设施养鳖废水牧草生物滤清生态工程系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水产养殖业是全球增长最快的食物生产体系,随着自然鱼类产量接近了它们的生态极限,设施水产养殖业必将在全球水产品的供需上扮演了一个不可替代的重要角色。由于设施水产养殖水体是一种人工生态系统,主要靠人工调节能力来维持系统的生态平衡,为追求高产,部分生物因子被人为的强化,造成废物的浓度累积更大,外排废水造成对邻近水域营养物的负荷逐年增大,成为水体富营养化的污染源之一。
     水产养殖环境工程技术作为当今社会经济和环境领域的一项系统工程,如何实现养殖污水的综合利用与无害化排放具有极大的研究开发价值和广泛的应用前景。国外设施水产养殖应用的水处理技术,其复杂的处理机制、技术流程和机械设备直接提高了生产成本,极大限制了这些技术在发展中国家的应用。设施养殖废水主要为有机物污染,而有机物正是植物生长所必需的原料,利用植物作为重要的生物过滤体来滤清污水,然后收获产品的办法被誉为既保护环境兼收经济效益的良策。鉴于水产养殖废水的特性和水处理装备的特殊性,中国作为世界上最大的水产大国,如何发展适合我国水产养殖废水处理的生态环境工程技术就显得相当迫切。
     本项目“设施养鳖废水牧草生物滤清生态工程系统研究”,在分析养鳖排放废水特性的基础上;以COD为毒性指标,研究了养鳖废水对多年生黑麦草的生理毒性;从保护酶活性系统变化的角度,探讨养鳖废水胁迫牧草生理机理;设计了基于牧草生物滤清的无土草皮生产系统;研究了多年生黑麦草滤清鳖废水过程中水体和植株N素营养盐的变化,提出其滤清生态工程设计的参数;针对牧草滤清系统中对时钟周期的要求,设计出一种采用单片机控制的多功能程控定时器。具体研究结果如下:
     (1)养鳖废水以NH_4~+-N为主,NO_3~--N含量较低,UIA含量较高,COD超出一般养鱼池十多倍,DO值很低,TN、TP含量远远超出标准的一类富营养化废水。
     (2)养鳖废水生理毒性试验结果表明:当[COD]>1009.11mg/L时,将引起多年生黑麦草长期严重的伤害,抑制根系的生长,叶绿素含量降低,植株CAT酶活性由最初的激活到被破坏而不能发挥酶的正常功能;当581.36mg/L<[COD]<1009.11mg/L时,废水对植株的生长有短期毒性作用,但通过一定时间的适应后,种群能得到恢复;当[COD]<581.36mg/L,废水对植株的生长无毒性伤害效应;计算出多年生黑麦草处理鳖废水运行的最佳控制条件为[COD]<581.36mg/L,最优处理浓度为[COD]=189.74mg/L。
     (3)养鳖原废水胁迫牧草生理机理试验结果表明:在设计的高低两种浓度鳖废水胁迫下,低浓度处理抑制多年生黑麦草的生长,以及植株鲜重和干重的积累,高浓度
    
    处理对它们有促进作用。两种处理均促进高羊茅地上部分鲜重和干重的积累,且高浓
    度处理还能促进高羊茅地下生物量的积累;高浓度处理下多年生黑麦草叶绿素含量无
    显著变化。两种处理均促进高羊茅叶绿素含量,且高浓度处理较低浓度处理对叶绿素
    a的促进作用更为明显;两种废水处理均能诱导植株印O、Sco、CAT酶活性的提高,
    对多年生黑麦草而言,高浓度处理诱导Sco活性要强于低浓度处理,其】〕印和以T酶
    活性的变化规律相似。对高羊茅而言,CAT酶活性的诱导要滞后于对SOD酶活性的诱
    导;两种处理均使植株游离脯氨酸、姻A大盘积累。相关性分析结果表明,高羊茅可
    通过增加游离脯氨酸含量来防止膜脂过氧化加剧,提高植物抗逆境胁迫的能力。
     (4)研究了基于牧草生物滤清的无土草皮生产系统,结果表明:养鳌排放原废水
    处理均降低了处理种子的发芽率:废水胁迫延缓种子达到80%发芽率的进程;但对种
    子出二叶和二叶的时间间隔无影响;到处理末期,四种草种幼根均穿过无纺织布生长;
    废水胁迫在株高上差异均显著,但对草皮盖度达80%以上的成时间无影响:从成
    效果来看,多年生黑麦草要优于其它草种;采用灰色系统关联分析法对四种牧草的生
    物滤清效果以及设计三种浓度废水处理的多年生黑麦草成和幼移植特性研究表
    明,多年生黑麦草表现出最优的机械和生物滤清的效果;废水处理的多年生黑麦草幼
    效果均优于土培的成效果:从移植的情况看,经处理废水的无土草皮铺地后,
    需要一个较短时间的恢复(2d),.至移植铺地后的第j、天能够完全恢复正常土培生长。
     (5)研究多年生黑麦草静态和动态生物滤清结果表明:在静态水培穿浮1二下,只有
    在能够满足多年生黑麦草生长的养鳌废水浓度,才能获得较好的去除效率;在动态水
    培条件下,水体COD匕、55、NH4+-N、翎、TP的去除率分别为94.09%、89.19%、
    92.15%、55.83%、6098%。废水中翎‘TP的去除主要以植株吸收为主,植株地上部
    分1刊和TP的积累量均大于地下部分的积累量,其中植株地上、地下IN和仰积累
    量分别占水体TN和开去除量的71 .82%、16.63%、72.61%困J】2.42%;研究还表明,
    在水体中同时存在NH’一N、NO犷-N的情况下,植株优先吸收NHf一N.经计算,对COOQ、
    NH4+一、俐、TP、55的工程设计参数分别为:0.94、0.42、0.37、0.033、o.som留UmZ·d。
     (6)基于多槽道牧草生物净化系统中对时钟周期的要求,设计出一种采用单片
Aquaculture is the fastest growing food production industry in the world. Along with the amount of natural fish approaching the bionomic maximum, intensive aquaculture will certainly play an unsubstitute important role in the aquatic product supply. As the intensive aquaculture system is a kind of manual ecology system, the ecologic balance of the system is mainly maintained by manpower, in order to pursue high yield, some biology factors are intensified factitiously, which leads to the increasing cumulation of waste concentration. The waste water letted without treatment will burthen the nutrient in the nearby waterbody, which is one of the eutrophicated pollute fountainhead.
    As a system engineering in the field of modern environment, aquacultural engineering and technology is faced to many limits, especially on technologies of integrated utilization and environment-kind discharge of aquacultural wastewater, which will have a great value and a wide application. The wastewater treatment technologies in developed countries are complicated, high-technology and high-cost, which seriously restrict applications in developing countries. On the other hand, organic masses, the main waste in aquacultural wastewaters, are necessary materials for the growth of plants. Using plants as bio-medias to treat organic masses and then make out products, can not only protect the environment, but also bring economic profit, which is especially welcome in our country. Considering the characteristic of aquaculture waste water and the particularity in treatment equipment, to develop an aquaculture waste water treatment eco-engineering technology which suited for our country are being extremely urgent
    In this project, treatment of intensive aquaculture wastewater by pasture bio-filter eco-engineering system", main compounds in the effluents from a turtle-production system were analyzed; The physiological toxicity of the wastewater to ryegrass (Loliwn perenne L) was studied using COO as an evaluation standard. The physiological mechanism under the stress on turtle effluent in pasture is researched from the changes of protective enzymes activity. A soilless sod-production system was set up to treat wastewater. Dynamic change of nitrogen compounds in water and plant was investigated during the process of bio-filtration, and it was used to decide parameters in the development of treatment systems. To meet the requirements of control of recircukting strategy, a multi-function timer upon support of MCU was developed. Details were listed as followed:
    
