基于适体的癌细胞检测及碳纳米管复合材料生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确、灵敏地诊断白血病对于临床医生选择合适的治疗方法至关重要。目前白血病诊断的常规技术往往耗时、成本高、检测仪器昂贵,所以,开发一些检测成本低,使用仪器简单,并能提供灵敏、准确的诊断结果的方法是即时诊断领域的发展目标。适体是一种被视为化学合成抗体的单链DNA/RNA构成的分子探针,在生物医学领域具有广阔的应用潜力。本论文在基于适体的肿瘤细胞检测方面开展了一些研究工作。另外,构建纳米复合材料用于发展骨组织工程意义重大。本
     论文的主要研究工作如下:
     1.将对人急性白血病细胞(CCRF-CEM)具有特异性识别能力的巯基修饰适体(sgc8c)自组装到金电极表面,开发了一种简单、方便、低成本、无标记的早期检测白血病细胞的电化学传感器。用循环伏安和电化学阻抗表征了修饰电极,并通过计时库仑分析得到了电极表面的适体密度。所制备的适体传感器经CCRF-CEM细胞孵育后,电极界面上的电子转移电阻(Ret)显著增大;且传感器对CCRF-CEM细胞具有良好的选择性。Ret值和细胞浓度对数值呈线性关系,检测线性范围为1×10~4-1×107 cells/mL,检测限为6×103 cells/mL。
     2.利用无标记金纳米颗粒(AuNPs)做指示剂,开发了一种可视比色检测肿瘤细胞的方法。该分析主要是基于单链DNA能够展开并暴露出碱基部分,吸附到AuNPs表面,从而使得AuNPs在高盐浓度下保持稳定。当将CCRF-CEM细胞悬浮液和单链寡核苷酸适体sgc8c孵育后,适体可选择性地结合到目标细胞表面,使得离心上清液中DNA的浓度降低,导致AuNPs在高盐浓度下失去稳定并发生团聚,而非目标细胞RAJI和随机序列DNA不会引起AuNPs溶液颜色的变化。该方法在肉眼比色分析和光谱分析方面都具有很好的灵敏度。
     3.通过溶剂挥发法,将碳纳米管(CNTs)掺杂到壳聚糖-明胶(chitosan–gelatin, CG)复合材料中,显著增强了CG复合材料的机械性能,将扩大其在骨组织工程中的应用前景。用扫描电镜、接触角测试和拉伸测试表征了CG/CNTs材料的表面形貌、亲水性和机械性能。CNTs均匀地分散在CG膜的基质中;与CG膜相比,仅添加0.4% CNTs,纳米复合材料的杨氏模量就增强了180%。利用人成骨细胞MG-63研究了复合材料的生物相容性,显微镜观察、吖啶橙染色和MTT研究结果表明,CG/0.4% CNTs不会影响细胞的贴壁、铺展和增殖。
Accurate, sensitive methods for leukemia diagnosis facilitate the selection of effective therapeutic pathways by clinicians. Current methods are time-consuming, expensive, and require advanced instrumentation. Some more cost-effective methods requiring simple or no instrumentation yet still providing great sensitivity and accuracy would be ideal for point of care diagnosis. Aptamers, single-stranded DNA/RNA probes, are poised to become a chemist’s antibody and have the potential to serve as molecular probes for a variety of biomedical applications. In this thesis, a series of studies were carried out based on aptamer for the detection of cancer cells. On the other hand, the construction of nanocomposites is of great significance for promoting the development of bone tissue engineering. The main work of this thesis is summarized as follows:
     1. An electrochemical biosensor was developed for CCRF-CEM acute leukemia cells based on the thiol-terminated aptamer (sgc8c) self-assembled onto gold electrode surface as recognition probe. The biosensor provided a simple, convenient, low-cost and label-free method for early leukemia diagnosis. The modified electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The surface density of aptamers was determined by chronocoulometric method. Upon incubation of the aptamer-modified electrode with CCRF-CEM cells, the electron-transfer resistance (Ret) increased substantially. The selectivity of the sensor was excellent. A linear relationship between Ret and logarithmic value of CCRF-CEM cells concentration was found in the range of 1×10~4 to 1×10~7 cells/mL, with a detection limit of 6×10~3 cells/mL.
     2. A direct visualization method for cancer cell detection was developed by using unmodified gold nanoparticle (AuNPs) as indicator. The assay is essentially based on that ss-DNA can uncoil sufficiently to expose its bases, then absorb onto the AuNPs surface, and can make AuNPs stabilization at high salt concentration. The incubation of target CCRF-CEM cells with oligonucleotide strand aptamer sgc8c made the aptamer concentration in centrifugal supernatant significantly decrease. AuNPs lost the stabilization and aggregated under high salt concentration, while RAJI control cells and random sequence DNA did not elicit change in color. The assay showed excellent sensitivity with both the naked eye and based on absorbance measurements.
