多煤层叠置条件下的煤层气成藏作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多煤层条件下的煤层气成藏作用具有其特殊性,含煤地层高频旋回普遍发育,深刻地影响到煤层气成藏效应。为此,本文以黔西织纳煤田比德-三塘盆地为对象,重点探讨了多煤层条件下的煤层气成藏特征与地质机理,取得如下主要创新成果:
     首先,基于单井含煤地层微量元素地球化学分析,结合整个盆地典型钻孔的钻探资料分析,修正了区内晚二叠系含煤地层的层序格架。识别出4个层序界面,划分为5个三级层序。认为层序结构为二元组合,由海侵体系域和高位体系域组成。
     第二,综合运用相关测试手段,首次揭示和表征了煤层孔渗性,吸附性,扩散性等在沉积序列上的变化规律。研究发现:煤的孔径随层位降低而趋于减小,孔容波动性较小,孔比表面积随层位降低而趋于增大,暗示煤吸附能力随层位降低而有所增强,但储气能力变化不大;煤岩渗透率随层位变化呈现为3个突变式半旋回,高渗层位集中于最大海泛面附近及海侵体系域,与三级层序结构具有较高的一致性;煤的吸附常数随层位降低具增高趋势,但兰氏压力在局部煤层出现异常;煤的扩散系数在层序Ⅲ中最高。研究区泥岩、粉砂岩、细砂岩、灰岩都是煤层的良好封盖层,扩散系数远远小于煤层,这是煤层之间地下流体贯通不畅的一个重要原因。
     第三,完善了基于现代无损测试技术的煤储层物性表征方式,揭示了相关参数在沉积序列上的显现特征。研究发现:层位降低,煤层NMR束缚水饱和度增高,NMR-T2c增大,可动流体孔隙度减小,气测渗透率降低,孔渗性总体上逐渐变差。提出了煤岩渗透率的Coates修正模型。借助MIMICS软件,建立了煤岩孔隙度CT表征公式。引入CT数偏差来定量表述煤层的非均质性,发现层序Ⅲ非均质性最强。
     第四,首次耦合分析层序地层结构与煤层含气性和物性之间关系,区分出多层叠置独立和多层统一两类含气系统,提出了层序地层结构下的控气模式。研究认为:三级层序海侵体系域为一个相对封闭层,高位体系域是一个相对开放层,由此构成与三级层序相对应的独立含气系统,导致煤层含气量在层序边界附近发生突变。分析了两类含气系统的空间配置关系,认为水公河、三塘、珠藏等向斜发育4套以上的多层叠置独立含气系统,它们与阿弓、比德等向斜的多层统一含气系统在空间上共存。
     此外,基于煤层重烃浓度异常与钻孔涌水和漏水情况之间的关系,初步认为重烃异常具有指示煤层气成藏效应的作用,重烃异常区存在煤层流体超压的可能性。
Coalbed methane(CBM) reservoiring process had particularity under multi-coalbeds condition, coal-bearing strata developed high frequency caycles, that influenced CBM reservoiring effect.Taking Bide-santang basin of Zhina coal field in western Guizhou province as the study object, CBM reservoiring character and geology mechanism under multi-coalbeds condition were emphatically discussed.The following major innovations were achieved.
     Firstly,based on trace element geochemistry annlysis of coal-bearing strata from single well, combined with other reprensentative boreholes data in study area,sequence stratigraphic framework of late Permian coal-bearing strata was amended.Four sequence boundaries were identified,and five third-order sequences were divided.Sequence structure was a binary combination including the TST and HST.
     Secondly,through synthetically using of relevant test methods, the changing law of porosity-permeability, adsorption character and diffusibility of coal along sedimentary sequence were firstly revealed and characterized.The results showed that: with coal bed horizon falling, pore structure of coal appeared that aperture decreased,pore volume fluctuated with a small range,while pore surface increased,that meaned that adsorption capacity of coal increasing and storage gas capacity changing little with coal bed horizon falling.Coal permeability presented three mutation semi-cycles with coal bed horzion changing. High permeability coal seam concentrated in the vicinity of the MFS and TST,which had higher consistency with third-order sequence. Langmuir volume and pressure of coal appeared heightening with coal bed horizon falling,but Langmuir pressure showed abnormal in some coal bed.Coal of sequenceⅢhad the highest diffusion coefficient. Mudstone,siltstone,fine sandstone and limestone were good capping layer in suday area,with low diffusion coeffient which was far less than coal’. It was an important reason that underground fluid had poor relation between coal bed.