    
    
    (1) In intensive turtle-production wastewaters, total nitrogen (TN) and total phosphorus (TP) are far higher than the first level of rich-nutrient wastewater standard. The main nitrogen compounds was ammonia nitrogen, mostly in un-ionized style, and relatively low level of nitrate nitrogen. Chemical oxygen demands (COD) of turtle-production wastewaters were usually ten times as high a normal aquacultural waters. Additionally, dissolved oxygen (DO) level was very low.
    (2) The result of physiological toxicity test under the treatment of turtle effluent indicates that when [COD]>1009.1 lmg/L, it'll cause long-time serious damage to ryegrass, restraining the growth of the root, reducing the chlorophyll content The CAT activity changes from initially activation to be destroyed. So the natural function of the enzyme can not exert While 581.36mg/L<[COD]<1009.11mg/L,the waste water causes short-time toxicity function on the growth of the plant. But through some time of adaptation, the community can resume. While [COD]<581.36mg/L, the waste water has no toxicity function on the growth of the plant It turns out that [COD]<581.36mg/L is the best control condition for ryegrass dealing with the turtle effluent, and [COD]=189.74mg/L is the best deal concentration.
    (3) Effects of turtle effluents stress on pasture physiology activity were studied. As for ryegrass, in terms of plant height, the fresh weight and dry weight in above-ground and under-ground, the treatment of low concentration showed si
引文
[1] Coates, D. 1995. Inland capture fisheries and cnhanccmcnt: status, constraints and prospects for food security. KC/F1/95/TECH/3. 82 p. Contribution to the International Conference on the Sustainable Contribution of Fisheries to Food Security, Kyoto, Japan, 4-9 December 1995, organized by the Government of Japan, in collaboration with the Food and Agriculture Organization of the United Nations (FAO).
    [2] Leidy, R.A. and P.B. Moyie. 1998. Conservation status of the world's fish fauna: an overview. In: Fiedler, P.L. and P.M. Kareiva (eds.) Conservation Biology, Second Edition. Chapman and Hall, New York. pp. 187-227.
    [3] United Nations (Economic and Social Council),1997. Comprehensive Assessment of the Freshwater Resources of the World. Report of the Secretary General (E/CN.17/1997/9) to the Fifth Session of the Commission on Sustainable Development, New York, 5-25 April 1997.
    [4] United Nations (Economic and Social Council),1995. Strategic Approaches to Freshwater Management. Report of the Secretary General (E/CN.17/1998/2) to the Sixth Session of the Commission on Sustainable Development, New York, 20 April-1 May 1998.
    [5] Barg, U.,I.G. Dunn,T. Petr and R.L. Welcomme,1997. Inland fisheries, p.439-476. In A.K. Biswas (ed.) Water Resources: Environmental Planning, Management and Development. New York, McGraw-Hill. 737 p.
    [6] UNEP, Global State of the Environment Report 1997.
    [7] Ravenga, C. et al., 1998. Watersheds of the world. Ecological value and vulnerability. A joint publication of the World Resources Inatitute and the Worldwatch Institote, Washington, USA. FAO, 1998. Report of the First Session of the Advisory Committee on Fisheries Research. Rome, Italy, 25-28 November 1997. FAO Fish.Rep., (571): 36 p.
    [8] FAO Fisheries Department. Aquaculture Development. 2002,3—51p.
    [9] FAO Fisheries Department. 1997. Aquaculture Development. FAO Technical Guidelines for Responsible Fisheries No. 5. Rome, FAO. 40p.
    [10] ADB/NACA. 1996. Aquaculture sustainability action plan. Regional Study and Workshop on Aquaculture Sustainability and the Environment (RETA 5534). Manila, Asian Development Bank,
    
    and Bangkok, Network of Aquaculture Centres in Asia-Pacific. 21p.
    [11] Bagarinao, T.U. and E.E.C. Flores (eds.). 1995. Towards Sustainable Aquaculture in Southeast Asia and Japan. Proceedings of the Seminar-Workshop on Aquaculture Development in Southeast Asia, 26-28 July 1994, Iloilo City, Philippines. Iloilo, SEAFDEC Aquaculture Department. 254p.
    [12] Bailey, C. and M. Skladany, 1991. Aquacultural development in tropical Asia: Are-evaluation. Natural Resources Forum 15(1):66-71.
    [13] Barg, U.,I.G. Dunn, T. Petr and R. L. Welcomme. 1997b. Inland fisheries, p.439-476. In A.K. Biswas (ed.) Water Resources: Environmental Planning, Management and Development. New York, McGraw-Hill. 737p.
    [14] FAO Ministerial Conference. 1995. The Rome Consensus on World Fisheries, adopted by the FAO Ministerial Conference on Fisheries. Rome, 14-15 March 1995.
    [15] Kapetsky, J. M. and C. Travaglia. 1995. Geographical information systems and remote sensing: An overview of their present and potential applications in aquaculture, p.187-208. In K.P.P. Nambiar. and T. Singh (eds.). Aquaculture towards the 21st Century. INFOFISH, Kuala Lumpur, Malaysia:
    [16] Muir, J.E 1996. A systems approach to aquaculture and environmental management, p.19-49. In D. Baird et al(eds.)Aquaculture and water resource management. Oxford, Blackwell Science. 219p.
    [17] Chen S, Stechey D, Malone R. Snspended solids control in recirculating aquaculture systems[A]. Aquaculture water resuse systems: engineering design and management [C]. Amsterdam: Elsevier Science B V. 1994, 61-100
    [18] Apha. Standard methods for the examination of water and wastewater: 18th edition[M]. New York:. American public health association, 1989.
    [19] Chapman P E, Popham J D, Griffin J, et al. Differentiation of physical from chemical toxicity in solid waste fish bioassay. Water, Air, and Soil pollution, 1987, 33:295-308.
    [20] 张福绥.近现代中国水产养殖业发展回顾与展望.世界科技研究与发展.2003,3(25):5-13
    [21] 刘焕亮.中国水产业及其养殖业的发展与科技成就—庆祝建国五十周年.大连水产学院学报,1999,14(3):51-63
    [22] 曾呈奎,周海鸥,李本川.中国海洋科学研究及开发[M].山东青岛:青岛出版社,1992,782
    [23] 张福绥.21世纪我国的蓝色农业.中国工程科学,2000,2(12):21-28
    [24] 王子臣,栉孔扇贝人工育苗及试养的研究[J].大连水产学院学报,1981,(1):1-12
    
