人类活动对洪水预报影响分析及防洪调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国不仅洪涝灾害频繁,洪灾损失严重,而且缺水问题突出。充分发挥水利工程特别是水库的作用,在确保防洪安全的前提下,开发利用洪水资源,减害增利,更好地促进人与自然和谐共存,是减少洪涝灾害、缓解水资源危机的重要措施。本文结合国家自然科学基金项目“水库汛限水位动态控制及其风险分析理论与方法研究”、“吉林省丰满水库流域小水库塘坝对水库来水的影响分析研究”课题、“大连市碧流河水库下游河道防洪能力分析研究”课题,重点研究人类活动影响下的水文效应,并将其引入概率洪水预报之中,提高了洪水预报精度;将水库下游河道过流能力变化的特性引入到水库防洪预报调度方式的制定中,使防洪预报调度方式更加贴近于实际;考虑洪灾损失指标,利用可变模糊优选模型分别选出了河道防洪工程措施最优方案和水库汛限水位动态控制最优方案,为河道防洪和水库实时调度提供了决策支持。
     (1)人类活动对流域水循环影响不断加重,迫切需要量化人类活动对水文预报的影响程度。针对该问题,首先分析了碧流河水库流域和丰满水库流域受人类活动影响的程度,得出前者受人类活动影响较小,后者受影响较大的结论。然后通过对流域下垫面变化、水利工程建设运行情况的分析,获得人类活动对流域水循环影响的变点,并采用降雨径流趋势分析的方法对变点进行验证,利用数据挖掘方法分析变化后人类活动影响下的水文效应。以受人类活动影响显著,且多数水库运行资料短缺的丰满水库流域为研究背景,建立了基于决策树技术的场次洪水拦洪比推理模式,并利用T-S模糊推理方法对推理模式进行了验证。结果显示两种方法所建推理模式基本一致,利用决策树建立的推理模式可信度较高。应用该模式对流域场次洪水洪量预报修正的效果较好,其结果可用于指导实际洪水预报。
     (2)提出了考虑人类活动影响的贝叶斯概率洪水预报模型,该模型通过人类活动影响下的水文效应推理模式推求获得场次洪水拦洪比及拦洪过程,利用场次洪水拦洪过程对原预报方案预报结果进行实时校正。模型利用贝叶斯分析对原预报方案预报结果的后验分布函数进行转换,利用马尔科夫链蒙特卡洛方法对高维分布函数进行吉布斯抽样模拟,通过大量迭代得到该分布函数的特征值与期望值,期望值即为概率预报的结果。抽样过程中分别考虑了人类活动影响的下限、上限和最可能实时校正作用。以丰满水库流域为例的验证结果表明,该模型可行而且实用,预报精度相对较高。人类活动水文效应对洪水峰值预报影响较大,而对洪水峰现时间预报影响相对较小。
     (3)以碧流河水库下游河道及防护区城子坦镇为研究背景,针对缺乏实测流量资料的水库下游河道,利用一维河网水力计算软件MIKE11建模,模拟计算了多种工况(不同河床糙率系数、潮汐)条件下水库下游河道的过流能力,并利用HydroInfo水力计算软件进行了对比验证。分析了河床糙率系数和潮汐对河道过流能力的影响程度,得出河床糙率系数对于全河道过流能力较敏感,潮汐对于入海口河段影响较大的结论。水库下游过流能力研究成果是考虑下游河道过流能力的水库防洪调度研究的基础。利用一维、二维河网水力计算软件MIKE11、MIKE21建模,模拟分析了水库下游城镇在超标准洪水作用下的淹没状况。采用分类洪灾损失评估方法对淹没损失进行了评估,为水库汛期风险管理提供指标数据。基于B/S模式设计开发了水库下游防洪信息服务系统,为水库河道联合调度提供信息支持。
     (4)针对下游有防护任务且防护目标距离入海口较近的水库,由于受堤防、河床糙率、潮汐的影响,其下游河道的过流能力较设计值(设计值偏安全地考虑了河床糙率、入海口潮汐变化影响)有较大的变化,而已有的预报调度方式大多是将其概化为定值进行设计的,并没有考虑河道过流能力变化特性的实际情况,以碧流河水库为研究背景,制定了基于下游河道过流能力分级的预报调度方式。该方式以考虑预报误差的累积净雨、入库流量和下游河道的过流能力为调度判别指标,将过流能力从以往大多采用的单纯约束提升到动态变化过程,更加贴近现实。随后的实例分析阐述了分级预报调度方式的制定过程,并通过对3场不同类型洪水的调节验证了该预报调度方式的可行性与合理性。
     (5)以碧流河水库及其下游河道、防护区城子坦镇为研究背景,应用可变模糊优选模型分别对河道防洪工程措施方案与水库汛限水位动态控制方案进行了优选。从防护区淹没状况、社会、经济和生态多角度出发,将淹没面积、淹没最大水深、淹没经济损失、工程建设费用、社会和谐度和生态环境影响系数确定为工程措施方案优选指标。优选结果表明,加固险堤,疏浚防洪标准较低的部分河道,使下游防洪标准洪水达到18年一遇这一方案最符合当地的实际情况。在分析水库汛限水位动态控制影响因素的基础上,建立了汛限水位动态控制方案优选评价指标体系。分析计算了在水库汛限水位抬高的情况下,下游城镇发生超标准洪水时的淹没损失。结合水库防洪风险、年平均发电量、洪水资源利用率及供水保证率可靠度四项指标,确定了水库在实时调度阶段汛限水位动态控制的满意决策方案。
     最后,对全文进行了总结,并对有待进一步研究的问题进行了展望。
In China flood disaster happens continually and it often results enormous losses. However,water resource absence is one of outstanding problems in our country.Because the exploitation of flood resource can promote human and the nature harmoniously,utilizing hydraulic engineering fully(especially reservoir) is the important measure of lessening flood disaster and solving water resource crisis under the premise that the safety of flood control is insured.This paper combines the flood protection and disaster mitigation research projects of author affiliation.In this paper,firstly the hydrological effects with human activities are studied,and it is included in flood combined forecasting method which improves the precision of flood forecasting.Then the variational characteristic of flood protection ability of reservoir downstream river course is introduced to establish flood protection forecast operation,which result is more useful and rational.Finally the variable fuzzy optimization model is adopted to optimize the flood protection engineering schemes and the dynamic flood control limited water level schemes,which provides decision-making proofs for flood control of some basins and real-time operation of reservoirs.