     Thirdly,coal reservoir property characterization based on modern nondestructive testing technique were perfected,and occurrence character of relavant parameters along sedimentary sequence was revealed.The study showed: with coal bed falling,the irreducible water saturation and T2c of NMR increased, while movable fluid porosity and gas permeability decreased,coal porosity-permeability generally become worse.Coates correction model of coal permeability was proposed.Using MIMICS software,the porosity CT formula of coal was established. The CT number deviation was introduced to quantify the heterogeneity of coal,and the heterogeneity of sequenceⅢwas the strongest.
     Fourthly,for the first time,coupling analysis of stratigraphic sequence structure, gas-bearing property and properties, unattached multiple superposed CBM system and unified multiple CBM system were distinguished,and controlling-gas model of stratigraphic sequence structure was proposed. Sudies suggested that: the TST of third -order sequence was a relatively closed layer,and HST was a relatively open layer. Thus unattached CBM system corresponding with third-order sequence was developed, which leaded CBM content had mutation in the interface of sequence. Collocated relation in space of two type CBM system was analyzed. The paper thought that Shuigonghe, Santang and Zhuzang syncline developed more than 4 unattached multiple superposed CBM systems, while Agong and Bide syncline deverloped unified multiple CBM system,they co-existed and configured in space.
     In addition,based on the relation of coal heavy hydrocarbon abnormity,gushing water drilling and leaking water drilling of coal-bearing strata, the paper preliminary thougt that heavy hydrocarbon abnormity had the denotative role of CBM reservoiring effect,and the area of heavy hydrocarbon abnormity had the possibility of overpressure in coal reservoir.
引文
[1] Alpern B, Lemos de Sousa M T, Flores D. A progress report on the alpern coal classification [J]. I International Journal of Coal Geology, 1989, 13(1/4): 1-19.
    [2] Bohacs K, Suter J. Sequence stratigraphic distribution of coaly rocks: fundamental controls and paralic examples [J]. AAPG Bulletin, 1997, 81: 1612-1639.
    [3] Debelak K A, Schrodt J T. Comparison of pore structure in Kentucky coals by mercury penetration and carbon dioxide adsorption[J]. Fuel, 1979, 58(10): 732-736.
    [4] Diessel C F K. Coal-Bearing Desorptional Systems[M].Berlin:Springer Verlag,1992:721.
    [5] Diessel C F K, Boyd R, Wadsvorth J, Leckie D, Chalmers G. On balanced and unbalanced accommodation/ peat accumulation rations in the Cretaceous coals from Gates Formation, Western Canada, and their sequence-stratigraphic significance[J]. International Journal of Coal Geology, 2000, 43: 143-186.
    [6] Diessel C F K. Utility of coal petrology for sequence-stratigraphic analysis[J]. International Journal of Coal Geology,2006,70:3-34.
    [7] Flint S S, Aitken J F, Hampson G. Application of sequence stratigrapy to coal-bearing coastal plain successions:implication for the UK coal measures .In:Whateley, M. K. G & Spears, D. A.(eds), European coal geology. Geological Society, London, Special Publication,1995, 82: 1-16.
    [8] Gregg S J, Sing K S. Adrorption ,Surface ,Area and Porosity(second edition)[M].New York: Academic Press Inc. 1982.
    [9] Hamilton D S, Tadros N Z. Utility of coal seams as genetic stratigraphic sequence boundaries in non-marine basins:an example from the Gunnedah basin,Australia. AAPG Bull.,1994,78:267-286.
    [10] Hampson G. Discrimination of regionally extensive coals in the Upper Carboniferous of the Pennine Basin.UK using high resolution sequence stratigraphic concepts .In: Whateley, M. K. G.& Spears, D. A.(eds),European coal geology. Geology Society, London, Special Publication. 1995, 82:79-97.
