基于竞争机制触发信号放大的核酸适体传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器具有选择性好、灵敏度高、分析速度快、成本低、能在复杂体系中进行在线连续监测等优点,在化学、生物医学、环境监测、食品、医药和军事等领域有重要的应用价值。核酸适体由于具有与目标结合的高特异性和强亲和力,以及生物活性稳定,易于合成和保存等优点而成为一种极富应用潜力的识别探针,为生物传感器的研究提供了一个新的平台。本论文针对目前构建检测蛋白质传感器界面的焦点和难点问题,结合本实验室的优势,利用目标蛋白质引起两种竞争机制的改变触发信号放大,发展了几种用于蛋白质检测的特异性好且灵敏度高的核酸适体传感器构建方法。主要工作如下:
     在第二章中,我们利用适体探针、互补序列和挂锁探针三者之间的竞争反应提出了一种基于核酸适体特异性识别目标物导致滚环扩增放大反应,用以电化学检测PDGF-BB的可再生适体识别系统。当新设计的适体序列与目标蛋白质发生特异性结合时,促发了由一互补DNA序列、线形挂锁探针、和引物探针引发的滚环扩增反应。本适体识别系统巧妙地把多个功能元件整合为一个信号检测系统:独特的电化学检测技术、引人注目的滚环扩增放大反应、电极表面可逆的DNA杂交以及理想的适体-目标物的识别体系。基于滚环扩增的适体识别系统不仅展现了优越的分析性能,而且克服了传统适体传感器的局限性(例如:对信号目标物与适体特异性结合力的依赖,或对拥有两个或更多识别位点的目标序列夹心分析的要求)。回收实验证实了本实验方案的可行性。据此,本适体识别体系在蛋白质或其它分析物的研究中展现了良好的应用前景。
     第三章,我们在第二章的基础上将连接-滚环信号放大与分子信标降低背景相结合发展了一种应用于蛋白质均相检测的新方法。连接-滚环信号放大同样由竞争反应触发。有目标蛋白存在时,适体探针与目标蛋白特异性结合形成适体探针/分析物复合物,使得适体探针发生末端链置换。原先与适体探针相结合的互补序列被释放,从而与挂锁探针杂交。在DNA连接酶的作用下,挂锁探针被进一步环化并在Phi 29 DNA聚合酶的作用下通过滚环放大反应进行扩增。其产物包含成千上万个可以和分子信标检测探针互补杂交的重复序列。在不含目标蛋白时,适体探针与互补序列杂交形成适体探针/互补序列的二元复合物,这样互补序列就不能与挂锁探针杂交从而不能进行连接-滚环放大反应。以PDGF-BB为模型分析物,可以检测到1.36amol的蛋白质分子。而且,该方法只需根据目标蛋白和其适体序列的不同设计不同的互补序列和挂锁探针就可以实现对其他蛋白质的检测。
     在第四章中,我们提出一种新的纳米金团聚机理,即发夹型核酸适体粘性末端匹配修饰诱导纳米金组装,从而降低胶体稳定性,加入较高浓度的盐引起团聚。当溶液中存在目标分子IgE时,适体稳定的发夹构型显著抑制纳米金组装。鉴于此,我们开发了一种以IgE为分析模型的基于纳米金稳定性增强的均相比色分析方法。与目标IgE结合后,核酸适体构象发生变化,空间位阻增大,修饰到纳米金表面使颗粒稳定性增强,呈分散状态,据此可用于IgE的分析测定。与现有IgE检测方法相比较,该方法灵敏度高,所需仪器设备简便,可通过目视观察颜色变化或紫外可见分光光度计监测吸光度的变化。这种发夹型核酸适体衍生纳米金的组装行为在生物传感技术中的成功应用有助于加深理解核酸构象变换对纳米金性能的影响,同时也为设计新颖的信号探针以及开发性能优良的比色检测技术提供新思路。
Biosensors have valuable applications in chemistry, biomedicine, environmental protection, food industry, medicine and military affairs because of its good selectivity, high sensitivity, fast response, low cost and continuous on-line detection in complex system. Aptamers have become highly promising recognition probes due to the high specificity, high binding affinity, the stable bioactivity, and the easy systhesis and storage. Aptamers have provided an interesting alternative to biochemical analysis and biosensors. In this paper, in order to solve the focus and difficult problems in building interfaces of sensors for current detection of proteins, we combined with the advantages of our laboratory and made use of the competition reaction alone target proteins complement DNA and aptamer ,which can trigger signal amplification(eg RCA). We developed several high specifity and sensitivity biosensors construction methods for the detection of proteins and small molecules. Main works are as follows:
     In chapter two, a reusable aptameric recognition system was described for the electrochemical detection of protein PDGF-BB based on the target binding-induced rolling circle amplification (RCA). A complementary DNA (CDNA), linear padlock probe and primer probe were utilized to introduce a RCA process into the aptamer-target binding event while a newly designed aptamer probe was used to recognize the target protein. Towards this goal, this adapted aptamer probe was designed via lengthening an original aptamer sequence by the complement to CDNA and extending the outer helix of three-way junction. The aptameric sensing system facilitates the integration of multiple functional elements into a signaling scheme: the unique electrochemical technique, attractive RCA process, reversible DNA hybridization on an electrode surface and desirable aptameric target recognition. This RCA-based electrochemical recognition system not only exhibits the excellent