     (1) With the increasing impact of human activities on the basin's hydrologic cycle,it is necessary to quantitatively analyze the influence of hydrological forecasting by human activities.Firstly the impact of human activities on Biliuhe reservoir basin and Fengman reservoir basin are analyzed respectively and the result is gained that the impact of human activities on Biliuhe reservoir basin is much smaller than Fengman reservoir basin.Then the change-point of the impact of human activities on basin's hydrologic cycle is gained with the analysis of basin's underlaying surface changes and hydraulic projects running conditions,and it is validated by analysis on rainfall runoff trend.And hydrological effects with human activities are stressed based on data mining method.Then the reservoir storage scales inference model is established based on decision tree with Fengman reservoir basin for example which has remarkable human activities impact and lacks for reservoir operation data.Finally the established inference model is validated by T-S fuzzy inference method and the results of both inference methods are coincident.It is verified that the precision of the established inference model is comparative high,the corrected effect of the flood volume forecasting results using the established model is good comparatively and the model is applied to practically supervise flood forecasting.
     (2) Bayesian probability forecast method is introduced which takes human activities impact into account.The method calculates reservoirs storage scales and storage process on the basis of the established hydrological effect inference model,and the primary forecasting scheme is modified in real time by the storage process.Bayesian probability forecast method converts the prediction results of the primary forecasting scheme by the posteriori distribution function,and Gibbs sample is processed for high dimensional distribution function by MCMC. Then the eigenvalue and expectation of the distributed function are found by iterative operation,and the expectation is the result of probability forecast.The minimum,maximum and optimum real time emendation function of human activities impact is considered respectively in the sampling process.Finally the precision of the Bayesian probability forecast method is validated by taking the Fengman reservoir basin for instance.The result indicates the method is feasible and practical,and its precision overwhelms the primary forecasting scheme.The flood peak forecasting has a great impact on hydrological effect of human activities,and forecasting of the time flood peak appearing has a lesser impact on hydrological effect of human activities.