    [11] Hampson G Elliott T Flint S S.Critical application of high-resolution sequence stratigraphic concepts to the Rough Rock Group(Upper Carboniferous) of northern England.In:Howell J A,Aitken J F(eds.) High Resolution Sequence Stratigraphy: Innovations and Applications, Special Publication of the Geological Society,London.1996,104:221-246.
    [12] Hao Wang,Longyi Shao,Liming Hao,et al.Sedimentology and sequence stratigraphy of the Lopingian(Late Permian) coal measures in southwestern China[J].International Journal of Coal Geology,2011,85(10:168-183.
    [13] Harpalani S,Schraufnagel R A.Influence of matrix shrinkage and compressibility on gas production from coalbed methan reservoirs.In:SPE 20729,Presented at the SPE Annual Technical Conference and Exhibition,New Orleans,Louisiana,23-26 September,1990
    [14] Hartley A J.1993.A depositional model for the Mid-westphalian A to late Westphalian B Coal Measures of South Wales[J].Journal of the Geological Society,London.1993,(150):1121-1136.
    [15] Holz M Kalkreugth W, Banerjee I. Sequence stratigraphy of paralic coal-bearing strata: an overview.International Journal of Coal Geology,48:147-179.
    [16] Karacan C.O.Heterogeneous sorption and swelling in a confined and stressed coal during CO2 injection[J].Energy&Fuels,2003,17(6):1595-1608.
    [17] Kaiser W R. Abnormal pressure in coal basins of the western United States. 1993 Int. Coalbed Methane Symp. Proc., Tuscaloosa, A L, 1993, 1:173–186.
    [18] Levine J R,Johnson P and Beamish B. High pressure microbalance sorption studies[C], In: US Environmental Protection Agency,ed. Proceedings of the 1993 International Coalbed Methane Symposium.Berminhanm:The Uniersity of Alabama, 1993,187-196.
    [19] McCabe P J, Parrish J T. Controls on the distribution and quality of Cretaceous coals. GSA Special Paper, 267: 1-16.
    [20] Morad S , Ketzer J M , De Ros, L F . Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology,2000, 47:95–120.
    [21] Pashin J C. Regional analysis of the Black Creek-Cobb coalbed-methane target interval, Black Warrior Basin, Alabama. AL Geol. Surv. Bull. 1991,145:1–127.
    [22] Pashin J C, Groshong R H, Jr, Wang S. Thin-skinned Structures Influence Gas Production in Alabama Coalbed Methane Fields. InterGas’95 Proc, Tuscaloosa, AL,1995, 39–52.
    [23] Pashin J C.Stratigraphy and structure of coalbed methane reservoirs in the United States:An overview. International Journal of Coal Geology,1998,35:209-240.
    [24] Pashin J C. Variable gas saturation in coalbed methane reservoirs of the Black Warrior basin:implication for exploration and production[J].International Journal of Coal Geology, 2010, 82(3): 135-146.
    [25] Petersen H I, Bojesen J A, Koefoed Nytoft H P, Suilyk F, Therkelsen J, Voseerau H. Relative sea level changes recorded by paralic liptinite-enriched coal faciescycles,Middle Jurassic Muslingebjerg Formation,Hochstetter Forland, Northeast Greenland. International Journal of Coal Geology, 1998, 36: 1-30.
    [26] Ryer T A.Transgressive-regressive cycles and the occurrence of coal in some Upper Cretaceous strata of U tah, U.S.A. In: Rahmani R A, Flores R M(eds) Sedimentology of coal and coal bearing sequences. International Association of Sedimentologists, Special Publication,7,Blackwell Scientific Publications,Oxford,1998,217-227.
    [27] Seidle J P,Huitt L G.Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases.In:SPE 30010,International Meeting on Petroleum Engineering,Beijing,China,14-17November.1995.
    [28] Suss M P,Drodzewski G,Schafer A.The Ruhr and Aachen Basins-sedimentary environments , sequence stratigraphic model, and synsedimentary tectonics of Variscan Foreland Basins (Namurian B/C to Westfalian C,W.Germany).In:Hills L V, Henderson C M,Bamber E W (Eds), Carbonifersous of the World.Can.Soc.Petrol.Geologists.Mem.2002,19:208-227.
