RENi5贮氢合金的组织与电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在 LaNi_5贮氢合金的基础上,以混合富镧稀土Ml和混合富铈稀土 Mm
    相互取代制得Ml_αMm_(1-α)Ni_5(α=l,0.8,0.6,0.4,0.2,0)系列贮氢合金,采用
    XRD、金相检测、扫描电镜、能谱分析、电化学方法等对所得合金的相结构、
    晶体结构、组织与形貌及电化学性能、稀土成分对它们的影响等进行了测试分
    析。研究结果表明:
     1.铸态Ml_αMm_(1-α)Ni_5合金的主相为CaCu_5型结构(除极少量的稀土氧化物
    和镍)。晶格参数计算结果表明,随α值的减小,点阵常数a减小,而c变化
    不大,晶胞体积V减小,且与α呈线性关系:V=83.81474+1.96128α。同时,
    MI_αMm_(1-α)Ni_5合金中多面体间隙随之减小。合金熔炼过程中发生离异共晶,使微
    量镍在晶界和晶内偏析。合金成分偏聚主要以析出相的方式进行,晶界与晶内
    的析出相的合金成分与相应晶界合金成分一致。
     2.La被Ce、Pr、Nd取代后,放氢平台压力升高,而且升高程度从大到
    小的次序为。Ce>Nd>Pr:La、Pr、Nd降低滞后,其次序为:Nd>La>Pr,Ce
    增大滞后,合金中铈的含量不宜过多;La被Ce、Pr、Nd取代后,合金热力学
    稳定性下降。且Pf>Ce>Nd。通过改变原子半径不同的金属的比例,使晶胞体
    积发生变化,可调节平衡氢压。
     3.Ml_αMm_(1-α)Ni_5(α=1,0.6,0)活化循环次数n_a的大小存在下列次序:
    Ml_(0.6)Mm_(0.4)Ni_5(6次)<MlNi_5(8次)<MmNi_5(10次)。富镧混合稀土系合金的放
    电容量高于富铈混合稀土系合金;MI_αMm(1-α)Ni_5(α=1,0.6,0)贮氢合金的最
    大放电容量C_(50-max)随α的增大先增后减,在a=0.6处取得最大值228mAh/g。
    在实验研究的30次充放电循环过程中,MI_αMm_(1-α)Ni_5合金的容量衰退存在以下
    顺序:MmNi_5<MI_(0.6)Mm_(0.4)Ni_5<MlNi_5。放电电流增大时,由于极化增大,电池放电
    容量减小,工作电压降低。
     4.放电过程中,负极的电化学极化随放电深度的增加而略有增加,放电初
    期极化主要由电化学极化控制,随着放电的进行,浓差极化逐渐增大并控制负
    极电位的衰减,而欧姆极化在放电过程中变化不明显。
On the basis of LaNi_5 hydrogen storage alloy, Mi_α Mm_(1-α)Ni_5 (α=1, 0.8, 0.6, 0.4,
    0.2, 0) alloys were Wared by means of substitution for La with Lthe-rich
    (Ml) and Cerium-rich(Mm)mishchmetal. The phase structure, crystal StructUe,
    microstrucfore, hydrogen storage property and the influence of rare earth
    composition on them were systematically investigated by means Qf X-ray diffiaction,
    light and SEM metallographic examination, energy spectrum analysis,
    electTochemical method and so on. The results Showed that:
    The main phases of Ml_αMm_(1-α)Ni_5 alloys as cast were hp6-CaCu_5 tyPe structure
    with occasional traces of rear earth oxide and Ni. The calculation of crystal
    parameter showed that, with the decrease of α, parameter 'a' and cell volume
    decreased, 'c' had sligh variation, and thus polyhedron interstice in the alloys
    reduced. The unit cell volume (V) was linear function to the Ml content α in Ml_α
    Mm(1-α)Ni_5 alloys, Which can be expressed as V= 83.8l474 + 1.96l28 α.