    
    [25] 于大江.近海资源保护与可持续利用.海洋出版社,北京:2001,350
    [26] 刘恬敬等.中国坛紫菜人工增殖的研究.海洋水产研究,1981,(3):1-6
    [27] 张福绥,何义朝,刘祥生等.海湾扇贝引种、育苗及试养.海洋与湖沼,1986,17(5):367-374
    [28] 张福绥,何义朝,马江虎等.海湾扇贝与海带轮养试验报告.海洋科学,1987,(6):1-6
    [29] 中国科学院海洋研究所海洋鱼类繁殖组.我国海洋鱼类人工繁殖概述.海洋科学,1977,(1):16-21
    [30] 李思发.水产种苗工程和水产种质资源的研究.中国水产,1999,(3):12-15;63-64
    [31] 杨纪明.关于我国第4次海水养殖浪潮的初思.海洋科学,2001,25(1):47-50,56
    [32] Wu Chaoyuan, 1998. seaweed resources of China. In Alan T. Critchley and Masao Ohno(Eds.),Seaweed Resources of the World. Japan international Cooperation Agency, Japan, p34-45
    [33] Zhang, F. Mussel culture in China. Aquaculture, 1984, 39:1-10
    [34] Zhang, Guofan, Wang,Zichen et al,1998.Triploid induction in Pacific abalone Haliotis discus hannai by 62DMAP and the performance of triploid juveniles. Journal of Shellfish Research, 17(3):783-788
    [34] Chew K. Global bivalve shellfish introductions. World Aquaculture.1990,21(3):9-22
    [35] Guo X M, Ford S E and Zhang F S. Illustrating aquaculture in China. J. Shell. Res.,1999,18(1):19-31.
    [36] Bagarinao, T.U. and E.E.C. Flores(eds.). 1995. Towards Sustainable Aquaculture in Southeast Asia and Japan. Proceedings of the Seminar-Workshop on Aquaculture Development in Southeast Asia, 26-28 July 1994, Iloilo City, Philippines. Iloilo, SEAFDEC Aquaculture Department. 254p.
    [37] ADB/NACA. 1996. Aquaculture sustainability action plan. Regional Study and Workshop on Aquaculture Sustainability and the Environment (RETA 5534). Manila, Asian Development Bank, and Bangkok, Network of Aquaculture Centres in Asia-Pacific. 21p.
    [38] Beveridgs, M.C.M., M.J. Phillips and D.J. Macintosh. 1997. Aquaculture and the environment: the supply of and demand for environmental goods and services by Asian aquaculture and the implications for sustainability, Aquaculture Research 28:797-807.
    [39] Chua, T.E. 1997. Sustainable aquaculture and integrated coastal management, p.177-199. In J.E. Bardach (ed.) Sustainable Aquaculture. New Jersey, John Wiley & Sons. 251p.
    [40] Garcia, S. and R. Grainger. 1997. Fisheries management and sustainability: A new perspective of an old problem? p.631-654. In D.A.Hancock,D.C.Smith, A.Grant and J.P. Beumer (eds.)
    
    Developing and Sustaining World Fisheries Resources. The State of Science and Management. Proceedings of the 2nd World Fisheries Congress, Brisbane, Australia, 28 July-2 August 1996. Collingwood (Australia), CSIRO Publishing. 797p
    [41] 赵黎明.走科技之路发展水产养殖.科学养鱼,2001(3):61
    [42] 国家科技部.浅海滩涂资源开发.北京:海洋出版社,1999
    [43] BERGHEIM A, SGRD T. Waste production from aquaculture[A]. Aquaculture and water resource management[C]. Cambridge: Blackwell Science Lid, 1996. 50-80.
    [44] 韩家波,木云雷.王丽梅.海水养殖与近海水域污染研究进展.水产科学.1999,18(4):40-43
    [45] 东亚海域海洋污染预防与管理厦门示范区执行委员会办公室编.厦门海岸带综合管理1994-1998(下册)[M].北京:海洋出版社,1998.
    [46] 熊国中,戴自福,沈兵.洱海湖滨区鱼塘污染状况调查研究.云南环境科学,2000,19(3):32-34
    [47] MARTIN M, VERAN Y, GUELORGET O, et al. Shrimp rearing: Stocking density, growth, impact on sediment, waste output and their relationships studied through the nitrogen budget inrearing ponds. Aquaculture., 1988,164 (19):135-149
    [48] TOVAR A, MOTENO C, MANUEL M P, et all Environmental impacts of intensive aquaculture in marine waters[J]. Water Resource, 2000,34 (1): 334-342
    [49] 李文权,郑爱榕,李淑英.海水养殖与生态环境关系的研究.热带海洋,1993,32(12):33-39
    [50] Ackefors H, Enell E. The release of nutrients from swedish fish farming to aqaculture system in nordic contries. J. Appllchthol., 1994, 10:225-241.
    [51] Foy R H, Rosell R. Loadings of nitrogen and phosphorus from a Northern Ireland fish farm. Aquaculture, 1991,96: 17-30.
    [52] Penczak T, et al. The enrichment of a mesotrophiec lake by carbon, phosphorus and nitrogen from the cage aquaculture of rainbow trout Salmo gairdneri. J. Appl.,Ecol., 1982,19:37-393.
    [53] Funge Smith, Briggs M R P. Nutrient bugets in intensive shrimp ponds: Implications for sustainability. Aquacult ure,1998,164 (18):117-133
    [54] BEVEKIDGE M C M. Aquaculture and water quality[A]. Advances in world Aquaculture[C]. Louisiana: World Aquaculture Society, 1991,3:456-467
    [55] Winberg G G. Fisheries Research Board of Canada Translation Series 194. Ottawa: Byelorussian State University, 1960.
    [56] WESTON D P. Environmental considerations in the use of antibacterial drugs in
    
    aquaculture[A]. Aquaculture and water resource management[C].Cambridge:Blackwell Sciencc Ltd, 1996.140-165.
    [57] MIDLEN A, REDDING T A. Environmental management for aquaculture[M]. London: Chapman & Hall.,1998.
    [58] 贾晓平,蔡文贵,林钦.我国沿海水域的主要污染问题及其对海水增养殖的影响.中国水产科学,1997,4(4):78-82
    [59] Inglis V. Antibiotic resistance of Aernmonas salmonicida isolated from Atlantic salmon, Salmo salar L in Scotland. J. of Fish Diseases. 1991, 14 (9):353-358
    [60] Fayette A R, T A Haines. Envim. Pollut., Ser.A. 1980, 22: 11~17
    [61] Faris N, L Wojno, Tamra. Environmental effects of finfish cage culture. Alasks Aquaculture 4th Conf.,,Sitka (Alaska Sea Grand Report 88-4). 1987.
    [62] ENTSTROEM S, FONSEL IUS S. Hypoxia and eutrophication in the soughem katteegat [A]. The Exploration of the Sea[C]. Katteegat: Marine Science of Katteegat. 1994, 38:115-145.
    [63] Blackburn T H. W H Krumbein (et al.). Microbial Geochemistry. Blackwell Scientific Publications, Oxford. Fages 1983,39:63~89.
    [64] Enell M, J Lof. Environmental impact of aquaculture sediment and nutrient loadings from fish cage culture farming. Vatten. 1983,39:364~375.
    [65] 李庆彪.养殖渔业生态系的特点、问题和解决途径.海洋科学,1994(5):15-17
    [66] SVENDRUP-JENSON S. Fish demand and supply projections. Naga, 1997,20
    [67] 王伟良.李德尚,董双林.养虾围隔中无机氮浓度与放养密度及环境因子的关系.海洋科学,2000,24(10):44-47
    [68] Cripps S J.Minimizing outputs treatment. Journal of applied ichthyology.1994,10 (4):284-294.
    [69] 孙耀.虾塘养殖水环境中氮磷营养盐的存在特征与行为.水产学报,1998,22(2):117-123
    [70] HARGEAVES J A. Nitrogen biogeochemistry of aquaculture ponds.Aquaculture. 1998,166:181-212
    [71] 湛江水产专科学院主编.淡水养殖水化学.北京:农业出版社,2001.98~110.
    [72] Paez-osuna, et al. Discharge of Nutrients from Shrimp Farming to Coastal Waters of the Gulf of California. Marine Pollution Bulletin 1999,38(7):555-592.
    [73] L EFEBVRE S, BACHER. C,MEURET A, et al. Modeling approach of nitrogen and phosphorus exchanges at the sediment-water interface of an intensive fishpond
    