    [29] Taylor K G., Gawthorpe R L., Curtis C.D., Marshall J D ,Awwiller D N. Carbonate cementation in a sequence stratigraphic framework: Upper Cretaceous Sandstones. Book Cliffs, Utah -Colorado. Journal of Sedimentary Research.2000,70: 360–372.
    [30] Today Y,Toyoda S.Applicaition of mercury porosimetry to coal[J].Fuel,1972,51(3):199-201.
    [31] Tucker M E. Carbonate diagenesis and sequence stratigraphy.Sedimentology Review,1993, 1:51–72.
    [32] Yakov V.Apractical approach to obtain primay drainage capillary pressure curves from NMR core and log data[J].Petrophysics,2001,42(4):334-343.
    [33] Yanbin Yao,Dameng Liu,Yao Che et al.Petrophysical characterization of coals by low-fieldnuclear magnetic resonance(NMR)[J].Fuel,2009,20:1-10.
    [34] Yanbin Yao,Dameng Liu,Yao Che et al.Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography[J].Interantional Journal of Coal Geology, 2009,80(2):113-123.
    [35]安震.刘家勘探区煤储层特征及煤层气开发条件研究[J].中国矿业大学学报, 2003, 32(2): 183-185.
    [36]白斌,邹才能,朱如凯,等.利用露头、自然伽马、岩石地球化学和测井地震一体化综合厘定层序界面-以四川盆地上三叠统须家河组为例[J].天然气地球科学, 2010,21(1): 78-85.
    [37]程宝洲,郭敏泰,等.山西晚古生代沉积环境与聚煤规律.太原:山西科技出版社,1992. 276.
    [38]陈代钊.河流沉积占优势地层中高频层序地层-以贵州盘县西部龙潭组为例[J].地质科学, 1997, 32(4): 432-442.
    [39]程远平,俞启香.煤层群煤与瓦斯安全高效共采体系及应用[J].中国矿业大学学报, 2003, 32( 5): 471-473.
    [40]陈兆山.阜新盆地刘家区煤层气储层特征及产出特点[J].辽宁工程技术大学学报,2002, 21( 5): 566-570.
    [41]邓孝.地下水垂直运动的地温场效应与实例剖析[J].地质科学, 1989, 1: 77-81.
    [42]丁述理.纳雍地区龙潭组中段沉积序列模式及沉积体系的初步研究[J].河北煤炭建筑工程学院学报, 1992, 1(3): 22-29.
    [43]丁述理,唐书恒.织纳煤田西部坐拱地区龙潭组C3煤层形成环境和聚煤特征[J].河北煤炭建筑工程学院学报, 1993(3): 5-9.
    [44]丁述理.黔西纳雍煤系地层中潮汐沙脊的发现[J].地层学杂志, 1994,18(3): 217-220.
    [45]付广,苏玉平.控制地层剖面中天然气扩散散失的地质因素[J].天然气地球科学, 2004, 15(1): 58-61.
    [46]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社, 2007: 56-81
    [47]桂宝林,王学仁,王朝栋,等.黔西滇东煤层气地质与勘探[M].昆明:云南科技出版社, 2001: 1-206.
    [48]桂宝林.煤层气勘探目标评价方法-以滇东黔西地区为例[J].天然气工业, 2004, 24( 5), 32-35.
    [49]贵州省煤田地质局.贵州省织纳煤田煤炭资源潜力评价报告[M].内部资料,2009.
    [50]韩德馨,任德贻,王延斌等著.中国煤岩学[M].徐州:中国矿业大学出版社, 1995, 8-587.
    [51]郝黎明.克拉通盆地含煤岩系高分辨率层序地层学研究-以贵州西部上二叠统为例[博士学位论文[D].北京:中国矿业大学北京校区, 2000:1-113.
    [52]何雨丹,毛志强,肖立志,等.核磁共振T2分布评价岩石孔径分布的改进方法[J].地球物理学报,2005,48(2):373-378.