     (3) Taking the downstream river course of Biliuhe reservoir,protected area(Chengzitan Town) for instance,according to the situation of practical flux data absence for downstream river course of the reservoir,the one-dimensional river network model(MIKE11) is introduced to simulate its flood protection ability by controlling variables under various project-situation(such as different rough rate coefficients of riverbed,tide) and it is validated by HydroInfo hydraulic software.The impacts of rough rate coefficients of riverbed and tide for the flood protection ability,are analyzed respectively,and the conclusion is that the rough rate coefficients of riverbed is sensitive for the flood protection ability of all river course and the tide is sensitive for the flood protection ability of the entrance of the sea.Then the one-dimensional river network model(MIKE11) and the two-dimensional river network model(MIKE21) are introduced to calculate and analyze the flood inundation status for the downstream river town of the reservoir,and the flood inundation status are evaluated by zonal flood loss evaluation method which can offer the support data to risk management of reservoir in flood season.Finally the flood protection information system for downstream river course of reservoir is designed on the basis of B/S mode.which can provide decision-making proofs for joint operation system.
     (4) To some reservoirs with the task of flood control and while near by the entrance of the sea,the flood protection ability of downstream river course shows great uncertainty, which varies with the following factors,bed roughness,tide,sea-wind and so on.However, the actual flood protection forecast operation modes are established by taking it into account as an invariant.If so,while the flood protection ability of downstream river course is lower, maybe we get losses if we undergo flood operation taking the old modes,whereas,we will bear economic loss because of releasing floodwater ahead of schedule.Aimed at those situations,with the background of Biliuhe reservoir,this paper develop a new flood protection forecast operation mode,which based on the classification of the flood protection ability of downstream river course.To further attest its feasibility,the new mode is adopted in operating three floods.The results show that the mode is useful and rational.
     (5) Taking the Biliuhe reservoir and its downstream fiver course,protected area (Chengzitan Town) for instance,the variable fuzzy optimization model is adopted to optimize the flood protection engineering schemes and the dynamic flood control limited water level schemes.Proceed from the submerging state,society,economy and ecology angles,the submerging ares the deepest submerging depth,economic loss of flood disaster,the schema construction cost,social harmonious degree and ecological environment influence coefficient have been as optimization indices.The optimization results show that the schema "Reinforcing the dangerous banks and dredging some watercourses of lower flood standard and enhancing standard to 18-year flood" is suited for the local actual situation.Based on the analysis of the factors influencing the dynamic flood control limited water level of a reservoir, the evaluation index system on optimizing dynamic limited water level schemes is established. The flood disaster losses of Chengzitan town at the lower of the reservoir,the flood control risk of a reservoir,the mean annual generated energy,the utilization rate of water resource and the reliability of water-supply guaranteed rate after running up the limited water level are calculated.The satisfying schema obtained will provide an important reference and basis for dynamically controlling limited water level during real-time operation of a reservoir.
     Finally,the conclusions are draw and the problems to be further studied are discussed.
引文
[1]http://news.cyol.com/content/2008-09/02/content_2340907.htm
    [2]李立,朱毅.工程与非工程措施并举构建现代防洪体系[J].湖南水利水电,2004(3):36-37.
    [3]库德泽威奇,郑丰译,刘渝校.非工程措施防洪与可持续发展[J].水利水电快报,2003,24(24):8-12.
    [4]李纪人.遥感、地理信息系统和水文模型研究[c].遥感在中国—纪念中国遥感中心成立15周年论文集.北京:测绘出版社,1996.
    [5]RANSEY E W.Monitoring flooding in coastal wetlands by using radar imagery and wound-based measurements[J].International journal of remote sensing,1995,16(13):24.59-2052.
    [6]易丹辉.统计预测[M].北京:中国人民大学出版社,1990.
    [7]SALAS J D,DELLEUR J W,YEVJEVICH V,et al.Applied modeling of hydrologic time series [M].Colorado:Water Resources Publications,1985.
    [8]ZHANG J,MORRIS A J,MARTIN E B,Long-term prediction models based on mixed order locally recurrent neural networks[J].Computers and Chemical Engineering,1998,22(7-8):1051-1063.
    [9]HUANG Y P,HUANG C H.Real-valued genetic algorithms for fuzzy grey prediction system[J].Fuzzy Sets and Systems,1997,87(3):265-276.
    [10]陈守煜.中长期水文预报综合分析理论模式与预报方法[J].水利学报,1997,(8):15-21.
    [11]王本德.水文中长期预报模糊数学方法[M].大连:大连理工大学出版社,1993.
    [12]NAYAK P C,SUDHEER K P,RANGAN D M,et al.A neuro-fuzzy computing technique for modeling hydrological time series[J].Journal of Hydrology,2004,291(1-2):52-66.
    [13]夏军,叶守泽.灰色系统方法在洪水径流预测中的应用研究与展望[J].水电能源科学,1995,13(3):197-205.