    system. Aquaculture.,2001,195:279-297.
    [74] 舒廷飞,温琰茂,汤叶涛.养殖水环境中氮的循环与平衡.水产科学.2002,21(2):30-34
    [75] 贾后磊,舒廷飞,温琰茂.养殖水环境中磷的循环与平衡.水利渔业.2002,22(1):37-39
    [76] 杨红生,周毅.滤食性贝类对养殖海区环境影响的研究进展.海洋科学.1998,8(2):42-44
    [77] Chen S, Stechey D, Malone R. Suspended solids control in recirculating aquaculture systems[A]. Aquaculture water reuse systems:engineering design and management[C]. Amsterdam: Elsevier Science B V. 1994, 61-100
    [78] 江敏,臧维玲,戴习林等.微生物及生物滤器在罗氏沼虾亲虾越冬中的应用.水产科技情报.2000,27(1):13-18
    [79] Eliner S, Neori A, Krom M D, et al. Simulation model of recirculating mariculture with seaweed biofilter:Development and experimental tests of the model. Aquaculture. 1996,143(2): 167-184
    [80] 朱学宝,谭洪新,罗国芝.封闭循环工厂化水产养殖水净化系统的技术构成.内陆水产,2000(10):24-25
    [81] Chen S, Timmons M B, Aneshansley D J, et al. Suspended solids characteristics from recirculating aquacultural systems and design implications. Aquaculture. 1993,112:143-155
    [82] 刘长发,綦志仁,何洁等.环境友好的水产养殖业—零污水排放循环水产养殖系统.大连水产学院学报.2002,17(3):220-226
    [83] Midlen A, Redding T A. Environmental management for aquaculture[M].London: Chapman&Hall, 1998.
    [84] Wheaton F W, Hochheimer J N, Kaiser G E, et al. Nitrification filter principles[A]. Aquaculture water reuse systems: engineering design and management[C]. Amsterdam:Elsevier Science B V.1994,101-126
    [85] 李德生,黄晓东,王占生.微污染源水净化新工艺——生物强化过滤研究.中国给水排水,2000,16(10):18-20
    [86] 王文军,王文华,张学林等.水环境中生物膜对污染物环境化学行为的影响.环境科学进展,1999,7(6):58-65
    [87] Paller M H. Ananalytical model for predicting the carrying capacity of submerged biofiiters used in aquaculture. J Appl Aquacult, 1992,1 (3): 1-26
    [88] Honeyfield D C, Watten B J. Comparative performance of single-staged and two-staged
    
    pulsed bed biological filters receiving recirculating fish culture effluent. Aquacultural Engineering Society Proceedings Ⅱ:Sucesses and Failuresin Commercial Recirculating[J]. Aquaculture. 1996,1:183-195
    [89] Hargrove L L, Westerman P W,Losordo T M. Nitrification in three-staged floating bead biofilters in a laboratory-scale recirculaing aquaculture system[J]. Aquacultural Engineering. 1996,5(1):67-80
    [90] 陈汉辉,孙国胜.生物接触氧化法处理微污染源水的研究进展与应用[J].环境污染治理技术与设备,2000,1(6):55-60
    [91] Kozasa M. Toyocerin (Bacillus toyoi) as growth promoter for animal feeding[J].Microbiol Aliment Nutrient, 1986(4): 121-135.
    [92] Moriarty D J W. Control of luminous vibrio pecies in penaeid aquaculture ponds[J]. Aquaculture., 1998(164):351-358.
    [93] Evelynt P T. Immunication against path aganic vibrios. Summary of the questions and discussion[A]. Dekihkel INP. Symposium on fish vaccinotion[C]. 1984.121-150,238.
    [94] Crpriano R, Starliper F. Immersion and irjevtion vauination of salm onicila[J]. Prag. Fishcalt. 1984,(44): 167-169
    [95] 许淑英.草鱼出血性细胞弱毒培养疫苗的制备及其免疫效果[J].水产学报,1994,18(2):110
    [96] Awad M A. Preliminary studies of a newly developed subunit vauine for channel catish virus disease[J].J Aquac Anita Heath, 1989,(1):233—237.
    [97] 陈昌福,纪国良.草鱼对鱼害粘球脂多糖的反应[J].淡水渔业,1989,25(1):3-5
    [98] 王育锋,彭秀真,周嗣泉.用光合细菌液池塘培养淡水鱼种的试验[J].水产学报,1990,26(3):347-350
    [99] 于伟君.光合细菌在对虾养殖中应用的初步试验[J].水产科学,1991,10(1):16~18
    [100] 刘福军,胡文英.光合细菌在盐碱地池塘改良水质的研究[J].淡水渔业.1999,29(10):13-16
    [101] 邱宏端,徐姗楠,朱航等.耐盐红螺菌科细菌对淡水鱼池水质及细菌类群的影响[J].水产学报,2002,26(3):231~236
    [102] 薛恒平,薛彦青.水产养殖同微生态与微生物生态之间关系初探[J].饲料工业,1997,18(2):23~26
    [103] 叶奕佐,叶嵘,王苹萍等.光合细菌和FAMP在温室无沙养鳖中的应用研究[J].水产科技情报,1996,23(2):51~55.
    
