from light to biosphere Ⅳ. Dordrecht. Kluwer Academic Publishers,1995,625-628.
    [249]Tezara W, Mitchell V J, Driscoll S D, et al. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature,1999,401:914-917.
    [250]Tran, L S P. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress promoter. Plant Cell,2004,16:2481-2498.
    [251]Trujillo L E, Sotolongo M, Menendez C, et al. SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol,2008,49:512-525.
    [252]Trujillo L, Menendez C, Ochogavia M E, et al. Engineering drought and salt SodERF3, a novel sugarcane ethylene responsive factor. Biotechnologia Aplicada,2009,26:168-171.
    [253]Urao T, Katagiri T, Mizoguchi T, et al.Two gene that encode Ca2+dependent protein kinase are induced by drought and high salt stress in Arabidopsis thaliana. Mol Gen Genet,1994,244: 331-340.
    [254]Urao T, Yakuhov B, Satoh R, et al. A transmembrane hybrid-type histidine kimse in Arabidopais functions. Plant Cell,1999,11:1743-1754.
    [255]Ushimaru T, Kanematsu S, Katayama M, et al. Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water stress. Physiol Plant,2001,112(1):39-46.
    [256]Uzilday B, Turkan I, Sekmen A H, et al. Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Sci,2012,182: 59-70.
    [257]Vasantha S, Alarmelu S, Hemaprabha G, et al. Evaluation of promising sugarcane genotypes for drought. Sugar Tech,2005,7:82-83.
    [258]Vierling E. The roles of heat shock proteins in plants. Ann Rev Plant Physiol Plant Mol Biol,1991, 42:579-620.
    [259]Vincent D, Lapierre C, Pollet B, et al. Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. Plant Physiol,2005,137(3):949-960.
    [260]Wang J, Li D Q. The accumulation of plant osmoticum and activated oxygen metabolism under stress. Chinese Bulletin of Botany,2001, (4):459-465.
    [261]Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein indentification technology. Nat Biotechnol,2001,19:242-247.
    [262]Wehmeyer N, Vierling E. The expression of small heat shock protein in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol,2000,122:1099-1108.
    [263]West A L, Stock A M. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci,2001,26(6):369-376.
    [264]Wurgler-Murphy S M, Saim H. Two-component signature transduction in MAPK cascades. Trends Biochem Sci,1997,22:172-176.
    [265]Xi J, Wang X, Li S, et al. Polyethylene glycol fractionation improved detection of low-abundant proteins by two-dimensional electrophoresis analysis of plant proteome. Phytoehem,2006, 67:2341-2348.
    [266]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol,2006,57:781-803.
    [267]Yamaguehi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,1994, 6(2):251-264.
    [268]Yan S P, Zhang Q Y, Tang Z C, et al. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics,2006,5:484-496.
    [269]Yang C, Xing L, Zhai Z. Intermediate filaments in higher plant cells and their assembly in a cell-free system. Protoplasma,1992,171(1):44-54.
    [270]Yang K A, Moon H J, Kim G T, et al. NDP kinase 2 regulates expression of antioxidant genes in Arabidopsis. Proc Jpn Acad Ser B,2003,79(B):86-91.
    [271]Yang L M, Lamppa G K. Rapid purification of a chloroplast nucleoside diphosphate kinase using CoA-affinity chromatography. Biochimica and Biophysica Acta (BBA)/Protein Structure and Molecular Enzymology,1996,1294(2):99-102.
    [272]Yang T, Poovaiah B W. Hydrogen peroxide homeostasis:Activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA,2002,99:4097-4102.
    [273]Yano A, Umeda M, Uchimiya H. Expression of functional proteins of cDNA encoding rice nucleoside diphosphate kinase (NDK) in Escherichia coli and organrelated alteration of NDK activities during rice seed germination(Oryza sativa L.). Plant Mol Biol,1995,27:1053-1058.
    [274]Yeo A R, Flowers S A, Rao G, et al. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ,1999,22:559-565.
    [275]Zaid I, Ebel C, Touzri M, et al. TMKP1 is a novel wheat stress responsive MAP kinase phosphatase localized in the nucleus. Plant Mol Biol,2010,73(3):325-338.
    [276]Zhang J, Kirkham M B. Antioxidant responses to drought in sun flower and sorghum seedlings. New Phytol,1996,132:361-373.
    [277]Zhao D, Chen D, Yang C, et al. Sequence analysis of keratin-like proteins and cloning of intermediate filament-like cDNA from higher plant cells. Science in China, Series C:Life Sciences,2000,43(3):265-271.
    [278]Zhou G, Yang LT, Li YR, Zou CL, Huang LP, Qiu LH, Huang X, Srivastava MK. Proteomic analysis of osmotic stress-responsive proteins in sugarcane leaves. Plant Molecular Biology Reporter,2012,30(2):349-359.
    [279]Zhou Q Y, Xie Z M, Zhang Z G, et al. Cloning, expression and characterization of a nucleoside diphosphate kinase (NDPK) gene from tobacco. Progress in Natural Science,2007, 17(8):906-912.
    [280]Zimmermann S, Baumann A, Jaekel K, et al. UV-responsive genes of Arabidopsis revealed by similarity to the Gcn4-mediated UV response in yeast. J Biol Chem,1999,274:17017-17024.
    [281]Zsoldos F, Vashegi A, Pecsvaradi A, et al. Influence of silicon on aluminium toxicity in common and durum wheats. Agronomie,2003,23:349-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700