    [14]陈意平,曲谦隆等.灰色系统理论在水利工程中的应用[M]。太原:山西科学技术出版社,1992.
    [15]王弘宇,马放,杨开等.灰色新陈代谢GM(1,1)模型在中长期城市需水量预测中的应用研究[J].武汉大学学报(工学版),2004,37(6):32-35.
    [16]邓聚龙.灰色系统[M].北京:国防工业出版社,1985.
    [17]谢新民,蒋云钟,石玉波等.基于人工神经网络的河川径流实时预报研究[J].水利水电技术,1999,30(9):1-4.
    [18]BARATTI R,CANNAS B,FANNI A,et al.River flow forecast for reservoir management through neural networks[J].Neurocomputing,2003,55(3-4):421-437.
    [19]JAIN A,KUMAR A M..Hybrid neural network models for hydrologic time series forecasting [J].Applied Soft Computing,2007,7(2):585-592.
    [20]MAIER H R,DANDY G C.BURCH M D.Use of artificial neural networks for modelling cyanobacteria Anabaena spp.in the River Murray,South Australia[J].Ecological Modelling,1998,105(2-3):257-272.
    [21]方红,郑文瑞.径流预报的模糊神经网络方法[J].吉林大学学报(地球科学版),2004,34:80-82.
    [22]赵人俊.流域水文模拟——新安江模型与陕北模型[M].北京:水利电力出版社,1984.
    [23]赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.
    [24]长江流域规划办公室.水文预报方法[M].北京:水利水电出版社,1993.
    [25]万洪涛,周成虎,万庆等.地理信息系统与水文模型集成研究评述[J].水科学进展,2001.12(4):560-568.
    [26]JASPER K,GURTZ J,HERBERT L.Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model[J].Journal of Hydrology,2002,267(1-2):40-52.
    [27]JASPER K,GURTZ J,LANG H.Erratum to "Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model"[J].Journal of Hydrology,2002,269(3-4):253-254.
    [28]COLLISCHONN W,HAAS R,ANDREOLLII,et al.Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model[J].Journal of Hydrology,2005.305(1-4):87-98.
    [29]熊立华,郭生练.分布式流域水文模型[M].北京:中国水利水电出版社,2004.
    [30]VICENS G J.RODRIGUEZ-ITURBE I,SCHANKE J G.Bayesian framemwork for use of regional information in hydrology[J].Water Resources Research,1975,11(3):405-414.
    [31]WOOD E F,RODRIGUEZ-ITURBE I.Bayesian inference and decision making for extreme hydrologic events[J].Water Resources Research.1975,11(4):533-542.
    [32]LYE L M.Bayes estimate of the probability of exceedence of annual floods[J].Stochastic Hydrology and Hydraulics,1990,4:56-64.
    [33]KUCZERA G.Combining site-specific and regional information:an empirical Bayes approach [J].Water Resources Research,1982,18(2):306-314.
    [34]RASMUSSEN D F,ROSBJERG D.Evaluation of risk concepts in partial duration series[J].Stochastic Hydrology and Hydraulics,1991,5:1-16.
    [35]KUCZERA G.Uncorrelated measurement error in flood frequency inference[J].Water Resources Research.1992,28(1):183-188.
    [36]关伯贤.贝叶斯方法在洪水频率分析中的应用[J].成都科技大学学报,1990,(1):68-74.
    [37]王善序.贝叶斯概率水文预报简介[J].水文,2001,21(5):33,34.
    [38]张洪刚,郭生练.贝叶斯概率洪水预报系统[J].科学技术与工程,2004,4(2):74,75.
    [39]钱名开.徐时进.王善序等.淮河息县站流量概率预报模型研究[J].水文,2004,24(2):23-25.
    [40]KRZYSZTOFOWICZ R.Bayesian decision principle for flood warning[C].Optimizing the Resources for Water Management,Proceedings of the 17th Annual National Conference,ASCE,New York,1990,454-455.
    [41]贾仰文,王浩.“黄河流域水资源演变规律与二元演化模型”研究成果简介[J].水利水电技术,2006,37(21:45-52.
    [42]王浩,雷晓辉,秦大庸等.基于人类活动的流域产流模型构建[J].资源科学,2003,25(6):14-18.
    [43]王浩,王成明.王建华等.二元年径流演化模式及其在无定河流域的应用[J].中国科学(E 辑),2004(34):42-48.
    [44]贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟(Ⅰ)——模型开发与验证[J].水利学报,2006,37(5):534-542.