    
    [104] 李卓佳,张庆,陈康德.有益微生物改善养殖生态研究Ⅰ:复合微生物分解底泥及对鱼类的促生长效应[J].湛江海洋大学学报,1998,18(1):5~8.
    [105] Ellner S, Neori A, Kromm M D, et al. Simulation model of recirculating mariculture with seaweed biofilter: development and experimental tests of the model[J]. Aquaculture, 1996,143:167-184.
    [106] Shpigel M,Neori A. The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: Ⅰ. Proportions. of size and projected revenue[J]. Aquacultural engineering, 1996,15(5):313-326
    [107] 刘长发,张泽宇,雷衍之.盐度、光照和营养盐对孔石莼(Ulva pert usa)光合作用的影响[J].生态学报,2001,21(5):795-798.
    [108] Traviesol L. Experiments on immobilization of microalgae for nutrient removal in wastewater treatment[J].Biosource Technol., 1996, 55(3): 181-186
    [109] Yan, J. Y.Zhang. Ecological techniques and their application with some case studies in China. Ecol. Eng., 1992,1(4):261-285.
    [110] Odum, H.T., Ecological engineering and self-organization.in:Mitsch W.&S.E.Jorgensen(Eds.), Ecological Engineering,John Wiley&Sons, INC.,New York, 1989:79-103.
    [111] Mitsch, W. J., Ecological engineering-a cooperative role with the planetary life-support systems. Environ. Sci. Technol., 1993,27:438-445.
    [112] Mitsch, W. J., Wilson R.F., Improving the success of wetland creation and restoration with Know-how, time, and self-design. Ecol..Applications. 1996,6:77-83.
    [113] Ma, S. J.Yan.Ecological engineering for treatment and utilization of wastewater.In:Mitsch W.&S.E. Jorgensen(Eds.),Ecological Engineering.New York;John Wiley&Sons, INC.,1989, 185-218.
    [114] Yan, J.&I.H.Yao. Integrated fish culture management in China. Mitsh W.J.&S.E. Torgensen (Eds.), Ecological.Engineering, New York; John Wiley&Sons, INC., 1989,:375-408.
    [115] Yan,J., H.Shen, Y.Zhang. Recovery, conversion, reuse,recycling of organic wastewater from a pharmaceuticasl factory. In: Thofelt L,&A.Englund(Eds.),Eco-technics for a Sustainable Society. Mid Sweden University, Ostersund, Sweden, 1996,297-307.
    [116] Yan,J, Y.Zhang. A case study of ecological engineering for treatment and use of wastewater from a silk reeling mill.In: Stauden mann. J. Et al(eds). Recycling the resource-Ecological engineering for wastewater treament. Zuerich, Switzerland:Transtec Pub.Ltd. 1996,145-149.
    
    
    [117] 张雁秋.凤眼莲容量对净化利用的影响.农村生态环境,1989,(4)1:40-43.
    [118] 颜京生.废水处理与利用生态工程—Ⅰ特征和原理.城市环境与城市生态.2000,13(5):1-5
    [119] Cunningham S D. Remediation of contaminated soil with green plants: an oview[J], in Vitro Cell Dev Biol. 1993,29:207-212
    [120] Raskin I, Kumar PBAN, Dushenkov S, et al. Bioconcentration of heavy metal by plants. Curr. Opin. Biotechnol., 1994,5(3):285-290
    [121] Schncor. J. L. Phytoremediation of organic contanmiants[J]. Environ Sci Technol., 1995, 29(7):318
    [122] Burken, J. G. Using plants for the removal of atrazine from soil[J]. J. Environ Eng., 1996,122(11):95
    [123] Nichols,T. D. Rhizosphere microbial populations in contaminated soils. Water, Air and Soil Pollution. 1997,95:165
    [124] Reilley, K,A. Ultilization of biomass residue for the remediation of organic polluted soils. J Environ. Sci Qual., 1996,25,212
    [125] Black H. Absorbing possibilities:phytoremediation. Environmental Health Perspectives. 1995, 103(12): 1106-1108
    [126] Shann J R. The role of plants and plant/microbial systems in the reduction of exposure.Environmental Health Perspectives. 1995, 103(supplement5): 13-15
    [127] T. Macek, M. Mackova, J. Kas. Exploitation of plants for the removal of organics in environmental remediation. Biotech. Adv.,2000,18:23-24
    [128] D. E. Crowley, S. Alvey, E. S. Gilbert. Rhizosphere ecology of xenobiotic-degrading microorganisms. Phytoremediation of soil and water contaminants, American Chemical Society, Washington DC. 1997,20-36
    [129] 杨柳春,郑明辉,刘文彬等.有机物污染环境的植物修复研究进展[J].环境污染治理技术与设备.2002,3(6):1-7
    [130] Schnoor J.L. Phytoremediation of organic and nutrient contaminants[J]. Environment and Technol. 1995,29:318-323
    [131] Cunningham S D. phytoremediation of soil contaminated with organic pollutants[J]. Adv. Agron., 1996,56:55-114
    [132] Chaney R L. Malik M,Li Y M,et al. Phytoremediation of soil metal. Curr.Opin.
    
    Biotochnol., 1997, 8(3):279-284
    [133] Kristiansen R. Sand-filter trenches for purification of septic tank effluent: Ⅰ. The clogging mechanism and soil physical environment[J]. J. Environ. Qual., 1981,10(3):353-357.
    [134] Kristiansen R. Sand-filter trenches for purification of septic tank effluent:Ⅱ.The fate of mitrogen[J]. J. Environ. Qual., 1981,10(3): 357-361
    [135] Kristiansen R. Sand-filter trenches for purification of septic tank effluent:Ⅲ.The microflora[J]. J. Environ.Qual., 1981,10(3):361-364
    [136] Pell M,Nybeg F. Infiltration of wastewater in a newly started pilot sand-filter system: Ⅰ, Ⅱ, Ⅲ. Reduction of organic mater and phosphorus[J]. J.Environ.Qual., 1989,18:451-467
    [137] 胡林,边秀举.阳新玲.草科学与管理[M].北京:中国农业大学出版社,2001,1-305
    [138] 崔建宇,慕康国,胡林等.北京地区草皮卷生产对土壤质量影响研究.草业科学,2003,20(6):68—72
    [139] Schudel P, Boller M. Onsite wastewater treatment with intermittent buried filters[J]. Wat.Sci.Tech., 1990,22(3/4):93-100
    [140] Check G.G Waller D.H,Lee S.A.,et al. The lateralflow sand-filter system for septic-tank effluent treatment[J]. Water Environ. Res.,1994,66:919-928
    [141] Zoller, U. Groundwater Contamination and control. New York. Basel. Hongkong:[s.n]. 1994,457-475
    [142] Asano T. Artificial Recharge of Ground[M]. Bostons Butterworth. 1985,359-679
    [143] 区自清.李培军,宋玉芳等.沈阳慢速渗滤土地处理系统中水量平衡与运行工艺条件的研究.在国家环境保护局编.水污染防治及城市污水资源化技术.北京:科学出版社,1993:263-271.
    [144] 都基众.李绍民.慢速渗滤土地处理系统对地下水影响的现场测试研究.国家环境保护局编.水污染防治及城市污水资源化技术.北京:科学出版社,1993:255-262.
    [145] 孙铁珩,曲向荣,韩淑华等.城市生活污水慢速渗滤土地处理系统净化功能的研究.在国家环境保护局编.水污染防治及城市汗水资源化技术.北京:科学出版社,1993:79-290.
    [146] 李汝琪,段振渤.城市污水快速渗滤土地处理系统示范工程的研究.在国家环保局编.水污染防治及城市污水资源化技术.北京:北京科学出版社,1993:411-420.
    [147] Humenik, F.J., Szogi, A. A., Hunt, P.G., Broome, S., Rice, M.,.Wastewater utilization: a place for managed wetlands.Asian-Australas. J. Anim. Sci. 1999,12, 629-632.
    