     3. In this study, biopolymer chitosan-gelatin/multiwalled carbon nanotubes nanocomposites (CG/CNTs) have been successfully prepared by a simple solution-evaporation method. The carbon nanotubes enhanced the mechanical properties of the CG films for the application in bone engineering. The morphology, hydrophilicity and mechanical properties of the CG/CNTs nanocomposites have been characterized with field emission scanning electron microscopy (SEM), contact angle and tensile tests. The CNTs were homogeneously dispersed throughout the chitosan-gelatin matrix. When compared with chitosan-gelatin film, the tensile modulus of the nanocomposites was greatly improved by about 180% with incorporation of only 0.4 wt % of CNTs into the chitosan-gelatin matrix. The growth behaviors of MG-63 osteoblastsic cells on CG and CG/CNTs films were investigated with morphology observation, acridine orange (AO) staining, and MTT assay. It was found that the CG/0.4% CNTs can not significantly influence the attachment, spreading and proliferation of the MG-63 cells.
引文
[1] Mayeux R. Biomarkers: potential uses and limitations. NeuroRx, 2004, 1(2): 182-188
    [2] Bock L C, Griffin L C, Latham J A, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 1992, 355(6360): 564-566
    [3] Jhaveri S, Rajendran M, Ellington A D. In vitro selection of signaling aptamers. Nature Biotechnology, 2000, 18(12): 1293-1297
    [4] Daniels D A, Chen H, Hicke B J, et al. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proceedings of the National Academy of Sciences, 2003, 100(26): 15416-15421
    [5] Gold L. Oligonucleotides as research, diagnostic, and therapeutic agents. Journal of Biological Chemistry, 1995, 270(23): 13581-13584
    [6] Gold L, Polisky B, Uhlenbeck O, et al. Diversity of oligonucleotide functions. Annual Review of Biochemistry, 1995, 64(1): 763-797
    [7] White R R, Sullenger B A, Rusconi C P. Developing aptamers into therapeutics. The American Society for Clinical Investigation, 2000, 106(8): 929-934
    [8] Fang X, Cao Z, Beck T, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry, 2001, 73(23): 5752-5757
    [9] Pestourie C, Tavitian B, Duconge F. Aptamers against extracellular targets for in vivo applications. Biochimie, 2005, 87(9-10): 921-930
    [10] Centi S, Tombelli S, Minunni M, et al. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry, 2007, 79(4): 1466-1473
    [11] Cerchia L, DucongéF, Pestourie C, et al. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biology, 2005, 3(4): 697-704
    [12] Chu T, Twu K, Ellington A, et al. Aptamer mediated siRNA delivery. Nucleic Acids Research, 2006, 34(10): e73-e73
    [13] Gokulrangan G, Unruh J R, Holub D F, et al. DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. Analytical Chemistry, 2005, 77(7): 1963-1970
    [14] Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins. Analytical Biochemistry, 2001, 294(2): 126-131
    [15] Hicke B J, Stephens A W, Gould T, et al. Tumor targeting by an aptamer. Journal of Nuclear Medicine, 2006, 47(4): 668-678
    [16] Nutiu R, Li Y. Structure-switching signaling aptamers. Journal of the American Chemical Society, 2003, 125(16): 4771-4778
    [17] Proske D, Blank M, Buhmann R, et al. Aptamers—basic research, drug development, and clinical applications. Applied Microbiology and Biotechnology, 2005, 69(4): 367-374
    [18] Hirao I, Spingola M, Peabody D, et al. The limits of specificity: an experimental analysis with RNA aptamers to MS2 coat protein variants. Molecular Diversity, 1998, 4(2): 75-89
    [19] Conrad R, Keranen L M, Ellington A D, et al. Isozyme-specific inhibition of protein kinase C by RNA aptamers. Journal of Biological Chemistry, 1994, 269(51): 32051-32054
    [20] Jenison R D, Gill S C, Pardi A, et al. High-resolution molecular discrimination by RNA. Science, 1994, 263(5152): 1425-1429
    [21] Kelly J A, Feigon J, Yeates T O. Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d (GGTTGGTGTGGTTGG). Journal of Molecular Biology, 1996, 256(3): 417-422
    [22] Macaya R F, Schultze P, Smith F W, et al. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proceedings of the National Academy of Sciences, 1993, 90(8): 3745-3749
    [23] Li J J, Fang X, Tan W. Molecular aptamer beacons for real-time protein recognition. Biochemical and Biophysical Research Communications, 2002, 292(1): 31-40
    [24] Shangguan D, Tang Z, Mallikaratchy P, et al. Optimization and modifications of aptamers selected from live cancer cell lines. ChemBioChem, 2007, 8(6): 603-606
    [25] Cerchia L, Hamm J, Libri D, et al. Nucleic acid aptamers in cancer medicine. FEBS Letters, 2002, 528(1-3): 12-16
    [26] Cao Z, Huang C C, Tan W. Nuclease resistance of telomere-like oligonucleotides monitored in live cells by fluorescence anisotropy imaging. Analytical Chemistry, 2006, 78(5): 1478-1484