    [45]郭生练,王金星,彭辉等.考虑人类活动影响的丰满水库洪水预报方案[J].水电能源科学,2000,18(2):14-17.
    [46]王纲胜,夏军,万东晖等.气候变化及人类活动影响下的潮白河月水量平衡模拟[J].自然资源学报,2006,21(1):86-91.
    [47]张蕾娜,李秀彬.用水文特征参数变化表征人类活动的水文效应初探[J].资源科学,2004,26(2):62-66.
    [48]李艳,陈晓宏,王兆礼.人类活动对北江流域径流系列变化的影响初探[J].自然资源学报,2006,21(6):910-916.
    [49]孙宁,李秀彬,冉圣洪等.潮河上游降水-径流关系演变及人类活动的影响分析[J].地理科学进展,2007,26(5):41-47.
    [50]许炯心,孙季.嘉陵江流域年径流量的变化及其原因[J].山地学报,2007,25(2):153-159.
    [51]任立良,张炜,李春红等.中国北方地区人类活动对地表水资源的影响研究[J].河海大学学报(自然科学版),2001,29(4):13-18.
    [52]黄强,蒋晓辉,刘俊萍等.二元模式下黄河年径流变化规律研究[J].自然科学进展,2002,12(8):874-877.
    [53]刘红玉,李兆富.三江平原典型湿地流域水文情势变化过程及其影响因素分析[J].自然资源学报,2005,20(4):494-501.
    [54]程春田,王本德.考虑人类活动影响的流域水文模型参数的确定[J].大连理工大学学报,1995,35(3):400-404.
    [55]尹雄锐,张翔,夏军等.考虑土地覆被的神经网络径流模拟研究[J].水电能源科学,2004,22(2):13-15.
    [56]刘登伟,封志明,延军平.秦岭南北地区人口增长对水资源影响的比较研究[J].干旱区资源与环境,2005,19(7):147-151.
    [57]李丽娟,姜德娟,李九一等.土地利用/覆被变化的水文效应研究进展[J].自然资源学报,2007,22(2):211-222.
    [58]姚治君,管彦平,高迎春.潮白河径流分布规律及人类活动对径流的影响分析[J].地理科学进展,2003,22(6):599-606.
    [59]池宸星,郝振纯.王玲等.黄土区人类活动影响下的产汇流模拟研究[J].地理科学进展,2005,24(3):101-108.
    [60]沈清德,全鸿烈.水库上游水利工程对中小型水库洪水预报的影响[J].东北水利水电,2002.21(3):43-45.
    [61]BARLAGE M J,RICHARDS P L.SOUSOUNIS P J,et al.Impacts of climate change and land use change on runoff from a Great Lakes watershed[J].Journal of Great Lakes Research,2002,28(4):568-582.
    [62]BRONSTERT A,NIEHOFF D,BURGER G.Effects of climate and land-use change on storm runoff generation:present knowledge and modelling capabilities[J].Hydrological Processes,2002,16(2):509-529.
    [63]SEGUIS L,CAPPELAERE B,MILESI G.et al.Simulated impacts of climate change and land-clearing on runoff from a small Sahelian catchment[J].Hydrological Processes,2004,18(17):3401-3413.
    [64]YANG D Q,YE B S,SHIKLOMANOV A.Discharge characteristics and changes over the Ob River watershed in Siberia[J],Journal of Hydrometeorology,2004,5(4):595-610.
    [65]ANDRADE M G,FRAGOSO M D,CARNEIRO A A F M.A stochastic approach to the flood control problem[J].Applied Mathematical Modelling,2001.25(6):499-511.
    [66]LUK K C,BALL J E,SHARMA A.An application of artificial neural networks for rainfall forecasting[J].Mathematical and Computer Modelling,2001,33(6-7):683-693.
    [67]KARBOWSKI A,MALINOWSKI K,NIEWIADOMSKA-SZYNKIEWICZ E.A hybrid analytic/rule-based approach to reservoir system management during flood[J].Decision Support Systems,2005,38(4):599-610.
    [68]STARS C,RUDMAN R,WHIDDLE C.Philosophical basis for risk analysis[J].Ann.Rev.Energy,1976(4):1-6.
    [69]VOGEL R M.Reliability indices for water supply sysms[J].J Water Resour Plan Manage,1987.113(4):563-579.
    [70]ASHKAR F,Rousseue J.Design discharge as a random variable:a risk study[J].Water Resources Research,1981,17(3):277-291.