    
    [148] Mann, R. A., Phosphorus removal by constructed wetlands:substratum adsorption. In: Cooper, P.F., Findlater, B.C. (Eds.), Constructed Wetlands in Water Pollution Control: Advances in Water Pollution Control. Pergamon Press, Oxford, pp. 1990, 97-105.
    [149] Greenway,M., Woolley, A.. Constructed wetlands in Queensland: Performance efficiency and nutrient bioaccumulation. Ecol. Eng. 1999,12, 39-56.
    [150] Srinivasan,N.,Weaver,R.W.,Lesikar, B. J., Persyn, R.A.Improvement of domestic wastewater quality by subsurface flow constructed wetlands. Bioresource Technol. 2000.75 (1),19-25
    [151] Scholz, M., Xu, J., Dodson, H. L, Comparison of filter media, plant communities and microbiology within constructed wetlands treating wastewater containing heavy metals. J. Chem. Technol. Biotechnol. 2001,76 (8), 827-835.
    [152] Hill, D.T., Payton, J. D., Effect of plant fill ratio on water temperature in constructed wetlands. Bioresource Technol. 2000,71 (3),283-289.
    [153] Jing, S.R., Lin, Y.F., Lee, D.Y., Wang, T.W.,. Nutrient removal from polluted river water by using constructed wetlands. Bioresource Technol. 2001,76 (2), 131-135.
    [154] Cook, C. D. K. Water plants of the world.1974:561
    [155] Fassett N.C. A mannal of aquatic. McGraw-Hill Pook Company,1940:343-358
    [156] Hanifbe, M. A, ect. Morphometry, Primary productivity and energy flow in tropical pood. Hydrobiologia, 1978, 59(1):23-28
    [157] Vollenwelder, R. A. A manual on methods for measuring primary production in aquatic environments. IBP handbook12. Blackwell Scientific Publication Oxford.1971:213
    [158] Buckstee G. K. Discussion of treatment of wastewater in the Rhizone sphere of wetland plants the root-zone method. Water Science and Technol. 1987,19, 10—63
    [159] 周风帆.利用凤眼莲净化水中重金属放射性核素“钻、锌铯”的研究[J].中国环境科学,1989.9(1):26-30
    [160] 诸惠昌等.用人工湿地处理乳制品厂废水的研究.环境科学.1996,17
    [161] 郎业广,赵慧琴,刘忠阳等.红萍净化污水的研究(国际红萍利用学术讨论会论文).福州:福建省农业科学研究院.1985
    [162] Fomi C,Chen J,Tancionil L,t al. Evaluation of the fern Azolla for growth,nitrogen and removel from wnstewater. Water Resarch,2001,35(6):1592-1598
    [163] Banuelos G S, Ajwa H A., Terry N., et al. phytoremediation of selenium laden soil:a new
    
    technology. Journal of Soil and Water Conservation., 1997,52(6):426-430
    [164] Pilon-smits E A H.,de Sou za M P, Hong G,et al. Selenium vulatilization by twenty aquatic plant species. Journal of Envirunmental Quality., 1999,28(3):1011-1018
    [165] 李芳柏.吴启堂.漂浮栽培美人蕉.蕹菜等植物处理化粪池废水.农村生态环境,1997,13(1):25—28
    [166] 由文辉,刘淑嫒,钱晓燕.水生经济植物净化受污染水体研究[J].华东师范大学学报(自然科学版),2000,(1):99-102.
    [167] 谭洪新.水栽培蔬菜对养鱼废水水质净化效果.上海水产大学学报,2001,10(4):293-297.
    [168] Nichols, D.J.,Daniel,T.C.,Edwards, D. R, et al.,1998. Use of grass filter strips to reduce 17 β-estradiol in runoff from fescue-applied poultry litter. J. Soil Water Cons.53,74-77.
    [169] Pair, A. S., DeSouza, A. E., Farrow, D. R. G., 1992. Agricultural Pesticide Use in Coastal Areas: A National Summary, Technical Report. National Oceanic and Atmospheric Administration, Rockville, MD, USA.
    [170] Sanderson, M.A., Reed, R.L., McLaughlin, S.B., Wullschleger, S.D., Conger, B.V., Parrish, D.J., Wolf, D.D., Taliaferro, C.,Hopkins, A. A., Ocumpaugh, W.R., Hussey, M.A., Read, J.C.,Tischler, C.R., 1996.Switchgrass as a sustainable bioenergy crop. Bioresour. Technol. 56, 83-93.
    [171] Sanderson, M.A., Jones, R.M., McFarland, M.J., Stroup, J., Reed, R.L., Muir, J.P., 2001. Nutrient movement and removal in a switchgrass biomass-filter strip system treated with dairy manure. J. Environ. Qual. 30, 210-216.
    [172] Wauchope, R.D., Buttler, T.M., Homsby, A.G., Augustijin-Beckers, P.W.M., Burr, J.P., 1992. The SCS/ARS/CES pesticide properties database for environmental decision-making. In: Gunther, F.A. (Ed.), Reviews of Environmental Contamination and Toxicology, vol. 123, pp. 1-35.
    [173] Webster, E.P., Shaw, D.R., 1996. Impact of vegetative filter strips on herbicide loss in runoff from soybean (Glycine max). Weed Sci. 44, 662-671.
    [174] 骆永明.污染土-水环境的植物修复——一种绿色净化技术.迈向21世纪的土壤科学(综合卷),中国土壤学会编,1999,135~138
    [175] 宋祥甫,应火冬,朱敏等.自然水域无土栽培水稻的研究.中国农业科学,1991,24(4):8-13.
    [176] 丁树荣,程树培,胡忠明.利用人工基质无土栽培多花黑麦草净化缫丝废水的研究.中国环境科学,1992,12(1):9-15.
    [177] 程树培,丁树荣,胡忠明.利用人工基质无土栽培水蕹菜净化缫丝废水的研究.环境科
    
    学,1991,12(4):47~51.
    [178] 戴全裕,陈钊.多花黑麦草对啤酒废水净化功能研究.应用生态学报,1993,4(3):249-251
    [179] 戴全裕,蒋兴昌.张衍.水蕹菜对啤酒及饮食废水净化与资源化研究.环境科学学报,1996,16(2):334-337.
    [180] 戴全裕,陈源高,魏云等.水培经济植物对酿酒废水净化与资源化生态工程研究.科学通报,1996,41(6):547~551.
    [181] Suhas R. Ghate, Gary J. Burtle, George Vellidis, G. Larry Newton. Effectiveness of Grass Strips to Filter Catfish Pond Effluent [J]. Aquaculrnral Engineering, 1997,(16); 149-159
    [182] Nedelkosk TV. Characteristic of heavy metal uptake by plant species with potential for phytoremediation[J]. Mineral Engineering.,2000,13(5)::549-561
    [183] 唐世荣,黄昌勇,朱祖祥.利用野草处理石油天然气生产过程中的废水.中国人口.资源与环境,1998,8:81-83
    [184] J.D. Rodgers, N.J. Bunce. Treatment methods for the remediation of nitroaromatic explosives. Wat.Res.,2001, 35: 2101-2111
    [185] P.C.K.Lau,V.Lorenzo.Genetic engineering: the frontie of bioremediation.. Environ. Sci. & Technol. 1999,33:124A-128A
    [186] Khan A G. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation[J]. Chemosphere,2000,41: 197-207
    [187] Chaudhry T M. Phytoremediation-focusing on accumlator plants that remediate metal contaminated soils[J]. Australasian J Ecotoxicol, 1998,4:37-51
    [188] Liu, F.; Mitchell, C. C.; Odom, J. W.; et al. Swine lagoon effluent disposal by overland flow: effects on forage production and uptake of nitrogen and phosphorus[J]. Agronomy-journal (USA). 1997, 89(6): 900-904.
    [189] Kaczor, A.; Filipek, T.; Michalojc, Z.; et al. Influence of purified municipal sewage on content and uptake of various nitrogen forms by cocksfoot grass[J]. Polska Akademia Nauk, Warszawa (Poland). 1996, 139-144.
    [190] Carpenter S R, Caraco N F, Correl D L, et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecology., 1998(8):559-568
    [191] Bingham.S.C. Westerman, P.W. and Overcash.,1980, Effect of grass buffer zone length in reducing the pollution from land application areas.Trans.Am.Soc. Agric.Eng., 23(2):330-335;342
    
