柴达木盆地新生代地层记录的亚洲内陆干旱气候演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新生代以来地球上发生了一系列的重大地质事件,导致全球气候和环境相应发生了一系列巨大改变:全球变冷,亚洲内陆干旱化,青藏高原隆升、亚洲季风形成演化等。其中,全球干旱化是对人类生存环境影响最为深刻和最为广泛的一个重大科学问题,其发生和发展过程倍受国际社会的关注。揭示亚洲内陆干旱化的起始时间、演化过程和发展规律,并探讨其原因和预测其发展趋势,是目前急需解决的问题。目前解决这个问题的关键在于获取目前严重缺乏的亚洲内陆长序列气候变化记录。柴达木盆地作为高原北部的一个巨型山间盆地,发育了连续、完整的巨厚新生代沉积。本文主要基于在柴达木盆地中央北部马海一带发现的一个约5000米的连续地层剖面和靠盆地中央的一个约700米的鸭湖辅助剖面,展开对上述问题的初步探讨。通过这些剖面的系统采样和色度、氯离子含量、碳酸钙含量、元素分析和总有机碳以及有机生物标志化合物分析,率先获取了亚洲内陆约54Ma以来的几乎完整的新生代气候变化的多指标连续记录,结合谱分析技术和沉积相演化,初步探讨了新生代柴达木盆地的气候演化特征及其与亚洲内陆干旱化、青藏高原隆升、特提斯海退却和全球变冷的可能联系,得出了以下几点初步结论:
     1)柴达木新生代颜色红度记录与全球温度记录有很好的可比性,是灵敏的温度代用指标。
     2)柴达木气候代用指标的变化,大致可以44.6Ma和9.7Ma为界分成三大阶段:
     53.4~44.6Ma期间,剖面的碳酸钙、红度值和氯离子的含量都很高,红度还达到全剖面最大,且各个指标的波动都非常大,有机质含量相对较低。
     44.6~9.7Ma期间研究剖面中的气候变化指标发生了较始新世早期很大的变化:氯离子含量、碳酸钙含量以及红度值都较之前明显降低,而有机质含量比第一段明显增加。同时指标变化存在以33.5Ma、26Ma和14—15Ma为界的几个次级阶段的变化。
     9.7~1.83Ma,剖面的碳酸钙、氯离子含量和Sr/Ba比值总体比第二阶段急剧增加且一直呈增长趋势。红度的值也急剧减小,且一直呈减少趋势。有机质含量达到全剖面最低,且一直很稳定。而且从8Ma开始碳酸钙和氯离子含量增长趋势更加明显,相对应色度值也急剧降低。
     本文将上述指标的变化特征解释为约54~44.6Ma盆地气候特征以干热为主,长期趋势和次级波动均表现为相对暖湿和冷干的水热同向搭配变化:44.6~9.7Ma盆地整体相对湿润并且有显著的长期干湿波动,长期变化和次级波动均表现为相对暖干和冷湿的水热反向搭配变化。其中大致又可以33.5Ma、26Ma和14~15Ma为界分成几个次级阶段,反映出相对长期的干湿波动变化;9.7Ma以来,整体呈现显著的持续、阶段性变干趋势,长期变化和次级波动均表现为相对暖湿和冷干的水热同向搭配变化,显著的次级阶段性干旱事件分别发生在约8Ma、3.6Ma和2.6Ma以来。
     3)频谱分析揭示出柴达木盆地新生代气候变化受天文轨道变化的显著驱动,表现为受到2300kyr,1200kyr,400kyr等轨道偏心率和斜率长周期分量的控制,并且发现这些周期同时在在气候炎热干旱的新生代早期(53.4~44.6Ma)和中新世暖湿期(26~14Ma)分别达到最大化和次最大化,而在相对冷的时段(35~26Ma)渐新世南极大冰盖形成时期和15~14Ma中中新世大降温以来它们共同减小,而且从大约33.5Ma开始,几乎每次变冷事件都与1.2Ma周期的低幅段相对应。
     4)通过对青藏高原隆起过程、特提斯海退却过程的讨论及与全球和周边气候变化记录的对比,探讨了柴达木新生代气候形成的原因,提出了一个概念模型,认为约54~44Ma时,柴达木比现在靠南,可能完全处于当时宽广的亚热带副高的控制之下,盆地中气候非常炎热,其降雨可能主要通过副高北侧的西风从大西洋和北特提斯海带来的少量水汽造成。因而相对高温对应海洋上的相对高蒸发和空气中的高水汽,最后是柴达木盆地的相对湿润,反之,则少。
     从约44Ma开始,柴达木盆地可能在印度板块主碰撞期中开始向北明显移动。与此同时,全球温度从约50Ma开始一直下降,降温将导致赤—极温差变大,西风带将南移。两者可能共同导致柴达木盆地进入西风和亚热带副高的交汇地区及北特提斯海的东部方向。因而西风可将更多特提斯海水汽带到柴达木,且降温将使相对湿度增大,可能导致了此时柴达木盆地的明显湿润化,形成大湖。而天体轨道的周期性变化,则使西风和副高相应呈现周期性的南北移动,导致降温时西风南压,柴达木盆地变湿,升温则相反,副高北移,柴达木变干。
     从约9.7Ma开始,青藏高原开始的大规模隆起和特提斯海的快速消亡,不仅导致了西风地带水汽显著减少,而且西风被迫绕流波动和分叉,形成高原北侧反气旋性质的高压脊和低空西伯利亚高压,向我国境内倾泻西北干冷气流,西北地区急剧干旱化。并且越冷,高压越强,西北越干旱。与此相伴,青藏高原的强烈隆起激发或强化的亚洲季风,其前锋可能到达柴达木,形成温度越高,夏季风越强,带到柴达木的雨水也越多,可能形成了9.7Ma后的冷干和暖湿的季风型水热搭配格局和长期变化趋势。
     记录和模型表明,青藏高原的隆起、特提斯海的退却和全球气候变化均对柴达木盆地新生代气候变化产生了重要影响,但它们在各个时期的重要性不同。
A series of significant geological events occurred in the Cenozoic which have led to enormous changes to the earth climatic and environmental system: the rapid stepwise cooling of the climate, the global aridification, episodic tectonic uplifts of Tibetan Plateau and the formation and evolution of Asian monsoon. Among them, the remarkable expanding of arid areas has attracted worldwide attentions due to its profound effects on human beings and scientifically linking with Tibet uplift, Paratethys Sea retreat and global cooling. To understand when and how the Asian inland aridification evolves is of great significance. However, up to now, the scarcity of high-resolution long continuous terrestrial climate records has hampered our insight into the above questions and land-sea comparison. Here we present firstly continuous Cenozoic climate record from the Qaidam Basin, Qinghai Province, NW China in the interior of Asian inland.
     The Qaidam Basin is a huge intermountain basin in the northern Tibetan Plateau and receives ultra-thick (up to over 10,000 m) and almost continuous Cenozoic sediments in response to the global climate change and uplift of the Tibetan Plateau. A~5000-meter-long continuous sediment outcrop at Lulehe from the north margin of the Qaidam Basin and a 700-meter-long supplementary outcrop at Yahu from the near center of the basin comprise almost a complete Cenozoic stratigraphic sequence (paleomagnetically dated between 53.4 Ma and 1.83 Ma), thus providing a unique opportunity to study the above questions. We carried out detailed analyses of color, carbonate, chloric ion and TOC contents, biomarker and trace elements from these sediments. Through these multiple climatic proxy records and combining a framework research into the sedimentary facies and spectrum analysis, we obtain the following conclusions:
     1) The redness of color records of the Cenozoic Qaidam stratigraphy can be correlatedwell to the global temperature record, implying the redness can be served as asensitive alternative temperature proxy in Asian inland.
     2) The characteristics of the Qaidam multiple climatic proxy records and thus the evolution of the Qaidam Cenozoic climate can roughly be divide as three large stages by two boundary ages at ca. 44.6Ma and 9.7Ma:
     During 53.4~44.6Ma: the records show a low TOC content, high contents of CaCO_3 and Cl~- and maximum redness value with large fluctuations.
     During 44.6~9.7Ma: all the proxy records show an overall pattern of substantially lower values of redness and contents of CaCO_3 and Cl~- and higher TOC content, punctuated by some long changes of higher or lower values clearly subdivided as four sub-stages with boundary ages at 33.5Ma, 26Ma and 14~15Ma.
     During 9.7~1.81 Ma: The records display a distinct fast persistent stepwise increasing of CaCO_3 and Cl~- contents and Sr/Ba ,and B/Ga ratios and decreasing of redness. The TOC content keeps low and reaches its minimum value.
     We interpret the above variations of our records as:
     i) a dry and hot climate dominated the Qaidam Basin during 54-44.6Ma, with a relative homodromous match of temperature and precipitation, i.e. warm vs. humid and cold vs. dry; ii) a relatively humid climate with large long fluctuations prevailed the period of 44.6-9.7Ma. The match of temperature and precipitation is just reversed, i.e., relative warm vs. dry and cold vs. humid; iii) a remarkably persistent and stepwise dry trends or drying of the Qaidam basin began ca. 9.7Ma, with a relative homodromous match of temperature and precipitation again. Further drying events occurred at ca. 8Ma、3.6Ma and 2.6Ma.
     3) Spectrum analysis of the records shows that Cenozoic climate in Qaidam basin was clearly forced by orbital parameters and modulated by long-term cycles such as 2.3Ma, 1.2Ma and 0.4Ma. Moreover, the amplitude of these periods achieved their maxima during the early Cenozoic (53.4~44.6Ma) and warm Miocene (26~14Ma) and decreased during the cold Oligocene (35~26Ma) and cold middle to late Miocene and thereafter (14~1.8Ma). Detailed comparison between redness record and filtering results also indicates that nearly every cold event coincides with minimum amplitude of 1.2Ma long-term obliquity cycles since 33.5Ma.