    Nonequilibrium eutectic led to small amount of Ni segregation at grain boundary and
    intracrystal during solidification process. The segregation of alloy elemellt formed
    precipitate phase and the composition of them at grain boundary and intracryStal was
    as same as corresponding grain boundary
    partial substitutions for La with Ce, Pr and Nd brought about increase in plateau
    pressures of alloys. The order of increasing degree from high to low was Ce, Nd and
    Prin truns. La, Pr and Nd reduced hysteresis of alloys. Its order was that Nd>La>Pr,
    whereas Ce enhanced hysteresis. The thermodynamic stability was deteriorated with
    partial substituions for La with Ce, Pr and Nd. Plateau pressure of alloys can be
    adjusted by means of change the ratio of different radium element, which led to the
    variation of cell volume.
    The order of activation rate (n_a) of Ml_αMm_(1-α)Ni_5(α=l, 0.6, 0) alloys can be
    expressed as Ml_(0.6)Mm_(0.4)Ni_5 (6 cycles) < MlNi_5 (8 cycles)< MmNi_5(l0 cycles). The
    discharge caPacity of Lanthanum-rich class hydrogen storage alloys was higher than
    that of Cerium-rich class alloys. The discharge capacity of Ml_αMm(1-α)Ni_5 alloys
    increased first and then decreased. The max value (228mAh/g) was gained at α= 0.6.
    During the process of first 30 cycles' charge-discharge, MlNi_5 alloys decayed raPidly,
    while MmNi_5, alloys decayed slowly. High rate discharge led to drop of discharge
    caPacity and voltage due tO stongly polarization.
    The electrochemical polarization determined the decay of potential at beginning
    of discharge. Then, the diffession polarization ialluened the polarization process
    and at lat becarne controIling step. OhInic polariZation eallibits a slight change.
引文
[1] 高新技术要览.北京:中国科学出版社,1993.164.
    [2] 国家自然基金委员会.金属材料科学.北京:科学出版社,1998.
    [3] 颜鸣皋.材料科学前沿研究.北京;航空工业出版社,1994.
    [4] 田莳.功能材料.北京:北京航空航天出版社,1995.
    [5] 大角泰章.金属氢化物的性质及应用.吴永宽,苗艳秋.北京:化学工业出版社.1990.
    [6] 吉泽四郎,电池手册.杨玉伟.北京:国防工业出版社,1987.
    [7] 林勤,李蓉,叶文,陈宁.M1NiCoMnAl合金吸氢动力学.金属学报,1996,32(6):624-628.
    [8] 江建军.稀土成分对贮氢合金RE(NiCoMnTi)_5电化学性能的影响.金属学报,1995,31(8):B379-B383.
    [9] 江建军.贮氢电极合金电化学容量的评价方法.金属学报,1997,33(7):729-735.
    [10] 贺维勇,高国忠.稀土组元对储氢合金La(Ni_(3.5)Co_(0.8)Mn_(0.4)Al_(0.3)电化学性能的影响.中国有色金属学报,1998,8(1):24-27.
    [11] 颜兆鹏.电源.北京;海洋出版社.1990.
    [12] 张文鹏,吴建民.稀土含量对MmNi_5基储氢合金性能的影响.金属功能材料,1998,5(4):173-178.
    [13] 李蓉,刘雅茹.Ni-MH电池电极活性物质利用率的研究.金属功能材料,1998,5(1):21-25.
    [14] 吴建民,莫付江.Ni-MH电池的循环寿命研究.金属功能材料.1998,5(1):26-28.
    [15] 蒙冕武,黄思玉,刘明登,邓希敏.贮氢电极的充放电过程研究.金属功能材料.1998,5(6):263-267.
    [16] 陈宁,林勤,科学通报,1995,40:2234-2236.
    [17] 张文鹏,魏丹,吴建民,莫付江.Hm(NiCoMnTi)_5贮氢合金的电极特性.功能材料.1998,29(6):665-666.
    [18] 江建军,金国栋,雷永泉,孙大林,吴京,王启东.Ml_βMm_(1-β)(NiCoMnTi)_5贮氢合金的电化学性能和 Rietveld 分析.功能材料.1998,29(1):33-37.
