草原龙胆抗盐相关基因表达谱分析及BADH基因的遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草原龙胆(Eustoma grandiflorum)属龙胆科草本植物,是流行的鲜切花材料,具有一定的耐盐性,是一种具有重要经济价值的研究材料。
     为了研究草原龙胆的抗盐机理,分离抗盐相关基因,提高其抗盐水平,进行了以下三方面的研究:
     1草原龙胆盐抗性相关基因的筛选
     为了分离草原龙胆盐抗性相关基因,以NaCl 400 mmol/L处理的草原龙胆叶片为tester,清水处理的对照为driver,制作了盐胁迫抑制差减(SSH)文库。经过序列测定以及序列分析,获得了658条非重复序列。通过GO(Gene Ontology)的分子功能、生物学途径及细胞组件三方面的分析,获得了123条序列的注释,占总序列的19%。在生物学途径中分为:有丝分裂检查点、类泛素化蛋白修饰、氧化胁迫反应、转运、电子传递等14类;分子功能中分为过氧化氢酶活性、催化活性、环氧化物酶活性、单氧化酶活性、谷胱甘肽脱氢酶活性等21类;在细胞组件中分为线粒体、叶绿体、过氧化物酶体、乙醛酸循环体、细胞核等10类。
     2草原龙胆盐胁迫基因表达分析
     为了研究草原龙胆在盐胁迫条件下的基因表达谱,以构建的SSH文库制作了基因芯片。提取NaCl 600 mmol/L处理3 h草原龙胆的叶片以及清水处理的对照mRNA,经反转录后分别进行了Cy3和Cy5的标记,进行了芯片杂交。杂交数据利用limma软件包进行了数据标准化,分析获得了差异表达基因。结果显示,显著上调表达的基因为14条,显著下调的基因为16条。其中功能已知的序列为5条,分别为硫氧还蛋白、类泛素化蛋白、苏氨酸转运蛋白、脱氢抗坏血酸还原酶、细胞色素P450。
     3草原龙胆BADH基因的遗传转化
     为了提高草原龙胆的盐抗性,对草原龙胆进行了BADH基因的遗传转化。从拟南芥中克隆了BADH基因的编码区全长,经过测序验证正确后,将其构建到了植物表达载体pH2GW7,0上。表达载体转化农杆菌LBA4404后制备了农杆菌侵染菌株。通过农杆菌介导法转化草原龙胆,获得了1个转化株系。PCR和Southern杂交检测表明,目的基因已经整合到了草原龙胆基因组中。
Eustoma grandiflorum,a popular fresh cut flower,and a Gentianaceae herbaceous plant,is tolerant to salt to some degree.It is an important research material with economic value.
     To analyse its' molecular mechanism of salt tolerance,to isolate its' salt tolerant genes,and to enhance its' salt tolerant ability,three programs were done.
     1.Selection of salt tolerant genes from Eustoma grandiflorum
     To get the salt tolerant genes of it,a suppression subtractive library was constructed, useing the leaves of plants watered with 400 mmol/L NaCl solution as tester and with pure water as driver.After sequencing and blasting,658 non-repeat sequences were gotton.These 658 sequences were classified by gene ontology(GO),and 123 of them got annotation,which are 19%of the total sequences.They were sorted to 14 classes in Biological Process classification,including mitotic spindle checkpoint,response to oxidative stress,protein sumoylation,transportation,electron transportation,etc.;21 classes in Molecular Function classification,including catalase activity,catalytic activity,epoxide hydrolase activity, monooxygenase activity,glutathione dehydrogenase(ascorbate) activity etc.;and 10 classes in Cell Component classification,including mitochondrion,chloroplast,peroxisome,glyoxysome, nucleus etc..
     2.Gene expression analysis of salt stressed Eustoma grandiflorum
     To analyse the gene expression profile of salt stressed Eustoma grandiflorum,microarrays were manufactured with that library.The mRNA from leaves of the plants watered with 600 mmol/L NaCl solution and pure water were first reverse transcripted,then labeled with Cy3 and Cy5 seperatelly,finally hybridized with microarrays.The differently expressed genes were got by limma software package.We got 14 up-regulated genes,16 down-regulated genes,5 of them with known functions,including ubiquitin-like protein SUMO,peptide transport protein, cytochrome P450,thioredoxin,and dehydroascorbate reductase.