    [71]KRZYSZTOFOWICZ R.Why should a forecast and a decision maker use Bayes theory[J].Water Resources Research,1983,19(2):327-336.
    [72]KRZYSZTOFOWICZ R.A Bayesian Markov model of the flood forecast process[J].Water Resources Research,1983,19(6):1455-1465.
    [73]KRZYSZTOFOWICZ R.A methodology for evaluation of flood forecast-response systems[J].Water Resources Research,1983,19(6):1423-1454.
    [74]KIM G,BARROS A P.Quantitative flood forecasting using multisensor data and neural networks[J].Journal of Hydrology,2001,246(1-4):45-62.
    [75]李玮,郭生练,刘攀.水库汛限水位确定方法评述与展望[J].水力发电.2005.31(1):66-70.
    [76]陈宁珍.水库运行调度[M].北京:水利电力出版社,1990.
    [77]大连理工大学,国家防汛抗旱总指挥部办公室.水库防洪预报调度方法及应用[M].北京:中国水利水电出版社,1996.
    [78]陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998.
    [79]孙跃玲,曹升乐.水库动态汛限水位过程线研究[J].水库管理技术,1 996(6):9-11.
    [80]陈守煜,张文国.汛期直接模糊统计试验与绝对隶属度稳定性分析[J].大连理工大学学报.2000,40(2):233-235.
    [81]胡振鹏,余敷秋,冯尚友.丹江口水库夏秋汛过渡期水库运用方案研究[J].水电能源科学,1998(3):7-11.
    [82]曹永强.汛限水位动态控制方法研究及其风险分析[D].大连:大连理工大学,2003.
    [83]谭培伦,谭启富,周棣华.关于水库防洪调度若干问题的探讨[J].人民长江,1994(4):9-13.
    [84]虞锦江.水电站水库洪水优化调度[J].水电能源科学,1983(1):65-69.
    [85]吴保生,陈惠源.多库防洪系统优化调度的一种解算方法[J].水利学报,1991(11):35-40,46.
    [86]张英贵.径流式水电站调蓄库容的利用[J].水力发电学报,1992,36(1):47-50.
    [87]王本德,张力.综合利用水库洪水模糊优化调度[J].水利学报,1993(1):35-40,50.
    [88]王本德,周惠成,程春田.梯级水库群防洪系统的多目标洪水调度决策的模糊优选[J].水利学报,1994(2):31-39,45.
    [89]邱瑞田,王本德,郭生练等.全国水库防洪调度决策支持系统工程[J].中国水利,2004(22):58-60.
    [90]李杰友,王佩兰.枫树坝水库实时洪水预报模型[J].人民珠江,1994(1):10-12.
    [9]]游进军,王丽萍.陆浑水库防洪实时调度研究[J].武汉水利电力大学学报,2000,33(3):8-12.
    [92]王连时,房殿利.柴河水库防洪预报调度规划方式[J].华北水利水电学院院报,1998,19(3):27-33.
    [93]王本德,周惠成,程春田等.可利用丰满气象台短期降雨预报时效分析[J].水利管理技术,1994(4):41-46.
    [94]梁年生,姜铁兵,唐九如.拓溪水电站水库拦洪尾超蓄的可行性研究[J].电力建设,1995(4):5-8.
    [95]付湘,纪昌明.水库汛期调度的最大洪灾风险率研究[J].水电能源科学,1998,16(2):11-14.
    [96]邱瑞田,王本德,周惠成.水库汛期限制水位控制理论与观念的更新探讨[J].水科学进展,2004,15(1):68-72.
    [97]刘攀,郭生练,王才君等.水库汛限水位实时动态控制模型研究fJ].水文计算,2005.31(1):8-11,21.
    [98]王本德,周惠成,程春田等.水库预蓄效益与风险控制模型[J].水文,2000,20(1):14-18.
    [99]熊明.三峡水库防洪安全风险研究[J].水利水电技术,1999,30(2):39-42.
    [100]梅亚东,谈广鸣.大坝防洪安全的风险分析[J].武汉大学学报(工学版),2002,35(6):11-15.
    [101]艾学山,陈森林,万鹰等.水库群洪水补偿调度的通用模型研究[J].武汉大学学报(工学版).2002.35(3):17-19.
    [102]董霞,那荣越.太子河流域库群补偿防洪调度的研究[J].东北水利水电,2004,22(7):15-17.
    [103]玄英姬,许江松.梯级水库联合理想补偿调节研究[J].三峡大学学报(自然科学版).2003,25(1):43-46.