    
    [192] Wightman, D, George, DB, Zirschky, JH and Filip, DS. High-rate overland flow[J]. Water-Research. 1983, 17(11): 1679-1690
    [193] Fajardo J J,Bauder J W, Cash S D. Managing nitrate and bacteria in runoff from livestock confinement areas with vegetative filter strips. Journal of soil and water conservation., 2001,56(3):539-547
    [194] Glesson C,Gray N.The Coliform index and waterborne disease. London:E&FNSPON, 1997
    [195] 传莲,孔繁翔.植物修复研究进展[J].环境科学研究进展.1999,7(3):40~44
    [196] 张祖锡,白瑛.改良城市污水农灌的作用与土壤效应[J].农业环境保护,1988,7(2):23-24
    [197] Balicka N. Interrelationships Between Microoganisms and Plants in soil Elsevier Sci Publ.,1988,343-349
    [198] S.C. Wetzel, M.K. Banks, A.P. Schwab. Rhizosphere effects on the degradation of pyrene and anthracene. Phytoremediation of soil and water contaminants, American Chemical Society, Washington DC, 1997,254-262
    [199] Suhas R.Ghate, Gary J. Burtle, George Vellidis, G. Larry Newton. Effectiveness of grass strips to filter catfish(Ictalurus punctatus) pond effluent[J]. Aquacultural Engineering,1997(16): 149-159
    [200] 钱明浩,顾黎霞,沐小龙.水面栽培蕹菜—多花黑麦草净化浸出油厂废水初步研究[J].安徽师大学报(自然科学版),1997,20(3):264-268.
    [201] Magor B G. Gill histopathology of juvenile Oncorhynchus kisutch exposed to suspended wood debris[J]. Canadian Journal of Zoology, 1988,6:2164-2169.
    [202] 李芳柏,吴启堂.漂浮栽培美人蕉蕹菜等植物处理化粪池废水.农村生态环境,1997,13(1):25-28,41
    [203] 刘剑彤,丘昌强,陈珠金等.复合生态系统工程中高效去除磷、氮植被植物的筛选研究[J].水生生物学报,1998,22(1):1~7
    [204] Miao Xiangwen, Shao Zhipeng and Cui Shaorong. Adaptability and filtration efficiency of different grass cultivation system for aquacultural wastewater treatment.The proceedings from the fourth international conference on recirculating aquaculture, 2002, Roanoke,Virginia, U.S.A.
    [205] Cui Shanrong, Shao Zhipeng and Miao Xiangwen.The multi-tanks for sowing and harvesting in rotation to clean up the rich nutrient wastewater[J].ASAE, 2002, paper No:022271.
    [206] Hayes, A.R.; Mancino, C.F.; Forden, W.Y.; et al. Irrigation of turfgrass with secondary sewage effluent. Ⅱ. Turf quality[J]. Agronomy-journal (USA). 1990, 82(5): 943-946.
    
    
    [207] Dillaha,T.A.,Rencau, R,B.,Mostaghimi, S and Lee. D.,1989.Vegetative filter strips for agricultural nonpoint source pollution control, Trans.Am,SOC.Agric.Eng.,32(3):513-519
    [208] Maggette,W.L.,Brinsfiend R.B,,Palmer, R. E and Wood.J.D.1989. Nutrient and sediment removal by vegetated filter strips. Trans.Am.SOC.Agric.Eng., 32(3):663-617
    [209] Mires D.,Amit, Y.,Avnimclech. Y., Diah. S. and Cochaha, M.,1990.Water quality in a recycled intensive fish culture system under field conditions. Bamidgeh,42(4): 110-121
    [230] Schelligner, G.R. and Clausen J.C.,1992.Vegetative filter treatment of dairy barnyard runoff in cold regions. J. Envirun. Qual.,21,40-45
    [231] X. Qiu, T.W. Leland, S.I. Shah, et al. Field study: grass remediation for clay soil contaminated with polycyclic aromatic hydrocarbons. Phytoremediation of soil and water contaminants, American Chemical Society, Washington DC, 1997,186-199
    [232] M.M, Peterson, G.L. Horst, P.J.Shea, S.D. Comfort Germination and seedling development of switchgrass and smooth bromegrass exposed to 2,4,6—trinitrotoluene. Environ.Pollut., 1998,99:53-59
    [233] C.C. Wiltse, W. L. Rooney, Z. Chen, A.P. Schwab, M.K. Banks. Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J.Environ. Qual., 1998, 27:168-173
    [234] Kinne P N, Samocha T M.Jones E R. et al.2001.Characterization of intensive shrimp pond effluent and preliminary studies on biofiltration. North American Journal of Aquacuiture, 63(1):25-33
    [235] Haglund k,Pedersen M.1993.Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden. Growth,nutrient uptake,cocultivation with rainbow trout and epiphyte control[J]. Journal of Applied Phycology,5:271-284
    [236] 林继辉,许忠能,林小涛等.养虾废水生物处理过程中营养物负荷的动态变化[J].生态科学,2003,22(2):133-137
    [237] 喻清明.温室养鳖池水质变化规律分析[J].淡水渔业.1998,28(2):32—35
    [238] 刘鹰.高密度循环水水产养殖生态工程设计研究[C].浙江大学博士论文.2001
    [239] 涂金珠.水产温室养殖系统的生态模式研究[C].浙江大学硕士论文.2000
    [240] 苗欣.工厂化养鳖水培蔬菜综合生产系统中营养物循环与气体交换.浙大博士论文.1997
    [241] 隋国斌,蒋静,方兴等.自净式工厂化养鳖的初步研究[J].大连水产学院学报.2001,16(3):194-199
    [242] Whitfield, M. The hydrolysis of ammonium ions in seawater a theoretical study[J]. J. Mar.
    