    [27] Cao Z, Tan W. Molecular aptamers for real-time protein-protein interaction study.Chemistry-A European Journal, 2005, 11(15): 4502-4508
    [28] Fang X, Sen A, Vicens M, et al. Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem, 2003, 4(9): 829-834
    [29] Huang C C, Cao Z, Chang H T, et al. Protein- Protein Interaction Studies Based on Molecular Aptamers by Affinity Capillary Electrophoresis. Analytical Chemistry, 2004, 76(23): 6973-6981
    [30] Lou H J, Brister J R, Li J J, et al. Adeno-Associated Virus Rep78/Rep68 Promotes Localized Melting of the Rep Binding Element in the Absence of Adenosine Triphosphate. ChemBioChem, 2004, 5(3): 324-332
    [31] Turney K, Drake T J, Smith J E, et al. Functionalized nanoparticles for liquid atmospheric pressure matrix-assisted laser desorption/ionization peptide analysis. Rapid Communications in Mass Spectrometry, 2004, 18(20): 2367-2374
    [32] Vicens M C, Sen A, Vanderlaan A, et al. Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection. ChemBioChem, 2005, 6(5): 900-907
    [33] Homann M, Goringer H U. Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Research, 1999, 27(9): 2006-2014
    [34] Morris K N, Jensen K B, Julin C M, et al. High affinity ligands from in vitro selection: complex targets. Proceedings of the National Academy of Sciences, 1998, 95(6): 2902-2907
    [35] Blank M, Weinschenk T, Priemer M, et al. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels selective targeting of endothelial regulatory protein pigpen. Journal of Biological Chemistry, 2001, 276(19): 16464-16468
    [36] Wang C, Zhang M, Yang G, et al. Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. Journal of Biotechnology, 2003, 102(1): 15-22
    [37] Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proceedings of the National Academy of Sciences, 2006, 103(32): 11838-11843
    [38] Chen H W, Medley C D, Sefah K, et al. Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem, 2008, 3(6): 991-1001
    [39] Shangguan D, Meng L, Cao Z C, et al. Identification of liver cancer-specific aptamers using whole live cells. Analytical Chemistry, 2008, 80(3): 721-728
    [40] Tang Z, Shangguan D, Wang K, et al. Selection of aptamers for molecular recognition and characterization of cancer cells. Analytical Chemistry, 2007, 79(13): 4900-4907
    [41] Li Y, Lee H J, Corn R M. Detection of Protein Biomarkers using RNA Aptamer Microarrays and Enzymatically Amplified SPR Imaging. Analytical Chemistry, 2007, 79(3): 1082-1088
    [42] Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Analytical Chemistry, 2006, 78(9): 2918-2924
    [43] Smith J E, Medley C D, Tang Z, et al. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Analytical Chemistry, 2007, 79(8): 3075–3082
    [44] Wilson G S, Gifford R. Biosensors for real-time in vivo measurements. Biosensors and Bioelectronics, 2005, 20(12): 2388-2403
    [45] Maalouf R, Fournier-Wirth C, Coste J, et al. Label-free detection of bacteria by electrochemical impedance spectroscopy: comparison to surface plasmon resonance. Analytical Chemistry, 2007, 79(13): 4879-4886
    [46] Pancrazio J J, Whelan J P, Borkholder D A, et al. Development and application of cell-based biosensors. Annals of Biomedical Engineering, 1999, 27(6): 697-711
    [47] Wang P, Xu G, Qin L, et al. Cell-based biosensors and its application in biomedicine. Sensors & Actuators: B Chemical, 2005, 108(1-2): 576-584
    [48] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 1983, 65(1-2): 55-63
    [49] Liu Y, Peterson D, Kimura H, et al. Mechanism of cellular 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction. Journal of Neurochemistry, 1997, 69(2): 581-593
    [50] Sailer B L, Steinkamp J A, Crissman H A. Flow cytometric fluorescence lifetime analysis of DNA-binding probes. European journal histochemistry, 1998, 42(NS): 19-27
    [51] Woolley D E, Tetlow L C, Adlam D J, et al. Electrochemical monitoring of anticancer compounds on the human ovarian carcinoma cell line A2780 and its adriamycin-and Cisplatin-resistant variants. Experimental Cell Research, 2002, 273(1): 65-72
    [52] Yan F, Sadik O A. Enzyme-modulated cleavage of dsDNA for studying interfacial biomolecular interactions. Journal of the American Chemical Society, 2001, 123(46): 11335-11340
    [53] Woolley D E, Tetlow L C, Adlam D J, et al. Electrochemical monitoring of cell behaviour in vitro: A new technology. Biotechnology and Bioengineering, 2002, 77(7): 725-733
    [54] Arndt S, Seebach J, Psathaki K, et al. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosensors and Bioelectronics, 2004, 19(6): 583-594
    [55] Xiao C, Luong J. On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnology Progress, 2003, 19(3): 1000-1005