    [19] Anton Lundqvist, Goran Lindbergh. Determination of the Diffusion Coefficient and Phase-Transfer Rate Parameter in LaNi_5 and MmNi_(3.6)Co_(0.8)Mn_(0.4)Al_(0.3) Using Micro-electrodes.J. Electrochem. Soc. 1998,145(11):3740-3746.
    [20] Bala S. Haran, Branko N. Popov, RaLph E. White. Studies on ElectrolessCobalt Coating for Microencasulation of Hydrogen Storage Alloys. J. Electro-chem. Soc. 1998,145(9):3000-3006.
    [21] Guo Jin, Li Chonghe, Chen Nianyi. Effect of Rare Earth Compositions on the Hydrogen Storage Properties of ABs-Type Alloys and Pattern Recognition Analysis. J. Electro-chem. Soc. 1997,144(7):2276-2278.
    [22] C. Witham, B, V. Ratnakumar, et al. Electrochemical Evaluation of LaNi_(5-x)Ge_x Hydride Alloys. J. Electrochem. Soc. 1996,143(9):L205-L208.
    [23] C. Witham, A. HighTower, et al. Electrochemical Properties of LaNi_(5-x)Ge_x Alloys in Ni-MH Batteries. J. Electrochem. Soc. 1997,144(11):3758-3764.
    [24] 大角泰章.水素吸藏合金.金属.1990,4:7-12
    [25] 石川 博,境 哲男.水素吸藏合金用二次电池开发.铁钢.1989,1:2003-2009.
    [26] 邢国良,李国勋等.镍氢电池在放电过程中的电极极化.稀有金属.1999,23(1):1-3.
    [27] 唐与谵.高容量量镍-金属氢化物电池用贮氢合金,国外金属材料.1992,5:21-26.
    [28] 朱光明.博士学位论文.浙江:浙江大学,1995.
    [29] 潘光国,张新宇.混合稀土-镍系贮氢材料研制.电源技术.1995,19(6):5-25.
    [30] 谭玲生,汪继强.MH-Ni电池的发展现状与展望.电源技术.1997,21(1):31-34.
    [31] 张文宽,郝建国.MH/Ni碱性蓄电池技术的研究与开发.电源技术.1994,18(2):1-3.
    [32] 杨遇春.镍氢二次电池和储氢电极材料.电池.1991,21(6):16-20.
    [33] 马松艳,赵东江.影响贮氢合金性能因素的研究(Ⅱ)——贮氢合金组成及温度的影响.电源技术.1995,19(5):13-17.
    [34] 李传健,王新林,王崇愚.影响贮氢合金电化学性能测试结果的因素.电源技术.1998,22 (1):2-4.
    [35] 刘宪伟,戴春华,张沛龙.取代元素对 MmNi 基合金放电特性的影响.电源技术.1994,18(3):14-18.
    [36] 王超群,靳红梅,李国勋.稀土贮氢合金RE(NiCoMnAl)_5的相结构与电容量间关系.电源技术.1998,22(1):5-7.
    [37] 王超群,靳红梅,王宁.稀土贮氢合金RE(NiCoMnAl)_5的相结构研究.电源技术.1998,22 (3):107-110.
    [38] 王超群,靳红梅,李国勋.混合稀土贮氢合金Mm(Ni_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3))_5化学配比x对电化学性能的影响.电源技术.1998,22(4):158-160.
    [39] 宋彦宁,黄永昌,朱振华.提高混合稀土贮氢合金活化性能研究.电源技术。1998,22(6):242-243.
    [40] 江建军,雷永泉,吴京.稀土AB_5型贮氢电极合金材料优化设计原理.电源技术.1998,22(4):61-64.
    [41] T. Sakai, T. Iwaki. Air-Metal Hydride Battery Construction and Evaluation. J. Elec-trochem. Soc. 1995,142(12):4040-4045.
    [42] Z. Ye, T. Sakai, D. Noreus. Ni-MH Battery Electrodes Made by a Dry Power Process. J. Electrochem. Soc. 1995142(12):4045-4050.
    [43] G. D. Adzic, J.R. Johnson, J. J. Reilly. Cerium Content and Cycle Life of Multi-component AB_5 Hydride Electrodes. J. Electrochem. Soc. 1995,142(10):3429-3433.