     4) Based on detailed discussion on processes of Tibetan Plateau uplift and Paratethys retreat as well as comparison of our records with those worldwide, we proposed a simple conceptual model to illustrate our observations and interpretations above:
     A. The Qaidan Basin might be completely controlled by Subtropic High during 54~44Ma, leading to a dry and hot climate. The Westerlies carried limited vapor from Atlantic and Paratethys Sea to the Qaidam Basin and hence gave rise to a positive correlation between temperature and precipitation, i.e., hotter - more vapor - more precipitation in Qaidam Basin.
     B. The obvious northward move of Qaidam Basin since 44Ma driven by the collision of India with Asia and long global cooling since ca. 50Ma that will cause a southward move of westerlies due to enhanced equator - polar temperature gradient might jointly let the Qaidam Basin at the transitional area of the westerlies and Subtropic High. Consequently, cooling from periodic variations of Earth's orbital parameters will increase relative humidity or reduce evaporation in one side and will force a southward move of the westerlies that carry more vapors from Paratethys Sea to the Qaidam Basin in other side, both will give rise to a humidification of the Qaidam Basin. In a reverse, periodic warming will drive northward move of the Subtropic High and retreat of the westerlies and increase evaporation, thus drying of Qaidam. This mechanism may be responsible for our observation of overall relative humid climate with a relative warm-dry and cold-wet match during this period.
     C. Since 9.7Ma, the dramatic uplift of Tibetan Plateau and rapid retreat of the Paratethys Sea has not only contributed to the tremendous decrease of vapors in westerlies over areas, but also forced the prevailing west-to-east flow of the westerlies to flow around the Plateau and formed Siberian High, leading to a rapid long aridification of Northwest China. This drying trend may be enhanced by a later rapid global cooling. At the same time, the enhanced Asian summer monsoon by the rapid uplift of Tibetan Plateau might also account for the increase of precipitation during the warm period. Hence, high temperature may also correspond to high precipitation during this period.
     In one word, both our preliminary records and supposed model indicate that the Tibetan Plateau uplift, Paratethys Sea retreat and global climate changes all have exerted strong impacts on Qaidam Cenozoic climate evolution with their different contributions at different stages, and a positive superimposing of all these three factors may have finally caused the aridification of Qaidam and Asian inland which resembles its present configuration since ca. 9.7 Ma.
引文
Abels H A,Hilgen F J,Krijgsman W,Kruk R W,Raffi I,Turco E,Zachariasse W J.Long-period orbital control on middle Miocene global cooling:Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta.Paleoceanography,2005,20(4):PA4012-doi:10.1029/2004PA001129.
    Akg(u|¨)n F,Kayseri M S,Akkiraz M S.Palaeoclimatic evolution and vegetational changes during the Late Oligocene-Miocene period in Western and Central Anatolia(Turkey).Palaeogeogr.,Palaeoclimat.,Palaeoecol.,2007,253:56-90.
    Allegre C J and thirty-four others.Structure and evolution of the Himalaya-Tibet orogenic belt.Nature,1984,307:17-22.
    An Z S,Huang Y S,Liu W G et al.Multiple expansions of C4 plant biomass in East Asia since 7Ma coupled with strengthened monsoon circulation.Geology,2005,33(9):705-708.
    An Z S,Kutzbach J E,Prell S C.Evolution of Asian monsoons and phrased uplift of the Himalaya-Tibetan plateau since Late Miocene times.Nature,2001,411:62-66.
    Andersen N,Paul H A,Bernasconi S M et al.Large and rapid climate variability during the Messinian salinity crisis:Evidence from deuterium concentrations of individual biomarkers[J].Geology,2001,29(9):799-802.
    Anderson R Y.Orbital forcing of evaporite sedimentation In:Milankovitch and Climate(Ed by Berger et al),part1,1984,147-162.
    Arthur M A,Dean W E,Bottjer D et al.Rhythmic bedding in Mesozoic-Cenozoic pelagic carbonate sequence:the primary and diagenetic origin of Milankovitch-like cycles In:Milankovitch and Climate(Ed by Berger et al),part1,1984,191-222.
    Avouac J P,Tapponnier P.Kinematic model of active deformation in central Asia.Geophysical Research Letters,1993,20:895-898.
    Balsam W L,Deaton B C,Damuth J E.Evaluating optical lightness as a proxy for carbonate content in marine sediment cores[J].Marine Geology,1999(161):141-153.
    Beaufort L.Climatic importance of the modulation of the 100 kyr cycle inferred from 16 m.y.long Miocene records.Paleoceanography,1994,9:821-834.
    Beaumont C,Jamieson R A,Nguyen M H,et al.Crustal channel flows:1.Numerical models with applications to the tectonics of the Himalayan Tibetan orogen[J].Geophysical Research,2004,109:B06406,doi:10:1029/2003JB002809.
    Berger A,Imbrie J,Hays J D.Milankovitch and climate.Reidel Publishing,1984.
    Berger A,Li X S,Loutre M F.Modelling Northern Hemisphere Ice Volume Over The Last 3 Ma.Ouat.Sci.Rev.1999,18:1-11.
    Berger A,Loutre M F,Laskar J.Stability Of The Astronomical Frequencies Over The Earth's History For Paleoclimatic Studies.Science 255,1992,56-66.
    Berger A,Loutre M-F.Insolation Values For The Climate Of The Last 10 Million Years.Quat.Sci.Rev.1991,10:297-317.
    Berger A.Support for the astronomical theory of climatic change.Nature,1977,269:44-45.
    Berger W H,Jansen E.Mid-Pleistocene climate shift-The Nansen connection.Geophys Monography,1994,84:295-311.
    Billups K,Chaneell J E T,Zachos J.Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic.Paleoceanography,2002,17(1):4.1-4.10.
    Blisniuk P M,Hacker B R,Glodny J,et al.Normal faulting in central Tibet since at least 13.5 Myr ago.Nature,2001, 412:628-631.
    Bourbonniere RA,Meyers P A.Anthropogenic influences on hydrocarbon contents of sediments deposited in eastern Lake Ontario since 1800[J].Environmental Geology,1996,28:22-28.
    Brookfield M E.The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision:Rivers draining southward.Geomorphology,1998,22:285-312.
    Brooks J D,Gould K,Smith J.Isoprenoid hydrocarbons in coal and petroleum.Nature,1969,222:257-259.
    Burton K W,Ling H-F,O'Nions R K.Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic.Nature,1997,386(6623):382-385.
    Cande S C,Kent D V,Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic.Journal of Geophysical Research,1995,100(B4):6093-6095.
    Cane M A & Molnar P.Closing of the Indonesian seaway as a presursor to east African aridifieation around 3-4million years ago.Nature,2001,411:157-162.
    Cerling T E,Harris J M,Mac Fadden B J,et al.Global vegetation change through the Miocene/Pliocene boundary.Nature,1997,389:153-158.
    Chung Sun-Lin,Lo Ching-Hua,Lee Tung-yi,et al.Diachronous uplift of the Tibetan Plateau starting 40 Myr ago.Nature,1998,394:769-773.
    Clark M K and Royden L H.Topographic ooze:Building the eastern margin of Tibet by lower crustal flow.Geology,2000,28:703-706.
    Clark P U,Alley R B,Pollard D.Northern Hemisphere ice-sheet influences on global climate change.Science,1999,286:1104-1111.
    Clemens S C,Tiedemann R.Eccentricity forcing of Pliocene-Early Pleistocene climate revealed in a marine oxygen-isotope record.Nature,1997,385,801-804.
    Clift P D.Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean,Earth Planet.Sci.Lett.,2006,241:571-580.
    Coates A G,Jackson J B C,Collins L S,et al.Closure of the Isthmus of Panama:the near-shore marine record of Costa Rica and western Panama.Geol Soc Am Bull,1992,104(7):814-828.
    Coleman M,Hodges K.Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension.Nature,1995,374:49-52.
    Collins L S,Coates A G,Berggren W A,et al.The late Miocene Panama isthmian strait.Geology,1996,24(8):687-690.
    Collister J M,Lichtfouse E,Hieshima G,et al.Partial resolution of sources of n-alkanes in the saline portion of the Parechute Creek Member,Green River Formation(Piceance Creen Basin,Colorado).Org.Geochem,1994,21(6/7):645-659.
    Coxall H K,Wilson P A,Palike H et al.Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean.Nature,2005,433:53-57.
    Cranwell P A.Chain-length distribution of n-alkanes from lake sediments in relation to postglacial environmental change[J].Freshwater Biol,1973,3:259-265.
    Cupta A K,Singh R K,Joseph S and Thomas E.Indian Ocean high-productivity event(10-8 Ma):Linked to global cooling or to the initiation of the Indian monsoons? Geology,2004,32:753-756.
    Currie B S,Rowley D B,Tabor N J.Middle Miocene paleoaltimetry of southern Tibet:Implications for the role of mantle thickening and delamination in the Himalayan orogen[J].Geology,2005,33:181-184.
    Dai S,Fang X M,Song C H,et al.Early tectonic uplift of tbe northern Tibetan Plateau.Chin.Sci.Bull.,2005,51(15):1642-1652.
    Dansgaard W.Stable isotopes in precipitation.Tellus,1964,16:436-468.
    Dansgaard W,Johnson S J,Clausen H B et al.Evidence for general instability of past climate from a 250-kyr ice-core record.Nature,1993,364:218-220.
    de Boer P L and Wonders A A H.Astronomically induced rhythmic bedding in Cretaceous pelagic sediments near Moria(Italy) In Milankovitch and Climate(Ed by Berger et al),part1,1984,177-190.
    de Menocal P B.Plio-Pleistocene African climate.Science,1995,270:53-59.