    [56] Matsunaga T, Namba Y. Detection of microbial cells by cyclic voltammetry. Analytical Chemistry, 1984, 56(4): 798-801
    [57] Matsunaga T, Shigematsu A, Nakamura N. Detection of rat basophilic leukemia by cyclic voltammetry for monitoring allergic reaction. Analytical Chemistry, 1989, 61(22): 2471-2474
    [58] Li H N, Ci Y X, Feng J, et al. The voltammetric behavior of bone marrow of leukaemia and its clinical application. Bioelectrochemistry and Bioenergetics, 1999, 48(1): 171-175
    [59] Chen J, Du D, Yan F, et al. Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon-nanotube-modified electrode. Chemistry-A European Journal, 2005, 11(5): 1467-1472
    [60] Yan F, Chen J, Ju H. Immobilization and electrochemical behavior of gold nanoparticles modified leukemia K562 cells and application in drug sensitivity test. Electrochemistry Communications, 2007, 9(2): 293-298
    [61] Ding L, Hao C, Xue Y, et al. A Bio-Inspired Support of Gold Nanoparticles-Chitosan Nanocomposites Gel for Immobilization and Electrochemical Study of K562 Leukemia Cells. Biomacromolecules, 2007, 8(4): 1341-1346
    [62] Hao C, Ding L, Zhang X, et al. Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. Analytical Chemistry, 2007, 79(12): 4442-4447
    [63] Chen K, Chen J, Guo M, et al. Electrochemical Behavior of MCF-7 Cells on Carbon Nanotube Modified Electrode and Application in Evaluating the Effect of5-Fluorouracil. Electroanalysis, 2006, 18(12): 1179-1185
    [64] Xing J Z, Zhu L, Jackson J A, et al. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chemical Research in Toxicology, 2005, 18(2): 154-161
    [65] Yu N, Atienza J M, Bernard J, et al. Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors. Analytical Chemistry, 2006, 78(1): 35-43
    [66] Choi C K, English A E, Jun S I, et al. An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes. Biosensors and Bioelectronics, 2007, 22(11): 2585-2590
    [67] Keese C R, Giaever I, Inc A B P, et al. A biosensor that monitors cell morphology with electrical fields. IEEE Engineering in Medicine and Biology Magazine, 1994, 13(3): 402-408
    [68] Mitra P, Keese C R, Giaever I. Electric measurements can be used to monitor the attachment and spreading of cells in tissue culture. BioTechniques, 1991, 11(4): 504-510
    [69] Wegener J, Keese C R, Giaever I. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Experimental Cell Research, 2000, 259(1): 158-166
    [70] Lo C M, Keese C R, Giaever I. Monitoring motion of confluent cells in tissue culture. Experimental Cell Research, 1993, 204(1): 102-109
    [71] Giaever I, Keese C R. Micromotion of mammalian cells measured electrically. Proceedings of the National Academy of Sciences, 1991, 88(17): 7896-7900
    [72] Tiruppathi C, Malik A B, Vecchio P J D, et al. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proceedings of the National Academy of Sciences, 1992, 89(17): 7919-7923
    [73] Giaever I, Keese C. A morphological biosensor for mammalian cells. Nature, 1993, 366(6455): 591-592
    [74] Xiao C, Luong J H T. Assessment of cytotoxicity by emerging impedance spectroscopy. Toxicology and Applied Pharmacology, 2005, 206(2): 102-112
    [75] Hug T S. Biophysical methods for monitoring cell-substrate interactions in drug discovery. Assay and Drug Development Technologies, 2003, 1(3): 479-488
    [76] Pethig R. Dielectric and Electronic Properties of Biological Materials. New York:Wiley, 1979, 1-376
    [77] Borkholder D A. Cell based Biosensor Using Microelectrodes:DoctoralDissertation. Standford: Standford University, 1998, 1-170
    [78] Yang L, Li Y, Erf G F. Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157: H7. Analytical Chemistry, 2004, 76(4): 1107-1113
    [79] Ding L, Du D, Wu J, et al. A disposable impedance sensor for electrochemical study and monitoring of adhesion and proliferation of K562 leukaemia cells. Electrochemistry Communications, 2007, 9(5): 953-958
    [80] Aroca R F, Alvarez-Puebla R A, Pieczonka N, et al. Surface-enhanced Raman scattering on colloidal nanostructures. Advances in Colloid and Interface Science, 2005, 116(1-3F): 45-61
    [81] Kneipp K, Kneipp H, Kneipp J. Surface-Enhanced Raman Scattering in Local Optical Fields of Silver and Gold Nanoaggregates From Single-Molecule Raman Spectroscopy to Ultrasensitive Probing in Live Cells. Accounts of Chemical Research, 2006, 39(7): 443-450
    [82] Geddes C D, Lakowicz J R. Metal-Enhanced Fluorescence. Journal of Fluorescence, 2002, 12(2): 121-129
    [83] Maxwell D J, Taylor J R, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society, 124(32): 9606-9612
    [84] Authier L, Grossiord C, Brossier P, et al. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Analytical Chemistry, 2001, 73(18): 4450-4456