     3.Transformation of Eustoma grandiflorum with BADH gene
     To enhance its' salt tolerant ability,Eustoma grandiflorum was transformed with BADH gene.The full length of Arabidopsis Arabidopsis BADH CDS was first cloned and verified by sequencing,then constructed into plant expression vector pH2GW7.The expression vector was transformed into Agrobacterium LBA4404.The resistance plants were got via agrobacterium-mediated transformation,and identified by PCR and southern blotting.The results indicated that the BADH gene has been inserted into the genome of Eustoma grandiflorum.
引文
[1]曾华宗,罗利军.植物抗旱、耐盐基因概述.植物遗传资源学报,2003,4(3):270-273
    [2]余叔文,汤章城.植物生理与分子生物学.北京科学出版社,2002,1(2):752-769
    [3]张新春,庄炳昌,李自超.植物耐盐性研究进展.玉米科学,2002,10(1):50-56
    [4]赵可夫,范海.盐渍植物及其对盐渍生境的适应生理.科学出版社,2005,27
    [5]杨晓慧,蒋卫杰,魏珉,余宏军.植物对盐胁迫的反应及其抗盐机理研究进展.山东农业大学学报(自然科学版),2006,37(02):302-305
    [6]Niu X,R A.Bressan,P M.Hasegawa,J M.Pardo.Ion homeostasis in NaCl stress environments.Plant Physiol.,1995,109:735-742
    [7]Mahajan S,N.Tuteja.Cold,salinity and drought stresses:An overview.Arch Biochem Biophys,2005:444(2):139-158
    [8]ord C W.Accumulation of low molecular weight solutes in water stress tropical legumes.Phytochemistry,1984,22:875-884
    [9]Breesan R A,P M.Hasegawa,J M.Pardo.Plants use calcium to resolve salt stress.Trends Plant Sci.,1998,3:411-412
    [10]沈义国,阎冬青.榆钱菠菜脯氨酸转运蛋白基因的克隆及转基因拟南芥的耐盐性.植物学报,2002,44(8):956-962
    [11]赵自国,路静梅.植物耐盐性研究及发展.长春师范学院学报,2002,21(1):51-53
    [12]马焕成,蒋东明.木本植物抗盐性研究.西南林学院学报,1998,18(1):52-59
    [13]杜金友,陈晓阳,李伟,高琼.干旱胁迫诱导下植物基因的表达与调控.生物技术通报,2004,(2):10-14
    [14]郭子武,李宪利,高东升,段成国.植物低温胁迫响应的生化与分子生物学机制研究进展.中国生态农业学报,2004,12(2):54-57
    [15]Weretilnky E A.,Hanson A D.Molecular cloning of a plant betaine aldehyde dehydrogenase,and enzyme implicated in adaptation to Salinity and drought.Proc Natl Acad Sci.,1990,87:2745-2749
    [16]McCue K F,Hanson.A D.Salt inducible betaine aldehyde dehydrogenase from sugar beet:cDNA cloning and expression.Plant Mol Biol,1992,18:1-11
    [17]肖岗,张耕耘,刘凤华,王军,陈受宜.山菠菜甜菜碱醛脱氢酶基因研究.科学通报,1995,40(8):741-745
    [18]Hibino T.Molecular cloning and functional characterization of two kinds of betaine aldehyde dehydrogenase in betaine accumulation mangrove Avicennia arina(Forsk)Vierb.Plant Mol Bio.,2001,45:353~363
    [19]Liu J,Huang S.Studies on high salt tolerance of transgenic tobacco.Chin J Biotechnol,1995,11(4):275~280
    [20]Johasson I,Karisson M,V K Shukla.Water transport activity of the plasma membrane acquporin RM28A is regulated by phosphorylation.Plant cell,1998,10:451~459
    [21]Quinrtrro J M,Fournier J M,Benlloc H M.Water transport in sunflower root systems effects of ABA,Ca+ status and HgC12.J Exp Bot,1999,339:1607~1612
    [22]Tester M,Davenport R.Na~+ tolerance and Na~+ transport in higher plants.Ann Bot(Lond),2003,91:503~527
    [23]Shi H,M.Ishitani,Kim C,Zhu J K.The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter.Proc Natl Acad Sci USA.,2000,97(12):6896~6901
    [24]Quintero F J,M.Ohta,H Shi,Zhu J K,Pardo J M.Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis.Proc Natl Acad Sci USA,2002,99(13):9061~9066
    [25]Munns R.Genes and salt tolerance:bringing them together.New Phytol.,2005,167(3):645~663
    [26]Blumwald E,Aharon G S,M P.Apse.Sodium transport in plant cells.Biochim Biophys Acta.,2000,1465:140~151