    [104]王俊英,吴晋青.北三河中下游河道现状行洪能力分析[J].水利水电工程设计.2000,19(2):30-33.
    [105]许艳,唐德善,蒋吉.浑河干流防洪能力影响分析[J].水利科技与经济,2007,13(8):581-586.
    [106]李淑琴.多沙性河道过流能力计算及影响因素分析[J].河北水利,2000(2):41-43.
    [107]曲少军.申冠卿,魏向阳等.黄河下游河道排洪能力分析[J].人民黄河.2000,22(11):3-4.
    [108]APPELBAUM S J.Determination of urban flood damage[J].Journal of Water Resources Planning and Management,1985,111(3):269-283.
    [109]DAS S,et al.A nontraditional methodology for flood stage-damage calculation[J].Water Resources Bulletin,1988,24(6):1263-1272.
    [110]COCHRANCE H.Book review of A.Sorkin:Economic Aspects of Natural Hazards,1982[J].American Journal of Agricultural Economics.1984,66-114.
    [111]KOHNSON W K.Significance of location in computing flood damage[J].Journal of Water Resources Planning and Management,1985,111(1):65-81.
    [112]OUTLLETE P,et al.Application of extreme value theory to flood damage[J].Journal of Water Resources Planning and Management,1985,111(4):467-477.
    [113]YOE C E.Ice-related flood damage estimation[J].Journal of Water Resources Planning and Management.1984,11(2):141-152.
    [114]CRESSMAN D R,et al.Estimation of cropland damages caused by overland flooding,two case studies[J].Canadian Water Resources Journal,1988,13(3):1525.
    [115]MC BEAN E A,et al.Flood depth-damage curves by interview survey[J].Journal of Water Resources Planning and Management.1988,114(6):613-634.
    [116]赵雪莲,陈华丽.基于GIS的洪灾遥感监测与损失风险评价系统[J].地质与资源,2003,12(1):54-60.
    [117]李观义.基于GIS的洪灾损失评估技术及其应用[J],地理与地理信息科学,2003,19(4):97-100.
    [118]丁志雄.胡亚林,李纪人.基于空间信息格网的洪灾损失评估模型及其应用[J].水利水电技术.2005,36(6):93-96,101.
    [119]李红英.李洋.基于GIS的洪灾损失评估应用研究[J].西北水力发电,2007,23(1):45-48.
    [120]陈朋成.周孝德.冯民权等.金盆水库溃坝洪灾损失预测研究[J].水土保持通报,2008,28(1):99-101.
    [121]傅春,张强.基于G1S空间信息单元格的区域洪灾损失快速评估模型[J1.南昌大学学报(工科版).2008,30(2):193-196.
    [122]黄伟杰,程述,陈文龙等.基于BP神经网络的洪灾经济损失评估[J].广东水利电力职业技术学院学报,2008,6(2):36-38.
    [123]王宝华,付强,冯艳等.洪灾经济损失快速评估的混合式模糊神经网络模型[J].东北农业大学学报,2008,39(6):47-51.
    [124]邢贞相,付强,芮孝芳.两种实用的洪灾损失频率分析方法[J].系统工程理论与实践,2006(2):127-132.
    [125]李超.基于物元分析的我国洪灾损失综合评估[J].统计教育,2006(3):44-46.
    [126]曹永强,杜国志,王方雄.洪灾损失评估方法及其应用研究[J].辽宁师范大学学报(自然科学版),2006,29(3):355-358.
    [127]章恒全,林武星.单次洪灾经济损失评价方法研究[J].水利经济,2007,25(6):13-15,22.
    [128]金秋蓉,李红仙.刘谦等.洪汝河流域成灾水量与洪灾损失规律分析[J].水利经济,2007,25(6):20-22.
    [129]付湘,谈广鸣,纪昌明.洪灾直接损失评估的不确定性研究[J].水电能源科学,2008,26(3):35-38.
    [130]周念来.刘军武,周玉琴.蓄滞洪区洪灾损失分散模型研究[J].中国水利,2008(15):21-23.
    [131]吕娟,苏志诚.区域洪灾直接经济损失快速评估方法在太湖流域的应用研究[J].中国水利,2008(17):9-12.
    [132]李汉浸,王运行,张相梅等.淮阳高新区洪灾城市经济损失评估[J].气象,2009,35(1):97-101
    [133]HAN J W,KAMBER M.Data Mining:Concepts and Techniques[M].San Francisco:Morgan Kaufmann Publishers,2001.