    [85] Castaneda M T, Alegret S, Merkoci A. Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis, 2007, 19(7-8): 743-753
    [86] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(5329): 1078-1081
    [87] Ghosh S K, Pal T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles. Chemical Reviews, 2007, 107(11): 4797-4862
    [88] Glomm W R. Functionalized gold nanoparticles for applications in bionanotechnology. Journal of Dispersion Science and Technology, 2005, 26(3): 389-414
    [89] Walker H W, Grant S B. Coagulation and stabilization of colloidal particles by adsorbed DNA block copolymers: The role of polymer conformation. Langmuir, 1996, 12(13): 3151-3156
    [90] Xue X, Wang F, Liu X. One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg~(2+)) Using DNA/Nanoparticle Conjugates. Journal of the American Chemical Society, 2008, 130(11): 3244-3245
    [91] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society, 2004, 126(38): 11768-11769
    [92] Wang C, Chen Y, Wang T, et al. Biorecognition-Driven Self-Assembly of Gold Nanorods: A Rapid and Sensitive Approach toward Antibody Sensing. Chemistry of Materials, 2007, 19(24): 5809-5811
    [93] Aslan K, Luhrs C C, Perez-Luna V H. Controlled and reversible aggregation of biotinylated gold nanoparticles with streptavidin. Journal of Physical Chemistry B, 2004, 108(40): 15631-15639
    [94] Otsuka H, Akiyama Y, Nagasaki Y, et al. Quantitative and Reversible Lectin-Induced Association of Gold Nanoparticles Modified with [alpha]-Lactosyl-[omega]-mercapto-poly (ethylene glycol). Journal of the American Chemical Society, 2001, 123(34): 8226-8230
    [95] Yang W, Gooding J J, He Z, et al. Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles. Journal of nanoscience and nanotechnology, 2007, 7(2): 712-716
    [96] Sudeep P K, Joseph S T S, Thomas K G. Selective detection of cysteine and glutathione using gold nanorods. Journal of the American Chemical Society, 2005, 127(18): 6516-6517
    [97] Lee J S, Ulmann P A, Han M S, et al. A DNA- Gold Nanoparticle-Based Colorimetric Competition Assay for the Detection of Cysteine. Nano Letters, 2008, 8(2): 529-533
    [98] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie (International ed in English), 2007, 46(22): 4093-4096
    [99] Liu J, Lu Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. Journal of the American Chemical Society, 2005, 127(36): 12677-12683
    [100] Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie(International ed Print), 2006, 45(1): 90-94
    [101] Aslan K, Lakowicz J R, Geddes C D. Tunable plasmonic glucose sensing basedon the dissociation of Con A-aggregated dextran-coated gold colloids. Analytica Chimica Acta, 2004, 517(1-2): 139-144
    [102] Aslan K, Lakowicz J R, Geddes C D. Nanogold-plasmon-resonance-based glucose sensing. Analytical Biochemistry, 2004, 330(1): 145-155
    [103] Tsai C S, Yu T B, Chen C T. Gold nanoparticle-based competitive colorimetric assay for detection of protein–protein interactions. Chemical Communications, 2005, 2005(34): 4273-4275
    [104] Guarise C, Pasquato L, De Filippis V, et al. Gold nanoparticles-based protease assay. Proceedings of the National Academy of Sciences, 2006, 103(11): 3978-3982
    [105] Xu X, Han M, Mirkin C A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angewandte Chemie(International ed Print), 2007, 119(19): 3538-3540
    [106] Wang Z, Levy R, Fernig D G, et al. Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening. Journal of the American Chemical Society, 2006, 128(7): 2214-2215
    [107] Sharma J, Chhabra R, Yan H, et al. pH-driven conformational switch of“i-motif”DNA for the reversible assembly of gold nanoparticles. Chemical Communications, 2007, 2007(5): 477-479
    [108] Wang W, Liu H, Liu D, et al. Use of the Interparticle i-Motif for the Controlled Assembly of Gold Nanoparticles. Langmuir, 2007, 23(24): 11956-11959
    [109] Chah S, Hammond M R, Zare R N. Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chemistry & Biology, 2005, 12(3): 323-328
    [110] Zhao W, Chiuman W, Brook M A, et al. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem, 2007, 8(7): 3729-3731
    [111] Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences, 2004, 101(39): 14036-14039
    [112] Li H, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society, 2004, 126(35): 10958-10961
    [113] Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines.Angewandte Chemie (International ed in English), 2008, 47(21): 3927-3931
    [114] Zhao W, Chiuman W, Brook M A, et al. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem, 2007, 8(7): 727-731
    [115] Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. Journal of the American Chemical Society, 2000, 122(42): 10466-10467