    DeCelles P G,Quade J,Kapp P,et at.High and dry in central Tibet during the Late Oligocene.Earth Planet.Sci.Lett.,200,253:389-401.
    Deconto R M,Pollard D.Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO[J].Nature,2003,421:245-249.
    Dembicki and Meinschein,Possible ecological and environmental significance of the predominance of even-carbon number C20-C30 n-alkanes.Geochim Cosmochim Acta,1976,40:203-208.
    DeMenocal P B,Rind D.Sensitivity of Asian and African climate to variation in seasonal insolation,glacial ice cover,sea surface temperature,and Asian orography.J.Geol.Res.,1993,98:7265-7287.
    Dercourt J,Ricou L E and Vrielinck B.Atlas Tethys Palaeoenvironmental Maps 1-307.Gauthier-Villars,Paris,1993..
    Dettman D L,Fang X M,Garzione C N.Uplift driven climate change at 12 Ma:A long d18O record from the NE margin of the Tibetan Plateau[J].Earth Planet.Sci.Lett.,2003,214:267-277.
    Dewey J,Cande F S and Pitman W C.Tectonic evolution of the India/Eurasin collision zone.Eclogae Geol.Helv,1989,82:717-734.
    Didyk B M,Simoneit B R T,Brassell S C,et al,Organic geochemical indicators of paleoenvironmental condition of sedimentation.Nature,1978,272:216-222.
    Ding Z L,Sun J M,Yang S L,Liu T S.Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin,source provenance and paleoclimate change.Geochim.Cosmochim.Acta,2001,65:901-913.
    Ding Z L,Yu Z W,Rutter N W.Towards And Orbital Ttme Scale For Chinese Loess Deposit.Quaternary Science Reviews,1994,13:39-70.
    Ding Z L,Liu T S,Rutter N W,Yu Z W,Guo Z T and Zhu R X,.Ice-volume forcing of East-Asian winter monsoon variations in thep 800,000 Years.Quat.Res.,1995,44:149-159.
    Ding Z L,Xiong X F,Sun J M,Yang S L,Gu Z Y,Liu T S.Pedostraigraphy and paleomagnetism of a 7.0 Ma eolian loess-red clay sequence at Lingtai,Loess Plateau,north-central China and the implications for paleomosoon evolution.Paleogeography,paleoclimatoIogy,palaeoeclogy,1999,152:49-66.
    Ding Z L,Derbyshire E,Yang S L,Sun J M and Liu T S.Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implicafion for monsoon evolution.Earth Planet.Sci.Lett.,2005,237:45-55.
    Duan Y,Ma L H.Lipid geochemistry in a sediment core from Ruoergai Marsh deposit(Eastern Qinghai-Tibet plateau,China).Organic Geochemistry,2001,32:1429-1442.
    Dupont-Niver G,Krijgsman W,Langereis C G et al.Tibetan plateau acidification linked to global Cooling at the Eocene-Oligocene transition[J].Nature,2007,445:635-638.
    Duxbury A C,Duxbury A D,Sverdrup K A.An Introduction to the World's Ocean.The MacGrawhill Com.,2000.528pp.
    Eldrett J S,Harding I C,Wilson P A,Butler E,Roberts A P.Continental ice in Greenland during the Eocene and Oligocene.Nature,2007,446:176-179.
    Elkibbi M,Rial J A.An outsider's review of the astronomical theory of the climate:is the eccentricity-driven insolation the main driver of the ice ages? Earth-Sci.Rev.,2001,56:161-177.
    Emiliani C.Pleistocene temperatures.[J]Geol.,1955,63:538-578.
    Estep M F,Hmring T C.Bioeochemistry of the stable hydrogen isotopes.Geochim Cosmochim.Acta,1980,44: 1197-1206.
    Fang X M, et al. Flexual subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of linxia Basin,China, Earth Planet. Sci. Lett, 2003,210:545-560.
    Fang X M, Ono Y, Fukusawa H, et al. Asian summer monsoon instability during the past 60000 years: magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau. Earth Planet. Sci. Lett, 1999,168: 219-232.
    Fang X M, Garzione C, Van der Voo R, Li J J and Fan M J. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet. Sci. Lett., 2003,210(3-4): 545-560.
    Fang X M, Yan M D, Van der Voo R et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. Geol. Soc. Am. Bull, 2005,117:1208-1225.
    Fang X M, Zhang W L, Meng Q Q et al. High resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Plant. Sci. Lett., 2007,258:293-306.
    Felzer B, Oglesby R, Hyman D. Sensitivity of the global climate system to changes in northern hemisphere ice sheet size using the NCAR CCM1. Proceedings of the Sixth Symposium on Global Change Studies, January 15-20, Dallas, TX. American Meteorological Society, 1995, pp. 202-206.
    Fennessy, M J, Kinter J L, Kirtman B, Marx L, Nigam Broccoli A J, Manabe S. The effects of orography on middle latitude northern hemisphere dry climates. J. Clim.,1992,5:1181-1201.
    Fisher A G and Schwarzacher W. Cretaceous bedding rhythms under orbital control In: Milankovitch and Climate (Ed by Berger et al), partl, 1984,163-175.
    Flohn H. Contribution to a meteoralogy of the Tibetan Highlands. Colorado State University, Ft Collins. Colo Atmosph Sci Paper Nr, 1968, No. 190.
    Flower B P, Kennett J P. Middle Miocene paleoceanography in the Southwest Pacific: relations with East Antarctic Ice Sheet development. Paleoceanography, 1995,10(6): 1095-1112.
    Garzione C N, Quade J, D, Celles P G, et al. Predicting paleo-elevation of Tibet and the Himalaya from d18O vs altitude gradients inmeteoric water across the Nepal Himalaya[J]. Earth Planet. Sci. Lett, 2000, 183: 215-229.
    
    Gradstein F, Ogg J, Smith A. A geologic time scale 2004. Cambridge University Press, London, 2005.
    Guo Z T, Ruddiman W, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J Yuan B Y, Liu T S. Onset of Asian desertifications by 22Myr ago inferred from loess deposits in China. Nature, 2002,416:159-163.
    Hahn D G and Manabe S. The role of mountains in the south Asian monsoon circulation. Jourmal of the Atmospheric Sciences, 1975,32:151-54.
    
    Hakanson L, Jansson M. Principles of lake sedimentology. Berlin: Springer -Verlag. 1983,5-174.
    Harrison T M, Copeland P, Kidd W S, Yin An. Raising Tibet. Science, 1992,255:1663-1670.
    Hart M B. Orbitally induced cycles in the Chalk facies of the United Kingdom. Cretaceous Research, 1987, 8: 335-348.
    Haug G H, Tiedemann R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 1998, 393(6686): 673-676.
    Hays J D, Imbrie J, Shackleton N J. Variations of the earth's orbit: Pacemaker of the ice age. Science, 1976, 194: 1121-1132.
    Heinrich H. Origin and Consequences of Cyclic ice Rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 1988,29:142-152.
    Helland P E, Holmes M A. Surface textural analysis of quartz sand grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11 Ma.Palaeogeogr.Palaeoclimatol.Palaeoecol.,1997,135:109-121.
    Herbert T D,Schuffert J D,Andreasen D,Heusser L,Lyle M,Mix A,Ravelo A C,Stott L D,Herguera J C.Collapse of the California Current during glacial maxima linked to climate change on land.Science,2001,293:71-76.
    Heslop D,Langereis C G,Dekkers M J.A new astronomical timescale for the loess deposits of northern China.Earth.Planet.Sci.Lett.,2000,184:125-139.
    Hilgen F J.Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale.Earth Planet.Sci.Lett.,1991,32:427-476.
    Hodell D A,Charles C D,Ninnemann U S.Comparison of interglacial stages in the South Atlantic sector of the southern ocean for the past 450kyr:Implications for marine isotope stage MIS 11.Global and Planetary Change,2000,24:7-26.
    Hodges KV.Tectonics of the Himalaya and southern Tibet of from two perspectives.Geol.Soc.Am.Bull.,2000,112:324-350.
    Holbourn A,Kuhnt W,Schulz M.Orbital paced climate variability during the Middle Miocene:High resolution benthic foraminiferal stableisotopic records from the tropical western Pacific.In:Clift P,Wang P,Kuhnt W et al.,eds.Continent-ocean interactions within East Asian marginal seas.Geophysical Monograph,2004,149:321-337.
    Holbourn A,Kuhnt W,Schulz M.Orbitally-paced climate evolution during the middle Miocene "Monterey"carbon-isotope excursion.Earth Planet.Sci.Lett.,2007,261:534-550.
    Hooghiemstra H,Melice J L,BergerA et al.Frequency spectra and paleoclimatic variability of the high resolution 30-145ka Funza Ipollen record eastern Cordillera Colombia.Quat.Sci.Rev.,1993,12:141-156.
    Hu J,Peng P,Jia G,et al.Biological markers and their carbon isotopes as an approach to the paleoenvironmental recon-struction of Nansha area,South China Sea,during the last 30ka[J].Organic Geochemistry,2002,33:1197-1204.
    Huang Y,Lockheart M J,Collister J W,et al.Molecular and isotopic biogeochemistry of the Miocene Clarkia Formation:Hydrocarbons and alcohols[J].Organic Geochemistry,1995,23:785-801.
    Huang Y,Street Perrott F A,Metcalfe S E et al.Climate change as the dominant control on glacial-interglacial variations in C3 and CA plant abundance.Science,2001,293:1647-1651.
    Huybers P."On the origins of the ice ages:Insolation forcing,age models,and nonlinear climate change." PhD thesis,Massachusetts Institute of Technology,Cambridge,2004,245 pp.
    Huybers P,Curry W.Links between annual,Milankovitch and continuum temperature variability.Nature,2006,441,329-332,doi:10.1038/nature04745.