    [134]MAMDANI E H,ASSILIAN S.An experiment in linguistic synthesis with a fuzzy logical controller[J].International Journal of Man-Machine Studies,1975,7(1):1-13.
    [135]TAKAGI T,SUGENO M.Fuzzy identification of systems and its application to modeling and control[J].IEEE Transactions on Systems,Man and Cybernetics,1985,15(1):116-132.
    [136]QUINLAN J R.C4.5:program for machine learning[M].San Mateo:Morgan Kaufmann Publishers,1993.
    [137]宋开山,张柏,段洪涛等.近20年吉林中东部地区林地的时空变化及成因浅析[J].资源科学,2005,27(2):77-82.
    [138]KRZYSZTOFOWICZ R.Bayesian system for probabilistic river stage forecasting[J].Journal of Hydrology,2002,268:16-40.
    [139]东北地区实用洪水预报方案(上册)[R].水利部松辽水利委员会.1993.
    [140]郑进城,朱慧明.基于MCMC方法的贝叶斯AR(p)模型分析[J].统计与决策,2005,10:4-6.
    [141]SPIEGELHALTER D,THOMAS A,BEST N.et al.WinBUGS User Manual(Version 1.4)[R].http://www.mrc-bsu.cam.ac.uk/bugs,January,2003.
    [142]GILKS W S.Markov chain Monte Carlo in practice[M].London:Chapman & Hall,1996.
    [143]FITZGERALD W J.Markov chain Monte Carlo methods with applications to signal processing [J].Signal Processing,2001,81:3-18.
    [144]JALOBEANU A,BLANC-FERAUD L,ZERUBIA J.Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method[J].Pattern Recognition,2002,35:341-352.
    [145]ZHOU X B,LIU K Y,WONG S T C.Cancer classification and prediction using logistic regression with Bayesian gene selection[J].Journal of Biomedical Informatics,2004,37:249-259.
    [146]PARK S J,SHIN D W,PARK B U,et al.Bayesian test for asymmetry and nonstationariy in MTAR model with possibly incomplete data[J].Computational Statistics & Data Analysis,2005,49:1192-1204.
    [147]DANISH HYDRAULIC INSTITUTE(DHI).MIKE11:A modeling system for rivers and channels reference manual[R].Denmark:DHI,2002.
    [148]AMBROSE R B,WOOL T A,MARTIN J L.The WASP5 model documentation[M].Athens,GA:Environment Research Lab USEPA,1993.
    [149]SRINIVASAN R,ARNOLD J G.Integration of a basin-scale water quality model with GIS[J].Water Resources Bulletin,AWRA,1994,30(3):453-462.
    [150]徐祖信,卢士强.平原感潮河网水动力模型研究[J].水动力学研究与进展.2003,18(2):176-181.
    [151]徐祖信,卢士强,林卫青.苏州河干流防洪水位的数值计算[J].河海大学学报(自然科学版),2006,34(2):148-151.
    [152]周惠成,李伟,张弛.碧流河水库下游河道现状防洪能力[J].辽宁工程技术大学学报(自然科学版),2006,25(Suppl.Ⅱ):109-111.
    [153]翟宜峰,侯召成.曹永强.水库防洪分类预报调度设计方法研究[J].水力发电学报,2006.25(2):74-77.
    [154]王本德.周惠成.王国利等.水库汛限水位动态控制理论与方法及其应用[M].北京:中国水利水电出版社,2006.
    [155]周惠成.王本德.王国利等.水库汛限水位动态控制方法研究[M].大连:大连理工大学出版社,2006.
    [156]陈守煜.水资源与防洪系统可变模糊集理论与方法[M].大连:大连理工大学出版社.2005
    [157]MUROTA A,ETOH T.Application of the EQUIrisk line theory to the design of a detention reservoir[J].Natural Disaster Science,1984,6(1):17-30.
    [158]周惠成,张改红,王本德等.基于防洪预报调度调整水库汛限水位的研究[J].水力发电,2006,32(5):14-17.
    [159]冯平,陈根福,卢永兰等.水库联合调度下潮汛期蓄水的风险效益分析[J].水力发电学报,1995,49(2):8-16.
    [160]殷峻暹,曹永强.基于供水风险分析的汛限水位控制范围研究[J].水科学进展,2005,16(3):401-405.
    [161]王本德,郑德凤,周惠成等.汛限水位动态控制方案优选方法及指标体系研究[J].大连理工大学学报,2007,47(1):113-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700