    [116] Santoro S W, Joyce G F. A general purpose RNA-cleaving DNA enzyme. Proceedings of the National Academy of Sciences, 1997, 94(9): 4262-4266
    [117] Zhao W, Lam J C F, Chiuman W, et al. Enzymatic Cleavage of Nucleic Acids on Gold Nanoparticles: A Generic Platform for Facile Colorimetric Biosensors. Small, 2008, 4(6): 810-816
    [118] Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. Journal of the American Chemical Society, 2003, 125(27): 8102-8103
    [119] Zhao W, Chiuman W, Lam J C F, et al. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. Journal of the American Chemical Society, 2008, 130(11): 3610-3618
    [120] Bissada N F, Hangorsky U. Alveolar bone induction: alloplasts. Dental Clinics of North America, 1980, 24(4): 739-749
    [121] Wergedal J E, Lau K H W, Baylink D J. Fluoride and bovine bone extract influence cell proliferation and phosphatase activities in human bone cell cultures. Clinical orthopaedics and related research, 1988, 233(233): 274-282
    [122]陈富林,赵明.几丁质/rhBMP2/胶原复合植骨材料的制备有其异位诱骨活性.口腔医学, 1999, 19(1): 4-6
    [123] Seol Y, Lee J, Park Y J, et al. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnology Letters, 2004, 26(13): 1037-1041
    [124] Lahiji A, Sohrabi A, Hungerford D S, et al. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. Journal of Biomedical Materials Research, 2000, 51(4): 586-595
    [125] Meinig R P, Rahn B, Perren S M, et al. Bone Regeneration with Resorbable Polymeric Membranes: Treatment of Diaphyseal Bone Defects in the Rabbit Radius with Poly (L-Lactide) Membrane. A Pilot Study. Journal of Orthopaedic Trauma, 1996, 10(3): 178-190
    [126] Meinig R P, Buesing C M, Helm J, et al. Regeneration of Diaphyseal Bone Defects Using Resorbable Poly (L/DL-Lactide) and Poly (D-Lactide)Membranes in the Yucatan Pig Model. Journal of Orthopaedic Trauma, 1997, 11(8): 551-558
    [127] Nuttelman C R, Mortisen D J, Henry S M, et al. Attachment of fibronectin to poly (vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. Journal of Biomedical Materials Research, 2001, 57(2): 217-233
    [128] Khan Y M, Katti D S, Laurencin C T. Novel polymer-synthesized ceramic composite-based system for bone repair: An in vitro evaluation. Journal of Biomedical Materials Research, 2004, 69(4): 728-737
    [129]冯庆玲,崔福斋,张伟.纳米羟基磷灰石/胶原骨修复材料.中国医学科学院学报, 2002, 24(2): 124-128
    [130] Boeree N R, Dove J, Cooper J J, et al. Development of a degradable composite for orthopaedic use: mechanical evaluation of an hydroxyapatite- polyhydroxybutyrate composite material. Biomaterials, 1993, 14(10): 793-796
    [131] Hu X C, Chow L W C. REVIEW: Detection of circulating breast cancer cells by reverse transcriptase polymerase chain reaction (RT-PCR). European Journal of Surgical Oncology, 2000, 26(6): 530-535
    [132] Ghossein R A, Bhattacharya S. Molecular detection and characterisation of circulating tumour cells and micrometastases in solid tumours. European Journal of Cancer, 2000, 36(13): 1681-1694
    [133] Hao C, Yan F, Ding L, et al. A self-assembled monolayer based electrochemical immunosensor for detection of leukemia K562A cells. Electrochemistry Communications, 2007, 9(6): 1359-1364
    [134] Yoo J S, Song I, Lee J H, et al. Real-time impedance measurements during electrochemical experiments and their application to aniline oxidation. Analytical Chemistry, 2003, 75(14): 2962-2968
    [135] Katz E, Willner I. Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis, 2003, 15(11): 913-947
    [136] Ehret R, Baumann W, Brischwein M, et al. Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosensors and Bioelectronics, 1997, 12(1): 29-41
    [137] Ehret R, Baumann W, Brischwein M, et al. On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures. Medical and Biological Engineering and Computing, 1998, 36(3): 365-370
    [138] Patolsky F, Zayats M, Katz E, et al. Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: Characterization by faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Analytical Chemistry, 1999, 71(15): 3171-3180
    [139] Ruan C, Yang L, Li Y. Immunobiosensor chips for detection of Escherichia coli O157: H7 using electrochemical impedance spectroscopy. Analytical Chemistry, 2002, 74(18): 4814-4820
    [140] Huang H H. In situ surface electrochemical characterizations of Ti and Ti–6Al–4V alloy cultured with osteoblast-like cells. Biochemical and Biophysical Research Communications, 2004, 314(3): 787-792
    [141] Huang Y F, Chang H T, Tan W. Cancer cell targeting using multiple aptamers conjugated on nanorods. Analytical Chemistry, 2008, 80(3): 567-572
    [142] Katz E, Alfonta L, Willner I. Chronopotentiometry and Faradaic impedance spectroscopy as methods for signal transduction in immunosensors. Sensors & Actuators: B Chemical, 2001, 76(1-3): 134-141