performance,but also overcomes the limitations associated with conventional aptameric biosensors (e.g. dependence of signaling target binding on specific aptamer sequence and requirement of sandwich assays for two or more binding sites per target molecule). The recovery test demonstrated the feasibility of the designed sensing scheme for target protein assay. Given attractive characteristics, this aptameric recognition platform is expected to be a candidate for the detection of proteins and other ligands of interest in both fundamental and applied research.
     Based on chapter two, we explore a new method for protein detection in chapter three, which combined signal amplification of the L-RCA system and background elimination of molecular beacon. The strategy is depended on the competition reaction between target protein, aptamer probe and a complementary single-strand DNA (the CDNA) perfectly matched with the aptamer probe. The presences of target protein in the assay system made the aptamer probe bind specifically with the target protein to form aptamer probe/analyte complex and triggered the end of aptamer strand displace with itself, that made the CDNA released from aptamer and allowed the CDNA to hybridize with the padlock probe. With the assistance of DNA ligase, the padlock probe could be circularised and subsequently be amplified by RCA reaction with Phi 29 DNA polymerase. The RCA products contained thousands of repeated sequences which could hybridize with the molecular beacon (the detection probe). By contraries, In the absence of target protein, the aptamer probe hybridized with the CDNA to form aptamer probe/CDNA duplex, which hindered the binding of CDNA and the padlock probe and resulted in the failure of L-RCA reaction. Using platelet-derived growth factor BB (PDGF-BB) as the model analyte, as low as 1.36 amol of protein molecules could be detected. The proposed strategy is universal since the sequences of aptamer probe, CDNA, and the padlock probe could be easily designed to adapt for the aptamer-based detection of other proteins without other strict conditions.
     In chapter four, a new working mechanism, hairpin sticky-end pairing-induced GNP assembly, is introduced on the basis of the unique instability of aptamer-modified nanoparticles. The salt-induced aggregation of oligonucleotide-modified GNPs can readily occur while addition of target molecules favors the formation of hairpin structure and inhibits substantially the nanoparticle assembly. Along this line, we developed a proof-of-concept colorimetric homogeneous assay using immunoglobulin E (IgE) as analyte model via transforming commonly designed“light-down”colorimetric biosensor into“light-up”one. From the points of view of both conformational transition of aptamer and steric bulk, oligonucleotide-GNPs display an additional stability upon binding to target molecules. The assay showed an excellent sensitivity with both the naked eye and absorbance measurements. Compared with almost all existing IgE sensing strategies, the proposed colorimetric system possesses a substantially improved analytical performance. Success in this biosensing protocol indicates that investigating the assembly behavior of hairpin aptamer-modified GNPs would offer new insight into the dependence of GNP property on the structure
     switching and open a new way to design signaling probes and develop colorimetric assay schemes.