    [44] Donald A. Tryk, In Tae Bae, et al. In Situ La, Ce and Nd L-Edge X-Ray Absorption Fine Structure Study of an Intermetallic Metal Hydride Electrode in an Operating Alkaline Battery. J. Electrochem. Soc. 1995,142(5):L76-L78.
    [45] S. Mukerjee, J. McBreen, et al: In Situ X-Ray Absorption Spectroscopy Studies of Metal HydrideElectrodes. J. Electrochem. Soc. 1995, 142(7):2278-2265.
    [46] A. Anani, F. Eschbach, J. howard. Electrochimica Acta. 1995,40:2215.
    [47] L. Brewer, in Alloying (Edit by J. L. Walter, M. R Jachson and C. T. Sims), ASM International. 1988.
    [48] TETSUO SAKAI et al.,The influence of small amounts of added elements on various anode performance characteristics for LaNi_(2.5)Co_(2.5) based alloys. J. Less-Common Metals, 1990(159):127-139.
    [49] J. LIU et al. R Nis hydrogen storage compounds(R=Rare Earth). J. Less-Common Metals. 1983(90):11-20
    [50] T. Sakai et al. Rechargeable hydrogen batteries using rare-earth-based hydrogen storage alloys. J. Alloy and Compounds, 1992(180):37-54
    [51] F. Meli et al. Electrochemical and surface properties of low cost, cobalt-free LaNi_5-type hydrogen storage alloys. J. Alloys and Compounds, 1993(202):81-88
    [52] K. Takeya et al. Hydrogen storage alloy powders produced by a reduction-diffussion process and their electrode properties. J. Alloys and Compounds, 1993(192):167-169
    [53] 江建军,雷永泉,孙大林,吴京,王启东。La、Ce、Nd和Pr对RE(NiCo-MnTi)_5贮氢合金电化学性能的作用机理.中国稀土学报.1997,15(4):318-324
    [54] 任可,雷永泉,陈立新,张庆安,王启东。Ml(Ni_(4.55-x)Co_xMn_(0.4)Ti_(0.05)合金的相结构与电化学性能。2000,36(4):364-369
    [55] 李树棠.晶体X射线衍射学.冶金工业出版社,1996:148-160.
    [56] 虞党奇.二元合金状态图集.上海科技出版社,1987:440.
    [57] Wei-kang Hu, Dong-Myung Kim and so on. Effect of annealing treatment on electrochemical properties of Mm-based hydrogen storage alloys for Ni/MH batteries. J. Alloys and Compounds. 1998 (270):255-264.
    [58] 桑革,涂铭旌等.LaNi_(4.7)Al_(0.3)和MlNi_(4.5)Al_(0.5)合金在H_2-CO系统中贮氢性能下降的研究.中国有色金属学报,2000,10(1):69-72.
    [59] R. balasubramaniam,M. N. Mungole and K. N. Rai. Hydriding properties of MmNi_5 system with aluminium manganese and tin substitutions. J. Alloys and compounds. 1993 (196):63-70.
    [60] K. Suzuki, N. Yanagihara, H. Kawano and A. Ohta. Effect of rare earth composition on the electrochemical properties of Mm(Ni-Mn-Al-Co)_5 alloys. J. Alloys and Compounds. 1993 (192) : 173-175.
    [61] S. Wakao. Anodic polarization behaviour of hydride-deuteride electrodes. J. Less-common Metals. 1983, 89:481-48.
    [62] Mendelsohn M H, Gruen D M, Dwight A E. Nature, 1977, 269:45
    [63] 刘光华.稀土固体材料学.北京:机械工业出版社,1997
    [64] Lundin C E, Lynch F E and Magee C B. J Less-Common Met. 1997, 56: 19-23
    [65] 查全性.电极过程动力学导论.北京:科学出版社,1987
    [66] 石霖.合金热力学.北京:机械工业出版社,1992
    [67] 肖纪美.合金能量学—合金能量的关系、计算和应用.上海:上海科学技术出版社,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700