    Imbrie J,Imbrie K P.Ice ages:Solving the mystery.Harvard University Press,1979.
    Imbrie J.Astronomical theory of the Pleistocene ice ages:A brief historical review.ICARUS,1982,50:408-422.
    Imbrie J,Hays J D,Martinson D G,et al.The orbital theory of Pleistocene climate:Support from a revised chronology of the marine d18 O record.In:Berger A,Imbrie J,Hays J D,et al,eds.Milankovitch and climate.Patt1.Reidel Publishing CO.Dordrecht,1984:269 -305.
    Imbrie J,Boyle E,Clemens S,et al.On the structure and origin of major glaciation cycles.1.Linear responses to Milankovitch forcing.Paleoceanography,1992,7:701 -738.
    Imbrie J,Berger A,Boyle E,et al.On the structure and origin of major glaciation cycles.2.The 100 000-year cycle.Paleoceanography,1993,8:699-735.
    Jansen E,Siohol M J.Reconstruction of glaciation over the past 6 Ma from iceborn deposits in the Norwegian Sea[J].Nature,1991,349:600-603.
    Jansen J H F, Kuijpers A, Troelstra S R. A Mid-Brunches Climatic Event:Long-Term Changes in Global Atmosphere and Ocean Circulation. Science, 1986,262: 619-622.
    Ji J F, Shen J, Balsam W, Chen J, Liu L W, Liu X Q. Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth Planet. Sci. Lett., 2005,233: 61-70.
    Jian Z, Zhao Q, Cheng X, et al. Pliocene-Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea. Palaeogeography, Palaeocimatology, Palaeoecology, 2003,193:425-442.
    Jolivet M et al. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: fission tract constraints. Tectonophysics, 2001,343:111-134.
    Kashiwaya K, Ochiai S et al. Orbital related long-term climate cycles revealed in a 12-myr continental record from lake Baikal. Nature, 2001,410:71-73.
    Kelts K. Enviroments or deposition of lacustrine petroleum source rocks: an introduction. Lacustrine Petroleum Source Rocks, 1984,40:3-26.
    Kennett J P, Shackleton N J. Oxygen isotopic evidence for the development of the psychrosphere 38Ma ago[J]. Science, 1976,260:513-515.
    Krijgsman W, Hilgen F J, Raffi I, et al. Chronology ,causes and progression of the Messinian salinity crisis. Nature, 1999,400:652-655.
    Kroon D, Steens T N F, Troelstra S R. Onset of monsoonal related upwelling in the western Arabian Sea. Proc. ODP, Sci. Results, 1991,17: 257-263.
    Kutzbach J E, Guetter P J, Ruddiman W F, Prell W L. Sensitivity of climate to late Cenozoic uplift in Southern Asia and the American West: Numerical experiments. Journal of Geophysical Research, 1989, 94(D15): 18393-18407.
    Kuyper S M, Pancost R D, Sinninghe Damste J S. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times[J]. Nature, 1999,399:342-345.
    Larson H C, Saunders A D, Clift P D, et al. Seven millionyears of glaciation in Greenland[J ]. Science, 1994, 264 : 952-955.
    Laskar J, Robutel P, Joutel F, et al. A long term numerical solution for the insolation quantities of the earth. Astron. Astrophys., 2004,428: 261 -285.
    Lawver L A, Gahagan L M. Evolution of Cenozoic seaways in the circum Antarctic region [J]. Palaeogeography, Palaeoclimatolbgy, Palaeoecology, 2003,198:11-37.
    Li J J. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change. Lanzhou, Lanzhou University Press, 1995, 38-39.
    Li J J, Fang X M, Rob V D V, et al. Magnetostratigraphy dating of river terraces : rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary. Journal of Geophysical Research, 1997,102 (B5) : 10121-10132.
    Li J J, Fang X M, van der Voo R et al. Late Cenozoic magnetostratigraphy (11-0 Ma) of the Dongshanding and Wangjiashan sections in the Longzhong Basin, western China. Geologie & Mijnbouw, 1997, 76: 121-134.
    Lichtfouse E, Collister J W. Tracing biogenic links of natural organic substances at the molecular level with stable carbon isotopes: n-alkanes and n-alkanoic acids from sediments[J]. Tetra hed-ron Lett, 1992, 33: 8093-8094.
    Lichtfouse E, Derenne S, Mariotti A, et al. Possible algal origin of long chain odd n-alkanes in immature Sediments as revealed by distributions and carbon isotope ratios. Organic Geochemistry, 1994,22:1023-1027.
    Lisiecki L E, Iisiecki P A. Application of dynamic programming to the correlation of paleoclimate records. Paleoceanography, 2002,17:1049, doi: 10.1029/2001PA000733.
    Liu T S.Geological environments in China and Global change.Proceeding of 30th International Geology Congress,Vol.Ⅰ,1997,5-26.
    Liu W G,Huang Y S.Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau.Organic Ge- ochemistry,2005,36:851-860.
    Liu,X.and Yin,Z.Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Pl- ateau.Palaeogeogr.,Palaeoclimat.,Palaeoecol.,2002,183:223-245.
    Livermore R,Nankivell A,Eagles G,et al.Paleogene opening of Drake Passage.Earth Planet.Sci.Lett.,2005,236(1-2):459-470.
    Lourens L J,Hilgen F J,Shackleton N J,et al.The Neogene period.In:Gradstein F,Ogg J,Smith A,eds.A geologic time scale 2004.Cambridge University Press,London,2005.
    Lourens L J,Hilgen F J.Long-periodic variations in the Earth's obliquity and their relation to third-order eustatic cycles and late Neogene glaciations.Quat.Int.,1997,40:43-52.
    Lourens L J,Wehausen R,Brumsack H J.Geological constraints on tidal dissipation and dynamical ellipticity of the earth over the past three million years.Nature,2001,409:1029-1033.
    Lu H Y,Liu X D,Zhang F Q,An Z S,Dodson J.Astronomical calibration of loess-paleosol deposits at Luochuan,central Chinese Loess Plateau.Palaeogeogr.,Palaeoclimatol.,Palaeoecol.,1999,154:237-246.
    Ma Y Z,Fang X M,Li J J et al.The vegetation and climate change during Neocene and Early Quaternary in Jiuxi Basin,China.Science in China(Series D ),2005,48(5 ):676-688.
    Manabe S,Terpstra T B.The effects of mountains on the general circulation of the atmos- phere as identified by numerical experiments.J.Atmos.Sci.,1974,31:3-42.
    Manabe S,Broccoli A J.Mountains and arid climates of middle latitudes.Science,1990,247:192-194.
    Martin J H.Glacial-interglacial CO2 change:The iron hypothesis.Paleoceanography,1990,5:1-13.
    Matte P,Mattauer M,Olivet J M and Griot D A.Continental subduction beneath Tibet and the Himalaya orogeny:A review.Terra Nova,1997,9:264-270.
    Matthews R K,Frohlich C.Maximum flooding surfaces and sequence boundaries:comparisons between observations and orbital forcing in the Cretaceaous and Jurassic(65-190 Ma).GeoArabia.Middle East Petroleum Gcoscientists,2002,7:503-538.
    Metiver F,Gaudemer Y,Tapponnier P and Meyer B.Northeasterward growth of the Tibetan Plateau deduced from balanced reconstruction of two depositional areas:The Qaidam and Hexi Corridor basins,China.Tectonics,1998,17(6):823-842.
    Meyer P A,lshiwatari R.Lacustrine organic geochemistry:An overview of indicators of organic matter sources and diagnesis in lake sediments.Organic Geochemistry,1993,20(7):867-900.
    Milankovitch M,Mathematische Klimalehre und astronomishe Theorie der Klimasch-wankungen.In:Koppen W,Geiger R,eds.Handbuch der Klimatologie,Gebrnder Borntraeger,Berlin,1930,Ⅰ(A):1-76.
    Miller K G,Fairbanks R G,Mountain G S.Tertiary oxygen isotope synthesis,sea level history,and continental margin erosion.Paleoceanography,1987,2(1):1-19.
    Miller K G,Wright J D,Fairbanks R G Unlocking the ice house:oligocene-Miocene oxygen isotopes,eustasy,and margin erosion.Journal of Geophysical Research,1991,96(B4):6829-6848.
    Mix A C,Le J,ShacKleton N J.Benthic foraminiferal stable isotope stratigraphy of Site 846:0-1.8 Ma,1995.In "Proceedings of the Ocean Drilling Program,Scientific Results."(N.G Pisias,L A.Mayer,T.R.Janecek,et al.,Eds.),839-854pp,College Station,Texas,USA.
    Molnar P et al.Mantle Dynamics,Uplift of the Tibetan Plateau,and the Indian monsoon.Review of Geophysics,1993,31:357-396.
    Molnar P.Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate.Palaeontologia Electronica, 2005, 8(1): 1-23.
    Moran K, Backman J, Brinkhuis H et al. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 2006, 441: 601-605.
    Mosbrugger V, Utescher T and Dilcher D L. Cenozoic continental climatic evolution of Central Europe. PNAS, 2005, 102:14964-14969..
    Mosbrugger V, Utescher T, Dilcher D L. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2005,102 (42): 14964-14969.
    Mulch A, Chamberlain P C. The rise and growth of Tibet. Nature, 2006,439:670-671.
    Muller, R.A., MacDonald, G.J. Glacial cycles and astronomical forcing. Science, 1997b, 277: 215-218.
    Murakami, T. Orography and Monsoons. In: Fein, J. S., and Stephens, P. L., (Eds), Monsoons, Wiley, New York, 2000,331-364.
    Mutti M. Bulk d18O and d13C records from Site 999, Colombia Basin, and Site 1000, Nicaraguan Rise (late Oligocene to middle Miocene): diagenesis, link to sedimcat parameters, and paleoceanography Proc. ODP Sci. Res., 2000,165:275-283.