    [53]胡国艺,汪晓波,王义凤,等.中国大中型气田盖层特征[J].天然气地球科学, 2009(2):162-166.
    [54]黄舜华,章钟嵋,何松裕,等.稀土元素在海水中的运移形式与沉淀条件的某些实验研究[J].地球化学, 1981(4): 398-406.
    [55]黄昔容,陶述平.贵州织金地区晚二叠世的沉积环境分析[J].贵州地质, 1999,16(4): 301-306.
    [56]黄作华,郑海清.煤田地球物理勘探[M].北京:煤炭工业出版社, 1992:1-298.
    [57]焦大庆,马永生,邓军,等.黔桂地区二叠纪层序地层格架及古地理演化[J].石油实验地质, 2003,25(1): 18-26.
    [58]金高峰,龚绍礼.层序地层与煤层气关系探讨.中国煤田地质, 2001, 13( 2): 29-42.
    [59]金军,唐显贵.贵州省织金-纳雍煤田构造特征及其成因[J].中国煤炭地质, 2010, 22(3): 8-12.
    [60]琚宜文,姜波,王桂樑.等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社, 2005: 82-115.
    [61]乐光禹,张时俊,杨武年.贵州中西部的构造格局与构造应力场[J].地质科学, 1994,29(1):10-18.
    [62]李思田,李祯,林畅松等.含煤盆地层序地层分析的几个基本问题[J].煤田地质与勘探, 1993, 21( 4): 1-8.
    [63]李祥辉,王成善,陈洪德,等.中国南方二叠纪层序地层时空格架及充填特征[J].沉积学报, 1999,17(4): 522-527.
    [64]李仲东,周文,吴永平.我国煤层气储层异常压力的成因分析[J].矿物岩石, 2004, 24(4): 87-92.
    [65]李正根.水文地质学[M],北京:地质出版社, 1980:1-209.
    [66]李增学,魏久传,魏振岱,等.含煤盆地层序地层学.北京:地质出版社, 2000, 141-149.
    [67]李增学,余继峰,郭建斌,等.陆表海盆地海侵事件成煤作用机制分析[J].沉积学报,2003,21(2):288-295.
    [68]林畅松,刘景彦,刘丽军等.高精度层序地层分析:建立沉积相和储层规模的登时地层格架.现代地质, 2002, 16(3): 276-281.
    [69]林晓英.煤层气藏成藏机理(硕士学位论文)焦作:河南理工大学,2005,77-96.
    [70]刘洪林,王红岩,张建博.层序地层学在煤层气勘探中的应用.天然气工业, 2004, 24(5):30-32.
    [71]刘龙乾.青山矿区煤层气赋存规律及其资源潜力(硕士学位论文).徐州:中国矿业大学, 2007, 1-84.
    [72]刘堂宴,马在田,傅容珊.核磁共振谱的岩石孔喉结构分析[J].地球物理学进展, 2003,18(4): 737-742.
    [73]罗勇,祁琦.煤层群多重开采上保护层防突研究[J].防灾减灾工程学报, 2005, 25(3): 245-247.
    [74]马东民.煤层气吸附解吸机理研究[D].西安:西安科技大学, 2008, 1-93.
    [75]马维俊.贵州纳雍地区含煤地层中一种新型分流河道沉积[J].科学通报, 1989(6):443-445.
    [76]马维俊.贵州纳雍地区含煤地层龙潭组中上段三角洲沉积体系[J].现代地质, 1990,4(1): 23-31.
    [77]梅冥相,高金汉,易定红,等.黔桂地区二叠系层序地层格架及相对海平面变化研究[J].高校地质学报, 2002,8(3): 318-330.
    [78]梅冥相,高金汉,李东海,等.黔桂地区泥盆系层序地层格架及相对海平面变化[J].沉积学报, 2003,21(2): 297-306.
    [79]梅冥相,马永生,邓军,等.滇黔桂盆地及其邻区石炭纪至二叠纪层序地层格架及三级海平面变化的全球对比[J].中国地质, 2005,32(1):13-22.
    [80]梅冥相,马永生,邓军,等.滇黔桂盆地及邻区二叠系乐平统层序地层格架及其古地理背景[J].中国科学D辑, 2007,37(5): 605-616.