    [143] Li C Z, Liu Y, Luong J H T. Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticles. Analytical Chemistry, 2005, 77(2): 478-485
    [144] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. New York: JohnWiley&Sons. Inc, 2001, 376-386
    [145] Tlili C, Korri-Youssoufi H, Ponsonnet L, et al. Electrochemical impedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole. Talanta, 2005, 68(1): 131-137
    [146] Bardea A, Patolsky F, Dagan A, et al. Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy: a route to a Tay–Sachs sensor. Chemical Communications, 1999, 1999(1): 21-22
    [147] Steel A B, Herne T M, Tarlov M J. Electrochemical quantitation of DNA immobilized on gold. Analytical Chemistry, 1998, 70(22): 4670-4677
    [148] Zhang J, Song S, Wang L, et al. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Natrue Protocol, 2007, 2(11): 2888 - 2895
    [149] Guo M, Chen J, Yun X, et al. Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy. BBA-General Subjects, 2006, 1760(3): 432-439
    [150] Tlili C, Reybier K, Geloen A, et al. Fibroblast cells: a sensing bioelement for glucose detection by impedance spectroscopy. Analytical Chemistry, 2003, 75(14): 3340-3344
    [151] Medley C D, Smith J E, Tang Z, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Analytical Chemistry, 2008, 80(4): 1067-1072
    [152] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822
    [153] Osborne S E, Matsumura I, Ellington A D. Aptamers as therapeutic and diagnostic reagents: problems and prospects. Current Opinion in Chemical Biology, 1997, 1(1): 5-9
    [154] Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences, 2005, 102(48): 17278-17283
    [155] Nutiu R, Li Y. In vitro selection of structure-switching signaling aptamers. Angewandte Chemie International Edition, 2005, 44(7): 1061-1065
    [156] Wang L, Liu X, Hu X, et al. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chemical Communications, 2006, 2006(36): 3780-3782
    [157] Wei H, Li B, Li J, et al. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chemical Communications, 2007, 2007(36): 3735-3737
    [158] Wang J, Wang L H, Liu X F, et al. A gold nanoparticle-based aptamer target binding readout for ATP assay. Advanced Materials, 2007, 19(22): 3943–3946
    [159] Jiang Y, Zhao H, Zhu N, et al. A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angewandte Chemie (International ed in English), 2008, 47(45): 8601-8604
    [160] Zhao W, Brook M A, Li Y. Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays. ChemBioChem, 2008, 9(15): 2363-2371
    [161] Lee J H, Wang Z, Liu J, et al. Highly Sensitive and Selective Colorimetric Sensors for Uranyl (UO22+): Development and Comparison of Labeled and Label-Free DNAzyme-Gold Nanoparticle Systems. Journal of the American Chemical Society, 2008, 130(43): 14217-14226
    [162] Huang Y, Onyeri S, Siewe M, et al. In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials, 2005, 26(36): 7616-7627
    [163] Mao J S, Zhao L G, Yin Y J, et al. Structure and properties of bilayer chitosan–gelatin scaffolds. Biomaterials, 2003, 24(6): 1067-1074
    [164] Shen F, Cui Y L, Yang L F, et al. A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering. Polymer International, 2000, 49(12): 1596-1599
    [165] Yao K D, Liu W G, Lin Z, et al. In situ atomic force microscopy measurement of the dynamic variation in the elastic modulus of swollen chitosan/gelatin hybrid polymer network gels in media of different pH. Polymer International, 1999, 48(9): 794-798
    [166] Yin Y, Yao K, Cheng G, et al. Properties of polyelectrolyte complex films of chitosan and gelatin. Polymer International, 1999, 48(6): 429-433
    [167] Deng C M, He L Z, Zhao M, et al. Biological properties of the chitosan-gelatin sponge wound dressing. Carbohydrate Polymers, 2007, 69(3): 583-589
    [168] Liu H, Fan H, Cui Y, et al. Effects of the Controlled-Released Basic Fibroblast Growth Factor from Chitosan-Gelatin Microspheres on Human Fibroblasts Cultured on a Chitosan-Gelatin Scaffold. Biomacromolecules, 2007, 8(5): 1446-1455
    [169] Mao J S, Cui Y L, Wang X H, et al. A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials, 2004, 25(18): 3973-3981
    [170] Kathuria N, Tripathi A, Kar K K, et al. Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering. Acta Biomaterialia, 2009, 5(1): 406-418
    [171] Jiankang H, Dichen L, Yaxiong L, et al. Preparation of chitosan–gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomaterialia, 2009, 5(1): 453-461
    [172] Cheng M, Deng J, Yang F, et al. Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials, 2003, 24(17): 2871-2880
    [173] Ling Z, Yuan G, Lijun K, et al. Compatibility of Chitosan-Gelatin Films with Adipose Tissue Derived Stromal Cells. TSINGHUA SCIENCE AND TECHNOLOGY, 2006, 11(4): 421-426