    Nakai N. Carbon isotope variation and the paleoclimate of sediments from Lake Biwa. Proceeding of the Japan Academy. 1972,48:516-521.
    Oldenburg TBP, Rullkttcher M E, Nissenbaum A. Molecular and isotopic characterization of organic matter in recent and sub-recent sediments from the Dead Sea. Organic Geochemistry, 2000,31:251-265.
    Olsen P E, Kent D V. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic. Palaeo. Palaleo. Palaeo., 1996,122:1-26.
    
    Olsen P E. A million year lake record of Early Mesozoic orbital climatic forcing. Science, 1986,234: 842-848.
    Olsen P E. Periodicity of lake level cycles in the late Triassic Lockatong Formation of the Newark Basin In: Milankovitch and Climate (Ed by Berger et al), part1, 1984,129-146.
    Palike H, Frazier J and Zachos Z J. Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise, Quat.Sci.Rev., 2006a, 25:3138-3149.
    Palike H, R D Norris R D, Herrle, J O, Wilson P O, Coxall H K, Lear C H, Shackleton N J, Tripati A K and Wade B S. The heart beat of the Oligocene climate system.Science, 2006b, 314:1894-1898.
    Paul H A, Zachos J C, Flower B P, et al. Orbitally induced climate and geochemical variability across the Oligocene/ Miocene boundary. Paleoceanography, 2000,15:471-485.
    Person A. Mcnichol A P, Benitez-Nelson B C, et al. Origins of lipid biomarkers in Santa Monica Basin surface sediment: A case study using compound-specific dl4C analysis. Geochimica et Cosmochimica Acta, 2001, 65:3123-3137.
    Petit J R, Jouzel J, Raynaud D, Barkov N I, Barnola J M et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399:429-438.
    Pisias N G, Moore Jr T C. The evolution of Pleistocene climate: a time series approach. Earth Planet. Sci. Lett., 1981, 52: 450-458.
    Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 1995, 375: 305-308.
    Powell T and Mckirdy D M. Relationship between ratio of pristane to phytane, crude oil composition and geological environments in Australia. Nature, 1973,243:37-39.
    Prell W L, Kutzbach J E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 1992,360: 647-653.
    Quade J, Cerling T E, Bowman J R. Development of Asian moonsoon revealed by marked ecological shift during the Lastest Miocene in north Pakistan. Nautre, 1989,342:163-166.
    Quade J,Cerling T E.Expansion of C4 grasses in the Late Miocene of Northern Pakistan:Evidence from stable isotopes in paleosols.Palaeogeography,Palaeoclim atology,Palaeoecology,1995,115(1-4):91-116.
    Quade J,Roe L,Decelles P G.The Late Neogene 87Sr/86Sr Record Of Lowland Himalayan Rivers.Sciene,1997,276:1828-1831.
    Ramstein G,Fluteau F,Besse J,Joussaume S.Effect of orogeny,plate motion and land-sea distribution on Eurasian climate change over the past 30 million years.Nature,1997,386:788-795.
    RaymoM E,RuddimanW F,Backman J.Late Pliocene variations in Northern Hemisphere ice sheet and North Atlantic deep water circulation.Paleoceanography,1989,4:413-446.
    Raymo M E,Ruddiman W F.Tectonic forcing of late Cenozoic climate.Nature,1992,359:117-120.
    Raymo M E,Oppo D W,Curry W.The mid-Pleistocene climate transition:A deep sea carbon isotopic perspective.Paleoceanography,1997,12:546-559.
    Raymo M E,Lisiecki L E,Nisancioglu K H.Plio-Pleistocene ice volume,Antarctic climate,and the global d18O record.Science,2006,313,492-495,doi:10.1126/science.1123296.
    Rea D K,1992.Delivery Of Himalayan Sediment To The Northern Indian Ocean And Its Relation To Global Climate,Sea Level,Uplift,And Seawater Strontium.Geophys.Monogr.,70:387-402.
    Rea D K,Leinen M,Janecek T R.Geologic approach to the long-term history of atmopsheric circulation.Science,1985,227:721-725.
    Rea D K,Snoeckx H,Joseph L H.Late Cenozoic eolian deposition in the North Pacific:Asian drying,Tibetan uplift and cooling of the Northern Hemisphere.Paleoceanography,1998,215-224.
    Rial J A.Pacemaking The Ice Ages By Frequency Modulation Of Earth's Orbital Eccentricity.Science,1999,285:56-68.
    Rial J A,Anaclerio C A.Understanding nonlinear responses of the climate system to orbital forcing.Quat.Sci.Rev.,2000,19:1709-1722.
    Richter F M,Rowley D B and DePaolo D J.Sr isotope evolution of seawater:the role of tectonics.Earth Planet.Sci.Lett.,1992,109:11-23.
    Ridgwell A J.Feedback in the earth system:the biogeochemical linking of land,air and sea,IGBP 'Global Change'News letter,2002,360:2905-2924.
    Rieley G,Collister J W,Stern B,et al.Gas chromatograph-isotope ratio mass spectrometry dioxide metabolisms[J].Rapid Comm.Mass Spec.,1993,7:488-491.
    Rio D,Silva L P,Capraro L.The geological time scale and the Italian stratigraphic record[J].Episodes,2000,263:259-263.
    Ritts B D,Yue Y J,Graham S A,Sobel E R,Abbink OA and Stockli D.From sea level to high elevation in 15 Million years:uplift history of the northern Tibetetan Plateau margin in the Altun Shan.Am.J.Sci.,2008,308:657-678.
    Rowley D B,Pierrehumbert R T,Currie B S.A new approach to stable isotope based paleoaltimetry:Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J].Earth Planet.Sci.Lett.,2001,188:253-268.
    Rowley D B,Currie B S.Paleoaltimetry of the late Eoene to Miocene unpola basin,central Tibet[J].Nature,2006,439:677-681.Ruddiman W F and Kutzbach J E.Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in Southern Asia and the American West.Journal of Geophysical Research,1989,94(D15):18409-18427.
    Ruddiman W F,Raymo M E,Martinson D G,Clement B M,Backman J.Pleistocene evolution:Northern Hemisphere ice sheets and North Atlantic Ocean.Palooceanography,1989,4:353-412.
    Ruddiman W F.Tectonic Uplift and Climate Change,1997,NewYork and London:Plenum Press.
    Ruddiman W F et al. Tectonic Uplift and Climate Change. Plenum Press, New York and London, 1997,535pp.
    
    Ruddiman W F. Earth's Climate: Past and Future. New York: Freeman W H &Co, 2001,465pp.
    
    Rutherford S D, Hondt S. Early onset and tropical forcing of 100000-year Pleistocene glacial cycles. Nature, 2000, 408: 72-75.
    Scher H D, Martin E E. Timing and climatic consequences of the opening of Drake Passage. Science, 2006, 312(5772): 428-430.
    Schneider B, Schmittner A. Simulating the impact of the Panamanian seaway closure on ocean circulation, marine productivity and nutrient cycling. Earth Planet Sci. Lett., 2006,246(3-4): 367-380.
    Schulz M, Stattegger K. SPECTRUM: sepctral analysis of unevenly spaced paleoclimatic time series. Comput. Geosci., 1997, 23:929-945.
    
    Searle M. The rise and fall of Tibet. Nature, 1995,374:17-18.
    Shackleton N J, Opdyke N D. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 scale. Quaternary Research, 1973, 3: 39-55.
    Shackleton, N.J. et al.. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region, Nature, 1984,307: 620-623.
    Shackleton N J, Berger A, Peltier W R. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site677. Trans. R. Soc. Edinb. Earth Sci., 1990,81:251-261.
    Shackleton N J. The 100 000 year ice-age cycle identified and found to lag temperature, carbon dioxide and orbital eccentricity. Science, 2000,289:1897-1902.
    Sheng G Y, Cai K Q, Yang X X , et al. Long-chain alkenones in Hotong Qagan Nurlake sediments and its paleoclimatic implications. Chinese Science Bulletin, 1999,44(3): 259-263.
    Shevenell A E, Kennett J P, Lea D W. Middle Miocene Southern Ocean cooling and Antarctic cryo-sphere expansion. Science, 2004,305:1766-1770.
    Sierro F J, Flores J A, Zamarreno I, et al. Messinian pre-evaporite sapropels and precession-induced oscillation in western Mediterranean climate. Mar. Geol., 1999,153:137-146.
    Sijp W P, England M H. Effect of the Drake Passage throughflow on global climate. J. Phys. Oceanogr., 2004, 34(5): 1254-1266.
    Song Z, Li W, He C. Cretaceous and Palaeogene palynofloras and distribution of organic rock in China. Scientia Sinica B, 1983,26(5): 538-549.
    Spicer R A, Harris N B W, Widdowson M et al. Constant elevation of southern Tibet over the past 15 million years. Nature, 2003,421: 622-624.
    Stott A C, Herguera L D. Collapse of the California Current during glacial maxima linked to climate change on land. Science, 2001,293:71-76.
    Street-Perrott F A, Huang Y S, Perrott G E, et al. Impact of lower at mospheric carbon dioxide on tropical mountain ecosyste ms[J]. Science, 1997, 278:1422-1426.
    Sruiver M. Climate versus change in Ccontent of the organic componet of lake sediments during the late Quaternary. Quaternary Research, 1975,5:251-262.
    Sukumar R, Ramesh R, Pant R K, et al. A δ 13C record of late Quaternary climate changes from tropical peats in southern Indm. Nature, 1993,364: 703-705.
    
    Sun J M, Liu T S. The age of the Taklimakan Desert. Science, 2006, 312:16-21.
    Sun X J, Wang P X. How old is the Asian monsoon system Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005,222:181-222.