    [81]孟庆芬,邓军.贵州南部二叠系层序地层格架[J].现代地质, 2003,17(1):68-73.
    [82]彭海艳,陈洪德,向芳,等.微量元素分析在沉积环境识别中的应用-以鄂尔多斯盆地东部二叠系山西组为例[J].新疆地质, 2006,24(2): 202-205.
    [83]秦勇.中国高煤级煤的显微岩石学特征及结构演化[D].徐州:中国矿业大学, 1993.
    [84]秦勇,徐志伟,张井.高煤级煤孔径结构的自然分类及其应用[J].煤炭学报, 1995,20(3): 266-271.
    [85]秦勇,熊孟辉,易同生等.论多层叠置独立含煤层气系统-以贵州织金-纳雍煤田水公河向斜为例[J].地质论评, 2008, 54(1): 65-69.
    [86]钱凯,马新华,李景明,等.中国天然气资源[M].北京:石油工业出版社, 1999,74-95.
    [87]邵龙义,张鹏飞,刘钦甫,郑茂杰.湘中地区下石炭统测水组沉积层序及幕式聚煤作用.地质论评, 1992, 38( 1): 52-59.
    [88]邵龙义,张鹏飞.论幕式聚煤作用及含煤岩系层序地层学研究.见:顾家裕等主编.层序地层学及其在油气勘探开发中的应用论文集.北京:石油工业出版社, 1997, 124-128.
    [89]邵龙义,张鹏飞.含煤岩系层序地层模式.长春科技大学学报(专辑), 1998, 67-72.
    [90]邵龙义,陈家良,李瑞军等.广西合山晚二叠世碳酸盐岩型煤系层序地层分析.沉积学报, 2003, 21( 1): 168-174.
    [91]桑树勋,秦勇,范炳恒等.层序地层学在陆相盆地煤层气资源评价中的应用研究.煤炭学报, 2002, 27( 2): 113-117.
    [92]桑惕,王立亭,叶念曾.贵州晚二叠世岩相古地理特征[J].贵州地质, 1986, 2(7),105-150.
    [93]沈玉林,郭英海,李壮福.鄂尔多斯盆地东缘本溪组-太原组层序地层特征[J].地球学报,2009,30(2):187-192.
    [94] B.B.Xодот.煤与瓦斯突出[M].宋世钊,王佑安译.北京:中国工业出版社, 1966,27-30.
    [95]孙玉宁,李化敏.煤层群开采矿压显现的时空关系及相互影响研究[J].煤炭工程, 2004, 1: 54-57.
    [96]田景春,陈高武,张翔,等.沉积地球化学在层序地层分析中的应用[J].成都理工大学学报:自然科学版, 2006,33(1): 30-35.
    [97]王定武,王运泉编.煤田地质与勘探方法[M].徐州:中国矿业大学出版社, 1995, 64.
    [98]王恩营.煤层群开采的瓦斯涌出构成多元数据融合分析[J].煤炭工程, 2006, 11: 63-65.
    [99]王鸿祯,史晓颖,王训练,等编.中国层序地层研究[M].广州:广东科技出版社, 2000,189-283.
    [100]王家禄,高建,刘莉.应用CT技术研究岩石孔隙变化特征[J].石油学报, 2009,30(6): 887-893.
    [101]王立亭,罗晋辉,王常徽,王敏.贵州西部晚二叠世近海煤田地质特征及聚煤规律[J].贵州地质, 1993, 10(4): 291-299.
    [102]王益友,郭文莹,张国栋.几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J].同济大学学报, 1979,2:51-59.
    [103]伍永平,解盘石,杨永刚等.大倾角煤层群开采岩移规律数值模拟及复杂性分析[J].采矿与安全工程学报, 2007, 24( 4): 391-394.
    [104]吴因业.煤层-一种陆相盆地中的成因层序边界.石油学报, 1996, 17( 4): 28-35.
    [105] Catuneanu.O.层序地层学原理.吴因业,张志杰,张琴,等译.北京:石油工业出版社,2009:155-223.