    [27]Lauchli A.,Schubert S.The role of calcium in the regulation of membrane and cellular growth processes under salt stress.NATO ASI Ser,1989,G19:131~137
    [28]Liu J,Zhu J K.A calcium sensor homolog required for plant salt tolerance.Science,1998,280:1943~1945
    [29]Knight H.,A J Trewavas,M R.Knight.Calcium signalling in Arabidopsis thaliana responding to drought and salinity.Plant J.,1997,12:1067~1078
    [30]Foyer C H.,Noctor G.Redox sensing and signaling associated with reactive oxygen in chloroplasts,peroxisomes and mitochondria.Physiol Plant,2003,119:355~364
    [31]方允中,郑荣梁.自由基生物学的理论与应用.北京科学出版社,2002:122~134
    [32]Alscher R G,N.Erturk,L S.Heath.Role of superoxide dismutases(SODs)in controlling oxidative stress in plants.J Exp Bot,2002,53:1331~1341
    [33]Herbette S,C.Lenne,N.Leblanc,J L.Julien,J R.Drevet,P.Roeckel-Drevet.Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities.Eur J Biochem,2002,269:2414~2420
    [34]Gechev T,I Gadjev,Van Breusegem F,Ine D,Dukiandjiev S,Toneva V,Minkov I.Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes.Cell Mol Life Sci.,2002,59(4):708~714
    [35]Alscher R G.,N.Erturk,L S.Heath.Role of superoxide dismutase(SODs)in controlling oxidative stress in plants.J Exp Bot.,2002,53(372):1331~1341
    [36]Mittler R.Oxidative stress,antioxidants and stress tolerance.Trends plant Sci.,2002,7(9):405~410
    [37]Bunkelmannetal J R,R N.Trelease.Ascorbate peroxidase:a prominent membrane protein in oilseed glyoxysomes.Plant Physiol,1996,110:589~598
    [38]Chew O,J Whelan,AH.Millar.Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants.J Biol Chem.,2003,278:46869~46877
    [39]Mittler R,Vanderauwera S,Gollery M,Van Breuseqem F.Reactive oxygen gene network of Plants.Trends Plant Sci.,2004,9(10):490~498
    [40]Finkel T,Holbrook N J.Oxidants,oxidative stress and the biology of ageing.Nature,2000,408:239~247
    [41]Noctor G,Foyer C H.Ascorbate and Glutathione:keeping active oxygen under control.Ann Rev Plant Physiol.Plant Mol Biol.,1998,49:249~279
    [42]Conklin P L,E H Williams,R L Last.Environmental stress ensitivity of an ascorbicddeficient Arabidopsis mutant.Proc.Natl Acad Sci U S A.,1996,93(18):9970~9974
    [43]Serbinova E A.,L Packer.Antioxidant properties of alpha-tocopherol and alpha-tocotrienol.Methods Enzymol.,1994,234:354~366
    [44]Fryer M J.The antioxidant effects of thylakoid vitamin E(atocopherol).Plant Cell Environ.,1992,15:381~392
    [45]Kagan V E,J P Fabisiak,P J Quinn.Coenzyme Q and vitamin E need each other as antioxidants.Protoplasma,2000,214:11~18
    [46]Grace S,B A.Logan.Energy dissipation and radical scavenging by the plant phenylpropanoid pathway.Philos Trans R Soc Lond B Biol Sci.,2000,355:1499~1510
    [47]Tiburcio A F,T Altabilla,A Borrell.Polyamine metabolism and its regulation.Physiol plant,1997,100:664~674
    [48]Smith T A.Polyamines.Annu.Rev.Plant Physiol.,1985,36:117~143
    [49]Shen W,K Nada,S Tachibana.Involvement of polyamines in the chilling tolerance of cucumber cultivars.Plant Physiol.,2000,124(1):431~439
    [50]Xiong L,K S Schumaker,J K Zhu.Cell signaling during cold,drought,and salt stress. Plant Cell,2002,14 Suppl:S165-S183
    [51]Mizoguchi T.Identification of possible MAPK kinase cascade in Arabidopsis the liana.based on pare wise yeast two hybrid analysis and functional complementation test of yeast mutants.FEBS LETT,1998,43(7):56-60
    