    Tapponnier P, Xu Z, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294: 1671-1677.
    Teilhard de Chardin P.Notes on continental geology.Bulletin of the Geological Society of China.1937,16:195-220.
    Thompson W G,Goldstein S L.A radiometric calibration of the SPECMAP timescale.Quat.Sci.Rev.,2006.
    Tian J,Zhao Q H,Wang P X,Li Q Y,Cheng X R.Astronomically modulated Neogene sediment records from the South China Sea.Paleoceangraphy,2008,23:PA3210,doi:10.1029/2007PA00155.
    Tiedemann R,Sarnthein M,Shackleton N J.Astronomic timescale for the Pliocene Atlantic d18O and dust flux records from Ocean Drilling Program Site 659.Paleoceanography,1994,9:619-638.
    Tripati A K,Backman J,Elderfield H,et al.Eocene bipolar glaciations associated with global carbon cycle changes[J].Nature,2005,436:341-346.
    Tripati A K,Eagle R A,Morton A et al.Evidence for glaciation in the Northern Hemisphere back to 44 Ma from ice-rafted debris in the Greenland Sea.Earth and Planetary Science Letters,2008,265:112-122.
    Tsuchi R.Neogene Events in Japan and Southeast Asia.Annual Technical Meeting 1989 and IGCP-246,Thailand Proceedings,Chiang Mai Univ,1991,169-177.
    Turco E F J,Hilgen L J,Lourens N J,Shacideton,W J Zachariasse.Punctuated evolution of global climate cooling during the late middle to early late Miocene:High-resolution planktonic for aminlferal and oxygen isotope records from the Mediterranean,Paleoceanography,2001,16:405-423.
    Turner S,Hawkesworth C,Lin J et al.Timing of Tibet uplift constrained by analysis of volcanic rocks.Nature,1993,364:50-54.
    Van Vugt N,Langereis C G,Hilgen F J.Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits;dominant expression of eccentricity versus precession.Palaeogeogr.,Palaeoclimatol.,Palaeoecol.,2001,172:193-205.
    Velichko A A.General features of the landscape and climate of northern Eurasia in the Cenozoic.In:Velichko A A,Nechaev V P,Wright H E,et al.eds,Cenozoic climatic and environmental changes in Russia.NY:Geological Society of America,2005:189-201.
    Vincent E,W H Berger.Carbon dioxide and polar cooling in the Miocene:The Monterey hypothesis,in The Carbon Cycle:Natural Variations and Atmospheric CO2 archean to Present.Geophys.Monogr.Ser.,vol.32,edited by E.T.Sundquist and W S Broecker,455-468pp,AGU,Washington D C.
    von der Heydt A,Dijkstra H A.The effect of gateways on ocean circulation patterns in the Cenozoic.Glob.Planet Change,2008,62(1-2):132-146.
    Von Dobeneck T,Schmieder E Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super and sub-Milankovitch bands.In "Use of proxies in paleoceanography:Examples from the South Atlantic."(G.Fischer,and G.Wefer,Eds.),Springer-Verlag,Berlin Heidelberg,1999,601-633pp.
    Wade B S,P.like H.Oligocene climate dynamics.Paleoceanography,2004,19:4019-10.1029/2004-001042.
    Wang P X.Neogene stratigraphy and paleoenvironments of China.Palaeogeography,Palacoclimatology,Palacoecology,1990,77(3-4):315-334.
    Wang P X,Jian Z M,Zhao Q H et al.Evolution of the South China Sea and monsoon history revealed in deep-sea records Chinese Science Bulletin,2003,48(23):2549-2561.
    Wang P X,Clemens S,Beaufort L et al.Evolution and variability of the Asian monsoon system.State of the art and outstanding issues Quaternary Science Reviews,2005,24(5-6):595-629.
    White J M,Ager T A,Adam D P,et al.,An 18 million year record of vegetation and climate change in northwestern Canada and Alaska:tectonic and global climate correlatas.Palaeogography,palaeolimatology,palaeoecology.1997,130:293-306.
    White K.Walden J and Gurney S D.Spectral properties,iron oxide content and provenance of Namib dune sands. Geomorph., 2007, 86: 219-229.
    Williams M A J, Dunkerley D L, De Deckker P et al. In: Liu Tungsheng et al. translator and eds. Quaternary Environments. Beijing: Science Press, 1997.
    Winograd I J, Coplen T B, Landwehr J M, Riggs A C, Ludwig K R, Szabo B J, Kolesar P T., Revesz K M. Continuous 500,000 year climate record from vein calcite in Devils Hole, Nevada. Science, 1992, 258: 255-260.
    Winograd I J, Landwehr J M, Ludwig K R, Coplen T B, Riggs A C. Duration and structure of the past four interglaciations. Quat. Res., 1997,48:141-154.
    Wolf-Welling T C W, Cremer M, O'Connell S, Winkler A, Thiede J. Cenozoic Arctic Gateway Paleoclimate Variability: Indications from Changes in Coarse-Fraction Composition. In: Thiede, J., Myhre, A.M., Firth, J.V., Johnson, GL., Ruddiman,W.F. (Eds.), Ocean Drill. Program Proc, Sci. Results 151. ODP, College Station, TX, 1996, pp: 515-568.
    Wright J D, Miller K G, Fairbanks R G Early and middle Miocene stable isotopes: implications for deepwater circulation and climate. Paleoceanography. 1992,7(3): 357-389.
    Wunsch C. The spectral description of climate change including the 100 kyr energy, Clim. Dynam., 2003, 20: 353-363.
    Wunsch C. Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change. Quat. Sci. Rev., 2004,23:1001-1012.
    Ya P C J, Epstein S. Climatic signficance of the hydrogen isotope ratios in tree cellulose [J. Nature, 1982, 297: 636-639.
    Yakir D, Deniro M J. Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba. Plant physiology, 1990,93: 325-332.
    Yamada K, lshiwatari R. Carbon isotopic compositions of longchain n-alkanes in the Japan Sea sediments: implications for paleoenvironmental changes over the past 85 ka. Organic Geochemistry, 1999, 30: 367-377.
    Yang S L, Fang X M, Li J J, et al. Transformation functions of soil color and climate[J], Science in China (Series D), 2001,44(supp.): 218-216.
    Yang S L, Ding Z L. Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial-interglacial cycles[J]. Geophysical Research Letters, 2003,30:61-64.
    Yaqiu N G Discussion on origin and characteristics for n-alkanes from recent sediments in eastern China[J]. 011 and Gas Geology, 1985,6(1): 96-102.
    Yin A and Harrison T M. Geologic evolution of the Himalayan-Tibet orogen, Annu. Rev. Earth Planet. Sci., 2000,28: 211-280.
    Yin A et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geol. Soc. Am. Bull., 2002,114:1257-1295.
    Yin A. Correction Cenozoic vertical-axis rotation of the Altyn Tagh fault system. Geology, 2000, 28: 480.
    
    Zachos J C, Pagani M., Sloan L,Trends, Rhythms, And Aberrations In Global Climate 65Ma To Present, 2001a, 292: 686-693.
    Zachos J C, Shackleton N J, Revenaugh J S, Pa¨like H, Flower B P. Climate response to orbital forcing across the Oligocene-Miocene Boundary. Science, 2001b, 292:274-278.
    Zachos J C, Kump L R. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene [J]. Global and Planetary Change, 2005,47:51-66.
    Zhang Z S, Wang H J, Guo Z T, et al. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat.Palaeogeogr.Palaeoclimatol.Palaeoecol.,2006,doi:10.1016/j.palaeo.2006.08.003.
    Zheng H B,Christopher McAulay Powell,An Z S.,et al.,Plicene uplift of the northern Tibetan Plateau.Geology,2000,28(8):715-718.
    Zubakov V A,Borzenkova I I.Globan paleoclimate of the late Cenozoic,Amsterdam:Elsevier,1990,337.
    安芷生,王苏民,吴锡浩,等.中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动.中国科学(D),1998,28(6):481-490.
    安芷生,张培震,王二七,王苏民等.中新世以来我国季风-干旱环境演化与青藏高原的生长.第四纪研究,2006,26(5):678-693.
    曹国强,陈世悦,徐凤银,等.柴达木盆地西部中-新生代沉积构造演化.中国地质,2005,32(1):33-40.
    曹升赓.土壤颜色的测定和描述-门赛尔土壤比色卡的应用.土壤分类及土壤地理文集,北京科学出版社,1985.
    常宏,方小敏,安芷生,等.索尔库里盆地中-上新世地层特征及其环境意义.海洋地质与第四纪地质,2001,21(3):107-111.
    陈俊,王鹤年等,地球化学,北京:科学出版社,2004,418pp.
    陈克造,Bowler J M.柴达木盆地察尔汗盐湖沉积特征及其古气候演化的初步研究,中国科学(B辑),1985,(5):463-473.
    陈隆勋,乾根,罗会邦等.东亚季风.北京:气象出版社,1991,362pp.
    陈隆勋,刘骥平,周秀骥等.青藏高原隆起及海陆分布变化对亚洲大陆气候的影响,第四纪研究.1999,4:314-329.
    陈明扬,赵惠敏.7.3-1.9Ma期间中国黄土高原碳同位素记录与古季风气候.科学通报,1997,42(2):174-177.
    陈明扬.中国风尘堆积与全球干旱化.第四纪研究,1991,4:361-371.
    陈新领,张敏等。柴达木盆地北缘前陆盆地油气富集规律及勘探目标选择.十五国家重点科技攻关项目 课题报告(编号:2001BA605A-06-06),青海油田公司勘探开发研究院,敦煌,2003.
    陈秀玲,方小敏,安芷生,等.黄土高原8.1 Ma以来方解石记录的夏季风演化.中国科学(D辑),2007,37(1):61-70.