    [106]夏春红,程远平,柳继平.利用覆岩移动特性实现煤与瓦斯安全高效共采[J].辽宁工程技术大学学报, 2006, 25( 2): 168-170.
    [107]向英福,陈宗富.贵州晚二叠世沉积相及其演变规律探讨[J].贵州地质, 1989,6(3): 191-202.
    [108]肖建新.贵州西部晚二叠世晚期煤系沉积相和沉积体系[J].1990(4): 1-8.
    [109]肖建新.一种低能障壁-泻湖含煤沉积体系[J].煤田地质与勘探, 1997,25(4): 1-3.
    [110]徐彬彬,何明德编.贵州煤田地质[M].徐州:中国矿业大学出版社, 2002, 79.
    [111] Elliot M A.煤利用化学.徐晓,吴奇虎,鲍汉琛等译.北京:化学工业出版社, 1991.142-152.
    [112]熊孟辉.五轮山矿区煤层气赋存规律及其资源潜力(硕士学位论文).徐州:中国矿业大学, 2006, 1-75.
    [113]杨起,韩德馨编.中国煤田地质学[M].北京:煤炭工业出版社, 1980, 1-218.
    [114]杨瑞东,陈文一.贵州晚二叠世龙潭期富煤区分布及其控制因素[J].煤田地质与勘探, 1990(4):2-5.
    [115]杨武年.黔西六枝-郎岱地区构造格局及其应力场遥感图像解析[J].国土资源遥感, 1996,2(28): 21-27.
    [116]严继民,张启元,高敬综.吸附与凝聚-固体的表面和孔(第二版).北京:科学出版社.1986.
    [117]叶建平,秦勇,林大扬编.中国煤层气资源[M].徐州:中国矿业大学出版社, 1998. 60.
    [118]尹中山.川南煤田古叙矿区煤层气勘探选层的探讨.中国煤炭地质, 2009, 21( 2): 24-27.
    [119]袁亮.复杂特困条件下煤层群瓦斯抽放技术研究[J].煤炭科学技术, 2003, 31( 11): 1-4.
    [120]赵海燕,宫伟力.基于图像分割的煤岩割理CT图像各向异性特征[J].煤田地质与勘探, 2009,27(6): 14-18.
    [121]张贝贝,代世峰,雒洋冰,等.河北开滦矿区晚古生代煤对CH4/CO2二元气体等温解吸特性[J],地质论评, 2010,56(5): 753-759.
    [122]张遂安,叶建平,唐书恒,等.煤对甲烷气体吸附-解吸机理的可逆性实验研究[J].天然气工业, 2005,25(1): 44-46.
    [123]张亚蒲,何应付,杨正明,等.核磁共振技术在煤层气储层评价中的应用[J].石油天然气学报, 2010(2): 277-279.
    [124]张英华,尹根成,黄志安.近距离高瓦斯煤层群倾斜高抽技术的应用研究[J].北京科技大学学报, 2006, 28( 3): 219-222.
    [125]中国煤炭地质总局著.中国聚煤作用系统分析[M].徐州:中国矿业大学出版社, 2001, 1-336.
    [126]中国国家标准局.煤的高压等温吸附试验方法容量法(GB/T 19560-2004)[M].北京:中国标准出版社, 2004. 1-16.
    [127]中华人民共和国国家标准《矿区水文地质工程地质勘探规范》(GB 12719-91).国家技术监督局发布.
    [128]中华人民共和国国家石油天然气行业标准《岩样核磁共振参数实验室测量规范》(SY/T 6490-2000).国家石油和化学工业局.
    [129]中联煤层气有限责任公司企业标准.《煤层气井注入/压降试井技术规范》(QB/MCQ1003-1999).中联煤层气有限责任公司发布.
    [130]周庆华,冯子辉,门广田.松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究[J].中国科学, 2007,37(增刊Ⅱ): 177-188.
    [131]朱炎铭,赵洪,闫庆磊,等.贵州五轮山井田构造演化与煤层气成藏[J].中国煤炭地质, 2008, 20( 10): 38-41.
    [132]朱绍军,孟召平,刘亮亮,等.新郑矿区钻孔地温特征及其受控机制[J].煤田地质与勘探, 2008, 36(2): 47-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700