    [52]James Z.Zhang,Robert A Creelman,Jian-Kang Zhu.From Laboratory to Field.Using Information from Arabidopsis to Engineer Salt,Cold,and Drought Tolerance in Crops.Plant Physiology,2004,135:615-621
    [53]David Bouchez and Herman H(o|¨)fte.Functional Genomics in Plants.Plant Physiol.998,118:725-732
    [54]Diatchenko L,Lau Y F,Campbell A P.Suppression subtractive hybridization:A method for generating differentially regulated or tissue specific cDNA probes and libraries Proc Natl Acad Sci,1996,93:6025-6030
    [55]赵鑫,詹立平,刘桂丰.杨树基因工程抗性育种研究进展.东北林业大学学报,2004,32(6):18-21
    [56]杨永刚,周根余.洋桔梗叶片体外再生系统的激素调控.上海师范大学学报(自然科学版),2001,30(1):99-100
    [57]Suzuki K,Hattori Y,Uruji M.Complete nucleotide sequence of a plant tumor-inducing Ti plasmic.Gene,2000,242:331
    [58]杜娟,王萍,王罡.植物遗传转化育种技术的研究进展及评价.吉林农业科学,2000,5:23-27
    [59]玉辉,荧光植物.世界农业,1995,04:12-13
    [60]耿立召,刘传亮,李付广.农杆菌介导法与基因枪轰击法结合在植物遗传转化上的应用.西北植物学报,2005,1:205
    [61]McNeil,S D Nuccio,M L Hanson.Betaines and related osmoprotectants.Targets for metabolic engineering of stress resistance.Plant Physiol,1999,120:945-949
    [62]Grument,R.Hanson.Genetics evidence for an osmoregulary function of glycinebetaine accumulation in barley.Aust J Plant Physiol,1986,13:353-364
    [63]Rhodes,D.Hanson.Quaternary ammonium and tertiary sulfonium compounds in higherplants.Annu Rev Plant Physiol Plant Mol Biol,1993,44:357-384
    [64]张士功,高吉寅,宋景芝.甜菜碱对 NaCl 胁迫下小麦细胞保护酶活性的影响.植物学通报,1999,16(4):429-432
    [65]骆爱玲,赵原,李浴春.甜菜碱醛脱氢酶在菠菜叶细胞中的定位.植物生理学报,1995,21:117-122
    [66]衣艳君,刘家尧,骆爱玲,张其德,马德钦,王学臣,梁峥.转 BADH 基因烟草的光系Ⅱ和呼吸酶活性的变化.植物学报,1999,41(9):993-996
    [67]Manetas,Y.Aer-examination of NaCl effects on phosphoenol pyruvate carboylase at high(physiological) enzyme concentrations.Physiol Plant,1990,78:225-229
    [68]许雯,孙梅好,朱亚芳,苏维埃.甘氨酸甜菜碱增强青菜抗盐的作用.植物学报,2001,43(8):809-814
    [69]孙文越,王辉,黄久常.外源甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响.西北植物学报,2001,21(3):487-491
    [70]Bateman,J B Evans,G.F Brown,P R Gsbrie,C Grant.Dielectric properties of the system bovine albumin:urea:betaine in aqueous solution.Phys Med Biol,1992,37:175-182
    [71]Nomura,M.Hibino,T Weigel.Both CMO and BADH enzymes are predominantly localized in the chloroplast stroma of chenopods.Physiol Plant,1998,78:225-229
    [72]Weigle,P Weretilnyk,E A Hanson.Betaine aldehyde oxidation by spinach chloroplasts.Plant Physiol,1986,82:753-759
    [73]Weretilnyk,E A Hanson.Betaine aldehyde dehydrogease polymorphism in spinach:genetic and biochemical characterization.Biochem Genet,1988,26:143-151
    [74]Ishitani,M Nakamura,THan,S Y Takabet.Expression of the betaine aldehyde dehydrogenase gene inbarley in response to osgenase gene in barley in response to osmotic stress and abscisic acid.Plant Mol Biol,1995,27:307-315
    [75]Aralawa.Katayama,M Takabe.Levels of betaine and betaine aldehyde dehydrogenase activity in the green leaves and etiolated leaces and roots of barley.Plant Cell Physiol,1990,31:797-803
    [76]Nakamura,T Yokota,S Muramoto,Y Tsutsui,K Oguri,Y Fukui,K Takabe.Expression of a betaine aldehyde dehydrogenase gene in rice,a glycine betaine non-accumulator,and possible localization of its protein in peroxisomes.Plant J,1997,22:1115-1120