    戴霜,方小敏,宋春晖,等.青藏高原北部的早期隆升.科学通报,2005,7(50):673-683.
    德日进,中国之大陆沉积.中国地质学会-丁文江先生纪念册,1937,16:195-220.
    邓涛.临夏盆地晚新生代哺乳动物群演替与青藏高原隆升背景.第四纪研究,2004,4:413-420.
    丁雅秋.关于我国东部某些现代沉积物正构烷烃特征与物质来源的讨论.石油与天然气地质,1985,6(1):96-102.
    丁仲礼,孙继敏,朱日祥,郭斌.黄土高原红粘土成因及上新世北方干早化问题.第四纪研究,1997,(2):147-157.
    方小敏,李吉均,朱俊杰,等.临夏盆地约30Ma以来CaCO3含量变化与气候演变.见:青藏高原形成、演化、环境变迁与生态系统研究.北京:科学出版社,1995a,55-65.
    方小敏,李吉均,朱俊杰,等.临夏盆地环境变迁与青藏高原隆起的世界影响.见:青藏高原与全球变化研讨会论文集.北京:气象出版社,1995b,41-51.
    方小敏,李吉均,朱俊杰,等.甘肃临夏盆地新生代地层年代测定与划分.科学通报,1997a,42(14):1457-1471.
    方小敏,奚晓霞,李吉均,等.中国西部晚中新世气候变干事件的发现及其意义.科学通报,1997b,42(23):2521-2524.
    方小敏,吕连清,杨胜利,李吉均,安芷生,蒋平安,陈秀玲.昆仑山黄土与中国西部沙漠发育和高原隆升.中国科学(D辑),2001,31(3):177-184.
    方小敏,李吉均.3.4百万年来青藏高原隆升的阶段性与环境演变.见:青藏高原晚新生代隆升与环境变化.施雅风,李吉均,李炳元主编,广州科技出版社,1998,17-80. 升.中国科学(D辑),2004,34(2):97-106.
    方小敏,高军平,张跃中,等.柴达木盆地阿尔金山前七个泉-月牙山构造精细演化与勘探目标选择.青海石油勘探开发研究院报告2005-勘探-JSFWHT-23,2005,260pp.
    方小敏,宋春晖,戴霜,等.青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录.地学前缘,2007,14(1):230-242.
    葛肖虹,段吉业,李才,等.柴达木盆地的形成与演化.青海石油管理局,长春地质学院(内部研究报告),1990.
    谷祖纲,王四海,黄钊文,杨立新.甘肃临夏盆地第三系的年代地层学研究与Giraffokeryx在中国的发现.科学通报,1995,45(2):440-442.
    顾家裕等.塔里木盆地沉积层序特征及其演化.石油工业出版社:北京,1996,361pp.
    顾兆炎.黄土-古土壤序列碳酸盐同位素组成与古气候.科学通报,1991,10:767-770.
    管东红,等.北塬剖面碳酸钙记录的末次间冰期气候不稳定性.冰川冻土,1996,2:119-124.
    郭正堂,彭书珍,郝青振,等.晚第三纪中国西北干旱化的发展及其与北极冰盖形成演化和青藏高原隆升的关系.第四纪研究,1999,6:556-566.
    郝诒纯,关绍曾,叶留生,等.塔里木盆地西部地区新近纪地层及古地理特征.地质学报,2002,76(3):289-298.
    胡修棉,王成善.100 Ma以来若干重大地质事件与全球气候变化.大自然探索,1999,18(67):53-58.
    黄赐璇,梁玉莲.藏北高原北部地区湖相沉积的孢粉分析.见:中国科学院青藏高原综合科学考察队编.西藏第四纪地质.科学出版社,北京,1983.153-161.
    黄赐璇.西藏西部表土花粉研究.干旱区地理,1993,16(4):75-83.
    黄汉纯,黄庆华,马寅生.柴达木盆地地质与油气预测.地质出版社,北京,1996:257pp.
    黄嘉佑,气象中的谱分析,1984,气象出版社.
    季峻峰,陈骏,W.B alsam,刘连文,陈赵良,周玮.黄土剖面中赤铁矿和针铁矿的定量分析与气候干湿变化研究.第四纪研究,2007,27:221-229.
    贾承造,张师本,吴绍祖,等.塔里木盆地及周边地层研究(上、下册).科学出版社,北京.
    贾承造等.塔里木盆地中新生代构造特征与油气.北京:石油工业出版社,229pp,2004.
    翦知湣,成鑫荣,等.南海北部近6Ma以来的氧同位素地层与事件.中国科学(D辑),2001,31(10):816-822.
    金性春,周祖翼,汪品先.大洋钻探与中国地球科学.上海:同济大学出版社,1995,1-349.
    李吉均,文世宣,张青松,等.青藏高原隆起的时代、幅度和形式的探讨.中国科学(A辑),1979,(6):608-616.
    李崇银,气候动力学引论,气象出版社,1995.
    李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569-1574.
    李吉均,赵志军,德日进“亚洲干极”理论的现实意义.第四纪研究,2003,23(4),366-372.
    李明杰,郑孟林,曹春潮,等.柴达木古近纪-新近纪盆地的形成演化.西北大学学报(自然科学版),2005,35(1):87-90.
    李前裕,田军,汪品先认识偏心率周期的地层古气候意义.地球科学-中国地质大学学报,2005,30(5):519-528.
    李容全,乔建国,邱维理,等.泥河湾层内易溶盐沉积及其环境意义.中国科学(D辑),2000,30(2):148-158.
    李文漪,姚祖驹.表土中松属花粉与植物间数量关系的研究.植物学报,1990,32:943-950.
    李文漪,中国第四纪植被与环境.北京:科学出版社.1998.
    李孝泽,董光荣,靳鹤龄,等.鄂尔多斯白垩系沙丘岩的发现.科学通报,1999,44(8):874-888.
    李玉梅,陈践发,罗健,等.植物中单体烷烃碳同位素组成与其生长环境的关系,地质学报,2000,74:273-278.
    李云通.西宁-民和盆地晚白垩世和晚古新世淡水腹足类化石的发现[C].地层古生物论文集,1988,21:155-171.
    林振山和汪曙光.天文气候10万年问题的研究.地球物理学报,20049 47(6):971-975.
    刘东生,丁梦林.晚第三纪以来中国古环境的特征及其发展历史.地球科学-武汉地质学院学报,1983,(4):15-28.
    刘东生等.黄土与环境.北京:科学出版社,1985.
    刘东生,郑绵平,郭正堂.亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性.第四纪研究,1998,(3):194-204.
    刘晓东,1999.青藏高原隆升对亚洲季风形成和全球气候与环境变化的影响.高原气象,18(3):321-332.
    刘晓东,李力,安芷生.青藏高原隆升与欧亚内陆及北非干旱化,第四纪研究,2001,21(2):114-120.
    刘泽纯等.柴达木盆地西部下第三系地层裕沉积环境研究.南京师大学报,1994,17(增刊):78pp.
    刘志飞,王成善.青藏高原隆升对新生代全球气候变化的影响.大自然探索,1998,17(65):30-33.
    卢冰,陈荣华,王自磐,等.亚北极白令海近百年海洋环境变化-来自分子化石的证据.中国科学(D辑),2004,34(4):367-374.
    鹿化煜,安芷生,等.最近14Ma青藏高原东北缘阶段性隆升的地貌证据.中国科学(D辑),2004,34(9):855-864.
    马玉贞,李吉均,方小敏.临夏地区30.6-5.0Ma红层孢粉植物群与气候演化记录.科学通报,1998,43(3):301-304.
    马玉贞.青藏高原东北缘第三纪红层中发现丰富孢粉化石及其意义[J].科学通报,1992,13:1245-1246.
    苗运法,方小敏,宋之琛,吴福莉,韩文霞.青藏高原北部始新世孢粉记录与古环境变化.中国科学(D),2008,38(2):187-196.
    裴军令,孙知明,赵越,王喜生,李海兵.始新统-渐新统界线全球变冷事件在柴达木盆地中的记录.地质通报,2007,26(10):1380-1384.
    青海地质矿产局地质志编写组.青海省地质志.地质出版社,北京,1991.
    青海石油管理局和中科院南京地质古生物研究所.柴达木盆地第三纪孢粉学研究.石油工业出版社,北京,1985.
    青海石油管理局勘探开发研究院,中国科学院南京地质古生物研究所.柴达木盆地第三纪孢粉学研究.石油工业出版社,北京,1985.1-41.
    沈振枢,程果,乐昌硕,等.柴达木盆地第四纪含盐地层划分及沉积环境.地质出版社,北京,1993,167.
    施雅风,汤懋苍,马玉贞,等.青藏高原二期隆升与亚洲季风孕育关系探讨.中国科学(D辑),1998,28(3):263-271.
    宋春晖,白晋锋,赵彦德,等.临夏盆地13-4.4Ma湖相沉积物颜色记录的气候变化探讨[J].沉积学报,2005,23(3):507-513.
    宋春晖、高东林、方小敏,等.青藏高原昆仑山垭口盆地晚新生代高精度磁性地层及其意义.科学通报,2005,50:2145-2154.
    宋宁,王铁冠,李美俊.江苏金湖凹陷古近系奇碳优势和偶碳优势共存的正构烷烃.沉积学报,2007,25(2):307-313.
    宋宁,王铁冠,李美俊.江苏金湖凹陷古近系奇碳优势和偶碳优势共存的正构烷烃.沉积学报,2007,25(2):307-313.
    宋友桂,方小敏,李吉均,等.新生代六盘山隆升过程初探.中国科学(D辑),2001,31(增刊):142-148
    宋之琛,郑亚惠,李曼英.中国孢粉化石(Ⅰ)晚白垩世-第三纪孢粉.科学出版社,北京,1999.749-757.