    Biol. Assoc., 1974, 54: 565~580.
    [243] 张幼敏.李茵明.鳖的养殖[J].水产科技情报.1998,25(1):42-44
    [244] 杨再福.胡锦矗.袁重桂.氨对中华鳖的危害[J].水利渔业.1999,19(1):35
    [245] 赵振华.河水在硝化过程中的抑制作用的研究.环境科学.1979.4:22—27
    [246] 刘建康主编.高等水生生物学[M].北京:科学出版社 1999,326—338
    [247] 刘建康主编.东湖生态学研究[M].北京:科学出版社 1992,80—87
    [248] 张东鸣,余涛,刘春力等.氨态氮在渔业生产中的作用评述[J].吉林农业大学学报.1999,21(3):124-128
    [249] 德格雷蒙公司(王业俊等译).水处理手册.北京:中国建筑工业出版社,1983,12
    [250] Wang W,Freemark K. The use of plants for environmental monitoring and assessment. Ecotoxicol Environ Saf. 1995,30:289
    [251] Gersich F M, Mayes M A. Acute toxicity test with Daphnia magna straus and Pimephales Rafinesque in support of national pollution discharge elimination permit requirements. Water Res. 1986,20:939
    [252] John S F, Michael J M. David R V et al. Phytotox Database Evaluation of Surrogate Plant species recommended by the U.S. Environmental Protection Agency and OR ganization for Economic Cooperation and Development. Environmental Toxicology and Chemistry. 1985,4:523-532
    [253] wuncheng Wang. Literature Review on Higher plants for Toxicity Testing. Water, Air, and soil pollution. 1991,59:381-400
    [254] ISO. Soil quality-Determination of the effects of pollutants on soil In Draft International Standard ISO/DIS 11269-1, 1992
    [255] Organization for Economic Cooperation and Development. Terrestrial Plants:Growth Test, OECD Guideline for testing of Chemicals, 1984,208,Paris.
    [256] John Cairns and Collaborators, Biological Monitoring in Water Pollution.Pergamon Press, 1982
    [257] 唐虞,陈建国,史建文.凤眼莲在炼油废水中的生长及其净化作用[J].环境科学,1996,17(1):44-49
    [258] Lee D H, Lee C B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: In gel enzyme activity assays[J]. Plant Science (Shannon). 2000,159 (1):75-85
    [259] Kurilenko I N, Palladina T A. NaCl effect on lipid peroxidation and antioxidant systems in com seedlings[J]. Plant Physiology &Biochemistry (Paris). 2000,38 (Supplement): 178
    
    
    [260] Garcia-Sanchez M J, Fernandez J A, Niell F X. Biochemical and physiological responses of gracilaria tenuistipitata under two different nitrogen treatment[J].Physiologia Plantarum. 1993,88:631~637
    [261] Dendine M A, Rollland T, Tremolieres, et al. Effect of ammanium ions on the net photosynthesis of three species of Elodea, Aquantic Botany. 1993,46:301-315
    [262] Lichtenthaler HK, Wellbum AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Trans Biochem Soc. 1983, 11:591-592
    [263] 朱广廉,钟诲文,张爱琴.植物生理学试验[M].北京:北京大学出版社.1990,51-53,126-130
    [264] 刘祖祺.张石城.植物胁迫生理学[M].北京:中国农业出版社.1994.371~372
    [265] 张志良.植物生理学试验指导(第二版)[M].北京:高等教育出版社,1990.154~155
    [266] Shandong Agricultural Collegeeds. Plant Physiology Experimentation[M]. Jinan: Shandong Science and Technology Press. 1980,109~112
    [267] Qin TC. Effects of cadmium, lead single and combination pollution on the contents of ascorbic acid in Brassica chinensis L[J]. Chin J Ecol. 1997,16(3): 31~34
    [268] Woolhouse H W. Longevity and senesscence in plant [J]. Sci Prog Oxford. 1974,61:23
    [269] Ma C-C. Hg harm on cell membrane of rape leaf and cell endogenous protection effect[J]. Chin J A Ecol.. 1998,9 (3):323~326
    [270] Scandalios J G. Oxygen stress end superoxide dismutase[J]. Plant Physiol. 1993,101 (1):7-12
    [271] Chen Y-Z. Effects of low temperature on the SOD.CAT activity and H_2O_2 content in plant leaves[J]. Acta Phytophysiol Sin. 1988,14 (4):323~328
    [272] Gupta A S. Response of photosynthesis and cellular antioxidants to ozone in populus leaves[J], plant physiol 1991, 96 (2): 650~655
    [273] 崔克辉,何之常,张甲耀等.模拟污水中N、P对水稻幼苗过氧化氢酶和乙醇酸氧化酶的影响[J].武汉大学学报(自然科学版).1995.41(2):245~250
    [274] 汤章诚.逆境条件下植物脯氨酸的累积及其可能的意义.植物生理学通讯.1984,(1):15-21
    [275] 徐勤松.施国新,杜开和.镉胁迫对水车前叶片抗氧化酶系统和亚显微结构的影响[J].农村生态环境.2001,17(2):30~34
    [276] 崔克辉,何之常,张甲耀等.模拟N、P污水对水稻幼苗过氧化物酶和超氧化物歧化酶的影响.1995,15(4),447~453
    [277]. Haycock N.E. 1995. Muscutt, A.D. Landscape management strategies for the control of
    
    diffuse pollution. Landscape and Urban Planning. 31 (1-3):313-321
    [278] Mcmurtry, M.R. Nelson, P.V.; Sanders, D.C.; Hodges, L. 1990. Sand culture of vegetables using recirculated aquacultural effluents. Applied Agricultural Research(USA). 5(4):280—284
    [279] Hammer DA.1992. Designing constructed wetlands systems to control agricultural nonpoint source pollution. Ecol Engin, 1:49
    [280] Saygin, Tommk, 1992. Phosphate and nitrogen removel from wastewater by the plant paspallum paspalodes. Fresenius Environ Bull, 1 (11):695-699
    [281] 吴振斌.陈辉蓉,贺锋等.人工湿地系统对污水P的净化效果.水生生物学报.2001,25(1):28-35
    [282] 多立安,赵树兰.生活垃圾生产地毯式草皮环境生态工程基质选配研究.应用生态学报.2000,11(5):767—772
    [283] 司友斌,包军杰,曹德菊.香根草对富营养化水体净化效果研究.应用生态学报.2003,14(2):277~279
    [284] 吴伟.应用灰色关联分析方法研究湖泊污染对渔业损失的影响.浙江水产学院学报.1997,16(3):214-218
    [285] 邵志鹏,苗香雯,崔绍荣.多花黑麦草在养殖系统的净化效果.上海交通大学学报农学版.2002.20(4):317-321
    [286] 上海植物生理学会.植物生理试验手册.上海科学与技术出版设..1983,138~140
    [287] 国家环保局.水质分析方法(第三版).中国环境科学出版设.1989,45~134
    [288] Dendine M A, Rolland T, Tremolieres, et al. 1993. Effect of ammanium ions on the net photosynthesis of three species of Elodea. Aquatic Botany. 46:301~315
    [289] Gersberg R, M, Elkins B V, Lyon S R, et al. 1986. Role of aquatic plants in wasterwater treatment by artifical wetlands. Water Resource. 20(3):363-368
    [290] 唐森本,王欢畅,葛碧洲等.天然饮用水腐殖物质的研究.北京:中国冶金工业出版社.1995
    [291] Hendrickson QQ and Charappaul L. 1998. Nitrient cycling following while tree and conventional harvest in northern mixed forest. Can. J. For. 19:133~140
    [292] Nye PH. 1961.Organic matter and nutrient cycles undermoist tropical forest.Sci Soil, 13:112-118
    [293] 邓聚龙.灰色控制系统[M].华中理工大学出版社,1988
    [294] 庄恒扬.灰色系统关联分析统计检验方法.农业系统科学与综合研究.1996,12(3):168-171
    [295] 谢彩云,唐成斌,尚以顺等.匍茎翦股颖建质量评定.中国草地.2003,25(2):42-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700