    [77]Gould,S J Keller,G.A Subramani,S Identification of Peroxisomal targeting signals located at the carboxy terminus of four Peroxisomal proteins.J Cell Biol,1988,107:897-905
    [78]Weigle,P Weretilnyk,E A Hanson.Betaine aldehyde oxidation by spinach chlorop lasts.Plant Physiol,1986,82:753-759
    [79]Weretilnyk,E A Hanson.Molecular cloning of a plant betaime aldehyde dehydrogenase,a Enzyme implicated in adaption to salinity and drought.Proc Natl Acad Sci USA, 1990,87:2745-2749
    [80]McCue,K F Hanson.Effects of soil salinity on the expression of betaine aldehyde ehydrogenase in leaves:investigation of hydraulic,ionic and biochemical signals.Aust JPlant Physiol,1992,19:555-564
    [81]沈秀叶,郭香宝.滨海盐碱地日光温室草原龙胆栽培技术.林业实用技术,2005,04:12-15
    [82]薛淮,刘敏,张纯花,潘毅.花卉分子育种研究进展.中国生物工程杂志,2002,22(2):81-84
    [83]Pearce A K,T C Humphrey.Integrating stress-response and cell-cycle checkpoint pathways.Trends Cell Biol.,2001,11:426-433
    [84]Johnson E S.Protein modification by SUMO.Annu.Rev.Biochem.,2004,73:355-382
    [85]Kurepa J,J M.Walker,J Smalle,M M.Gosink,S J.Davis,T L.Durham,D Y Sung,R D Vierstra.The small ubiquitin-like modifier(SUMO) protein modification system in Arabidopsis.Accumulation of SUMO 1 and-2 conjugates is increased by stress.J.Biol.Chem.,2003,278:6862-6872
    [86]Thomas Colby,Anett Mattha,Astrid Boeckelmann,Hans-Peter Stuible.SUMO-Conjugating and SUMO-Deconjugating Enzymes from Arabidopsis.Plant Physiology,2006,142:318-332
    [87]Leung,J,Giraudat.Abscisic acid signal transduction.annu.Rev.Plant Physiol.Plant Mol.Bio.49:199-222
    [88]胡之璧,贺丽虹,赵淑娟.细胞色素 P450研究进展.江苏中医药,2006,20(10):81-84
    [89]Bolwell G P,K Bozak,A Zimmerlin.Plant cytochrome P450.Phytochemistry,1994,37(6):1491-1506
    [90]Narusaka Y,M Narusaka,M Seki,T Umezawa,J Ishida,M Nakajima,A Enju,K Shinozaki.Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis:analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray.Plant Mol.Biol.,2004,55(3):327-342
    [91]Ueda A,W Shi,T Nakamura,T Takabe.Analysis of salt-inducible genes in barley roots by differential display.J.Plant Res.,2002,115(1118):119-130
    [92]Chapple C.Molecular-genetic analysis of plant cytochrome P450-dependent monooxygen-ases.Annu.Rev.Plant Physiol.Plant Mol.Biol.,1998,49:311-343
    [93]Kiyosue T,J K Beetham,F Pinot,BD Hammock,K Yamaguchi-Shinozaki,K Shinozaki.Characterization of an Arabidopsis cDNA for a soluble epoxide hydrolase gene that is inducible by auxin and water stress.Plant J.,1994,6:259-269
    [94]Arner E S,A Holmgren.Physiological functions ofthioredoxin and thioredoxin reductase.Eur.J.Biochem.,2000,267(20):6102-6109
    [95]Dos Santos,C V PRey.Plant thioredoxins are key actors in oxidative stress response.Trends Plant Sci,2006,11(7):329-334
    [96]Collin V,E Issakidis-Bourguet,C Marchand,M Hirasawa,J M.Lancelin,D B Knaff,M Miginiac-Maslow.The Arabidopsis plastidial thioredoxins:new functions and new insights into specificity.J.Biol.Chem.,2003,278:23747-23752
    [97]夏德习,管清杰,金淑梅.拟南芥硫氧还蛋白 M1型基因(AtTRXml)与环境逆境之间的关系.分子植物育种,2007,5:21-26
    [98]Graham N,C H Foyer.Ascorbate and Glutathione:keeping active oxygen under control.Ann.Rev.Plant Physiol.Plant Mol.Biol.,1998,49:249-279
    [99]Conklin P L.Environmental stress ensitivity of an ascorbicd-deficient Arabidopsis mutant.Proc.Natl.Acad.Sci.U S A,1996,93:9970-9974