    [174] Xia W, Liu W, Cui L, et al. Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds. Journal of Biomedical Materials Research, 2004, 71B(2): 373-380
    [175] Hua F J, Nam J D, Lee D S. Preparation of a macroporous poly (L-lactide) scaffold by liquid-liquid phase separation of a PLLA/1, 4-dioxane/water ternary system in the presence of NaCl. Macromolecular Rapid Communications, 2001, 22(13): 1053-1057
    [176] Balgude A P, Yu X, Szymanski A, et al. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials, 2001, 22(10): 1077-1084
    [177] Muzzarelli C, Muzzarelli R A A. Natural and artificial chitosan–inorganic composites. Journal of Inorganic Biochemistry, 2002, 92(2): 89-94
    [178] Zhang Y, Zhang M. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. Journal of Biomedical Materials Research, 2002, 61(1): 1-8
    [179] Zheng J P, Wang C Z, Wang X X, et al. Preparation of biomimetic three-dimensional gelatin/montmorillonite–chitosan scaffold for tissue engineering. Reactive and Functional Polymers, 2007, 67(9): 780-788
    [180] Zhao F, Yin Y, Lu W, et al. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials, 2002, 23(15): 3227-3234
    [181] Ji Yin Y, Zhao F, Feng Song X, et al. Preparation and characterization of hydroxyapatite/chitosan-gelatin network composite. Journal of Applied Polymer Science, 2000, 77(13): 2929-2938
    [182] Yin Y, Ye F, Cui J, et al. Preparation and characterization of macroporous chitosan-gelatin/β-tricalcium phosphate composite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research, 2003, 67A(3): 844-855
    [183] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58
    [184] Yakobson B I, Brabec C J, Bernholc J. Nanomechanics of carbon tubes instabilities beyond linear response. Physical Review Letters, 1996, 76(14): 2511-2514
    [185] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277(5334): 1971-1975
    [186] Kim K H, Jo W H. A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon, 2008, 47(4): 1126-1134
    [187] Wang S F, Shen L, Tongs Y J. Preparation and mechanical properties ofchitosan/carbon nanotubes composites. Biomacromolecules, 2005, 6(6): 3067-3072
    [188] Wu D, Zhang Y, Zhang M, et al. Selective Localization of Multiwalled Carbon Nanotubes in Poly (ε-caprolactone)/Polylactide Blend. Biomacromolecules, 2009, 10(2): 417-424
    [189] Moniruzzaman M, Sahin A, Winey K I. Improved mechanical strength and electrical conductivity of organogels containing carbon nanotubes. Carbon, 2008, 47(3): 645-650
    [190] Kim K H, Jo W H. Synthesis of polythiophene-graft-PMMA and its role as compatibilizer for poly (styrene-co-acrylonitrile)/MWCNT nanocomposites. Macromolecules, 2007, 40(10): 3708-3713
    [191] Koval’chuk A A, Shchegolikhin A N, Shevchenko V G, et al. Synthesis and Properties of Polypropylene/Multiwall Carbon Nanotube Composites. Macromolecules, 2008, 41(9): 3149-3156
    [192] Harrison B S, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials, 2007, 28(2): 344-353
    [193] Supronowicz P R, Ajayan P M, Ullman K R. Novel-current conducting composite substrates for exposing osetoblasts to alternating current stimulation. Journal of Biomedical Materials Research, 2002, 59A(3): 499-506
    [194] Zanello L P, Zhao B, Hu H, et al. Bone cell proliferation on carbon nanotubes. Nano Letters, 2006, 6(3): 562-567
    [195] Correa-Duarte M A, Wagner N, Rojas-Chapana J, et al. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Letters, 2004, 4(11): 2233-2236
    [196] Jan E, Kotov N A. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Letters, 2007, 7(5): 1123-1128
    [197] Ago H, Uchimura E, Saito T, et al. Mechanical immobilization of Hela cells on aligned carbon nanotube array. Materials Letters, 2006, 60(29-30): 3851-3854
    [198] Aoki N, Yokoyama A, Nodasaka Y, et al. Strikingly extended morphology of cells grow on carbon nanotubes. Chemistry Letters, 2006, 35(5): 508-509
    [199] Kim U J, Furtado C A, Liu X M, et al. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. Journal of the American Chemical Society, 2005, 127(44): 15437-15445
    [200] Porroa S, Mussoa S, Vinante M, et al. Purification of carbon nanotubes grownby thermal CVD. Physica E: Low-dimensional Systems and Nanostructures, 2007, 37(1-2): 58-61
    [201] Yang S Y, Li X, Zhu W P, et al. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon, 2008, 46(3): 445-452
    [202] Kooten T G V, Schakenraad J M, van-der-Mei H C, et al. Influence of substratum wettability on the strength of adhesion of human fibroblasts. Biomaterials, 1992, 13(13): 897-904
    [203] Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials, 2001, 22(3): 261-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700