    孙东怀,陈明扬,Shaw J,等.晚新生代黄土高原风尘堆积序列的磁性地层年代与古气候记录.中国科学(D辑),1998,28(1):79-84.
    孙东怀,刘东生,陈明扬,Show J,1997.中国黄土高原红粘土序列的磁性地层与气候变化.中国科学,1997,27(3):256-270.
    孙湘君.中国晚白垩世-古新世孢粉区系的研究.植物分类学报,1979,17(3):8-23.
    孙湘君,汪品先.从中国古植被记录看东亚季风的年龄.同济大学学报,2005,33(9):1137-1159.
    孙秀玉,赵英娘,何卓生.青海西宁-民和盆地渐新世至中新世孢粉组合.地质评论,1984,30(3):207-215.
    孙有斌,安芷生.最近7Ma黄土高原风成通量记录的亚洲内陆干旱化的历史和变率.中国科学(D辑),2001,31(9):769-776.
    孙镇城,杨藩,张枝焕等著.中国新生代咸化湖泊沉积环境与油气生成,1997,石油工业出版社.北京,338pp
    孙镇城等.柴达木盆地第四纪介形类组合地理分布及其控制因素.1993,14(4):35-41.
    谭红兵,马海州,张西营.碳酸盐研究与其记录的环境变化.盐湖研究,2003,111(14):20-27.
    汤懋苍,高晓清,董文杰.银河旋臂、地核环流与地球大冰期,地学前缘,1997,4(1-2):169-177
    田军,汪品先,成鑫荣.南沙ODP1143站有孔虫同位素变化对地球轨道驱动的响应.中国科学(D辑),2004,34(5):452-460.
    拓守廷,刘志飞.始新世-渐新世世界限全球气候事件:从“温室”到“冰室”.地球科学进展,2003,18(5):691-696.
    拓守廷,刘志飞,成鑫荣,赵泉鸿.南大西洋渐新世初碳酸盐记录(ODP 1263站).地球科学进展,2006,21(8):800-805.
    汪品先,田军,成鑫荣.第四纪冰期旋回转型在南沙深海的记录.中国科学(D辑),2001,31(10):793-799
    汪品先,赵泉鸿,翦知湣,等.南海三千万年的深海记录.科学通报,2003a,48(21):2206-2215.
    汪品先,翦知湣,赵泉鸿,等.南海演变与季风历史的深海证据.科学通报.2003b,48(21):2228-2239.
    汪品先,田军,成鑫荣,等.探索大洋碳储库的演变周期.科学通报,2003c,48(23):2536-2548.
    汪品先.地质计时的天文“钟摆”.海洋地质与第四纪地质,20068,26(1):1-7.
    汪品先.低纬过程的轨道驱动.第四纪研究,2006b,26(5):694-701.
    王璋瑜,宋长青,孙湘君.内蒙古中部表土花粉研究.植物学报,1996,38(11):902-909.
    王大宁,孙秀云,等.我国部分地区晚白垩世-早第三纪孢粉组合序列.地质评论,1984,30(1):8-20.
    王鸿祯,主编.中国古地理图集.地图出版社,北京,1985,130pp.
    王建力,李吉均,方小敏,等.临夏盆地三千万年来沉积物粒度特征及其构造意义.地理研究,1998,17(1):39-46.
    王志远,刘占红,易轶,等.不同气候和植物区现代土壤类脂物分子特征及其意义.土壤学报,2003,40(6):967-970.
    王志远,谢树成,陈发虎,等.临夏源堡黄土地层S1古土壤中的正构烷烃及其古植被意义.第四纪研究,2004,24(2):231-235.
    魏明建,王成善,万晓樵,伊海生.第三纪青藏高原面高程与古植.现代地质,1998,(03):318-326.
    魏永峰,罗森林.四川石渠县沙尔木一带始新世孢粉的发现及地质意义-兼论古近系热鲁组层序地层特征.四川地质学报2005,25(4):193-197.
    翁成郁,孙湘君,陈因硕.西昆仑山地区表土花粉组成特征与植被数量关系.植物学报,1993,35:69-79.
    吴福元,黄宝春,叶凯,方爱民.青藏高原造山带的垮塌与高原隆升.岩石学报,2008,24(1):1-30.
    吴国瑄,王开发.柴达木盆地西北部第四纪孢粉分析.冰川冻土,1987,9(2):157-164.
    吴玉书,孙湘君.昆明西山林下表土中花粉与植被间的数量关系,植物学报,1987,29:204-211.
    吴珍汉,吴中海,胡道功,叶培盛,周春景.青藏高原渐新世晚期隆升的地质证据-地质学报,2007,81:577-587.
    奚晓霞,穆德芬,方小敏,李吉均.早更新世东山古湖氯离子含量化与季风演化.冰川冻土,1996,18(2),125-130.
    夏应菲,汪永进,陈峻.李家岗下属黄土剖面的反射光谱研究.土壤学报,2000,37(4):443-448.
    谢树成,姚檀栋,康世昌,等.青藏高原希夏邦马峰地区雪冰有机质的气候与环境意义.中国科学(D辑),1999,29(5):457-465.
    徐丽,苗运法,方小敏,等.青藏高原东北部西宁盆地中始新世-渐新世沉积物颜色与气候变化.2008,修改中.
    徐仁.大陆漂移与喜马拉雅山上升的古植物学证据.见:中国科学院青藏高原综合科学考察队,青藏高原隆起的时代、幅度和形式问题,科学出版社,北京,1981.
    徐仁.西藏古植被的演变与青藏高原的隆起.植物分类学报,1982,204:385-391.
    薛滨,王苏民,夏威岚,等.若尔盖RM孔揭示的青藏高原900kaBP以来的隆升与环境变化.中国科学(D辑),1997,27(6):543-547.
    阎顺.新疆第四纪孢粉组合特征及植被演替.干旱区地理,1991,2:1-8.
    杨藩.从介形类化石的分布试论柴达木盆地东部地区第四系的划分和对比.见:中国微体古生物学会编.中国微体古生物学会第一次学术会议论文选集.北京:科学出版社,1981.45-539.
    杨藩,乔子真,张海泉,张永华,孙镇城.柴达木盆地新生代介形类动物群特征及环境意义.古地理学报,2006,8(2):143-156.
    杨红梅,王成善.古高程计:氢氧同位素的新应用.地球科学进展,2007,22(9):960-968.
    杨平,孙镇城,李东明,等.柴达木盆地中、新生代介形类爆发与绝灭事件.古地理学报,2000,2(3):69-74.
    杨胜利,方小敏,李吉均,安芷生,等.表土颜色和气候定性至半定量关系研究.中国科学(D辑),2001.
    杨石岭,丁仲礼,秦小光,等.黄土沉积中红光/反射光亮度值变化及古气候意义.第四纪研究,1999.
    叶笃正,高由禧.青藏高原气象学.北京科学出版社,1979.
    尹成明,李伟民,R.Andrea,刘永江,陈元忠,巩庆林.柴达木盆地新生代以来的气候变化研究:来自碳氧同位素的证据.吉林大学学报,2007,37(5):901-907.
    于永涛.柴达木盆地西北缘尕斯库勒湖钻孔记录的中更新世气候转型.2006,兰州大学博士毕业论文.
    余志伟,丁仲礼,刘东生.2.5Ma以来地球轨道参数变化对黄土粒度变化的线性驱动.第四纪研究,1992,2:118-127.
    曾承,安芷生,刘卫国,等.湖泊沉积物记录的湖水古盐度定量研究进展,2007,15(4):13-19.
    张洪,靳鹤龄,肖洪浪,等.东居延海易溶盐沉积与古气候环境变化.中国沙漠,2004,24(4):410-414.
    张兰生等主编.全球变化.高等教育出版社,2000.
    张林源,蒋兆理,刘晓东.论东亚季风与青藏高原在形成和发展过程中的关系,见:中国第四纪冰川与环境.北京:科学出版杜,1991,1-12.
    张林源.青藏高原上升对我国第四纪环境演变的影响.兰州大学学报(自然科学版),1981,(3):142-155.
    张彭熹等.柴达木盆地盐湖.科学出版社,北京,1987,1-6.
    张青松等.青藏高原隆起的时代、幅度和形式.科学出版社:北京,1980.
    张伟林.柴达木盆地新生代高精度磁性地层与青藏高原隆升.2006,博士毕业论文.
    赵泉鸿,翦知湣,等.南海北部晚新生代氧同位索地层学.中国科学(D辑),2001a,800-807.
    赵泉鸿,汪品先,等.中新世“碳位移”事件在南海的记录.中国科学(D辑),2001b,31(10):808-815.
    赵英娘,王大宁,孙秀玉.中国早第三纪孢粉植物群与古气候、古地理、古生态的关系.地层古生物论文集,1995,26:115-123.
    郑绵平,赵元艺,刘俊英.第四纪盐湖沉积与古气候.第四纪研究,1998'4:297-306.
    钟大赉,丁林.青藏高原的隆起过程及其机制探讨.中国科学(D辑),1996,26(4):289-301.
    周廷儒.中国第三纪与第四纪以来地带性与非地带性的分化.北京师范大学学报(自然科学版),1960,2:63-78.
    周廷儒.古地理学.北京:北京师范大学出版社,1982,1-342.
    周廷儒.新生代古地理.见:中国科学院《中国自然地理》编辑委员会.中国自然地理-古地理(上册).北京:科学出版社,1984,1-231.
    周伟,王琦,赵其渊,等.渤海南部海底沉积物颜色的研究.海洋科学,1990,3:31-35.
    朱丽东,周尚哲,李凤全,等.庐山JL红土剖面的色度气候意义.热带地理,2007,27(3):193-202.
    朱允铸,钟坚华,李文生.柴达木盆地新构造运动及盐湖发展演化.地质出版社,北京,1994,1-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700