    [100]Willekens H,Chamnongpol S,Davey M.Catalase is a sink for and is indispensable for stress defence in C3 plants.EMBO J.,1997,16:4806-4816
    [101]Parvathi Rudrabhatla,Mamatha M Reddy,Ram Rajasekharan.Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases.Plant Molecular Biology,2006,60:293-319
    [102]Rudrabhatla P,Rajasekharan R.Mutational analysis of stress-responsive peanut dual specificity kinase:identification oftyrosine residues involved in protein kinase activity.J Biol Chem.2003,278:17328-17335
    [103]Ciechanover A,A L Schwartz.The ubiquitin-proteasome pathway:the complexity and myriad function of protein death.Proc.Natl Acad Sci U S A,1998,95:2727-2730
    [104]Feussner K,Feussner I Leopold I,Wastermack C.Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBCl of tomato-the first stress-induced UBC of higher plants.FEBS Lett.,1997,409(2):211-215
    [105]Lee H,L Xiong,Z Gong,M Ishitani,B Stevenson,J K Zhu.The Arabidopsis HOSl gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning.Genes Dev.,2001, 15(7):912~924
    [106]Mitsuya S,Kawasaki M,Taniguchi M,Miyake H.Light dependency of salinityinduced chloroplast degradation.Plant Prod.Sci,2003,6:219~223
    [107]Hernandez J A,E Olmos,F J Corpas,F Sevilla,L A del Rio.Salt-induced oxidative stress in chloroplasts of peplants.Plant Sci,1995,105:151~167
    [108]Mitsuya S,Takeoka Y,Miyake H.Effects of sodium chloride on foliar ultrastructure of sweet potato(Ipomoea batatas Lam.)plantlets grown under light and dark conditions in vitro.J Plant Physiol,2000,157:661~667
    [109]Badawi G H,Y E.Yamauchi,Shimada R,Sasaki N.Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco(Nicotiana tabacum)chloroplasts.Plant Sci,2004,166:919~928
    [110]Shisong Ma,Qingqiu Gongl and Hans J.Bohnert.Dissecting salt stress pathways Journal of Experimental Botany,2006,57(5):1097-1107
    [111]Teruaki Taji,Motoaki Seki,Masakazu Satou,Tetsuya Sakurai,Masatomo Kobayashi,Kanako Ishiyama,Yoshihiro Narusaka,Mari Narusaka,Jian-Kang Zhu,Kazuo Shinozaki.Comparative Genomics in Salt Tolerance between Arabidopsis and Arabidopsis-Related Halophyte Salt Cress Using Arabidopsis Microarray.Plant Physiology,2004,135:1697-1709
    [112]Joel A Kreps,Yajun Wu,Hur-Song Chang,Tong Zhu,Xun Wang,and Jeff F.Harper.Transcriptome Changes for Arabidopsis in Response to Salt,Osmotic,and Cold Stress.Plant Physiology,December 2002,130:2129-2141
    [113]M Ashiq Rabbani,Kyonoshin Maruyama,Hiroshi Abe,M.Ayub Khan,Koji Katsura,Yusuke Ito,Kyoko Yoshiwara,Motoaki Seki,Kazuo Shinozaki Monitoring Expression Profiles of Rice Genes under Cold,Drought,and High-Salinity Stresses and Abscisic Acid Application Using cDNA Microarray and RNA Gel-Blot Analyses.Plant Physiology,December 2003,133:1755-1767
    [114]Markandeya Gorantla,P R Babu,V B Reddy Lachagari,A M M Reddy,Ramakrishna Wusirika,Jeffrey L Bennetzen,Arjula R.Reddy.Identification of stressresponsive genes in an indica rice(Oryza sativa L.)using ESTs generated from drought-stressed seedlings.Journal of Experimental Botany,2007,58:253-265
    [115]Elizabeth A Bray.Classification of Genes Differentially Expression during Waterdeficit Stress in Arabidopsis thaliana:an Analysis using Microarray and Differential Exptrssion Data.Annals of Botany,2002,89:803-811

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700