引文
[1]汪尔康. 21世纪的分析化学[M].北京:科学出版社, 1999: 136-151
    [2] Niwa O, Xu Y, Halsall H B, et al. Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay[J]. Analytical Chemistry, 1993, 65 (11): 1559-1563
    [3] Hedenmo M, Narváez A, Domínguez E, et al. Improved mediated tyrosinase amperometric enzyme electrode[J]. Journal of Electroanalytical Chemistry, 1997, 425 (1): 1-11
    [4] Wang J, Tian B, Rogers K R. Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label[J]. Analytical Chemistry, 1998, 70 (9): 1682-1685
    [5] Vanderlaan M, Watkins B E, Stanker L. Environmental monitoriby immunoassar[J]. Environmental Science and Technology, 1998, 22 (2): 247-254
    [6] Wang J, Chen L, Hocevar S B, et al. One-step electropolymeric co-immobilization of glucose oxidase and heparin for amperometric biosensing of glucose[J]. The Analyst, 2000, 125 (8): 1431-1434
    [7] Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgey[J]. Annals of the New York Academy of Sciences, 1962, 102 (1): 29-45
    [8] Ellington D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346 (6287): 818-822
    [9] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968): 505–510
    [10] Tasset D M, Kubik M F, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes[J]. Journal of Molecular Biology, 1997, 272(5): 688-698
    [11] Mendonsa S D,Bowser M T.In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis [J]. Ana1ytical Chemistry, 2004, 76(18):5387-5392
    [12] Radi A.-E, Acero Sanchez J L, Baldrich E, et al. Reusable impedimetric ptasensor[J]. Analytical Chemistry, 2005, 77(19): 6320-6323
    [13] Song S, Wang L, Li J, et al. Aptamer-Based biosensors[J]. TrAC Trends in Analytical Chemistry, 2008, 2(27): 108-117
    [14] Thomas H, Dinshaw J, Patel. Adaptive recognition by nucleic acid aptamers[J]. Science, 2000, 287(5454): 820–825
    [15] Yang Y, Kochoyan M, Burgstaller P, et al. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy[J]. Science, 1996, 272(5266): 1343–1346
    [16] Jiang Y X, Zhu C F, Ling L S, et al. Specific aptamer-protein interaction studied by atomic force microscopy[J]. Analytical Chemistry, 2003, 75(9): 2112–2116
    [17] Jenison R D, Gill S C, Pardi A, et al. High-resolution molecular discrimination by RNA[J]. Science, 1994, 263(5125): 1425–1429
    [18] Stojanovic M N, de Prada P, Landry D W. Aptamer-based folding fluorescent sensor for cocaine[J]. Journal of the American Chemical Society, 2001, 123(21): 4928-4931
    [19]崔大付,刘长春,陈翔萌.发展中的生化传感器[J].传感器世界, 2004, 10(3): 6-11
    [20] Lai R Y, Plaxco K W, Heeger A J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum[J]. Analytical Chemisty, 2007, 79(1): 229-233
    [21] Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor[J]. Angewandte Chemie International Edition, 2005, 44(34): 5456-5459
    [22] Rodriquez M C, Kawde A N, Wang J. Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge[J]. Chem Commun, 2005, 34(1): 4267–4269
    [23] Chen C R, Liu D Y, Wu Z S, et al. Sensitive label-free electrochemical immunoassay by electrocatalytic amplification[J]. Electrochemistry Communications, 2009, 11(10): 1869-1872
    [24] Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers[J]. Analytical Chemistry, 2007, 79(7): 2933-2939
    [25] Zhang Y L, Huang Y, Jiang J H, et al. Electrochemical Aptasensor Based on Proximity-Dependent Surface Hybridization Assay for Single-Step, Reusable, Sensitive Protein Detection[J]. Journal of the American Chemistry Society, 2007, 129(50): 15448–15449
    [26] Xiang Y, Xie M, Bash R, et al. Ultrasensitive label-free aptamer-based electronic detection[J]. Angewandte Chemie International Edition, 2007, 46(47): 9054–9056
    [27] Zhou L, Ou L-J, Chu X, et al. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein[J]. Analytical Chemistry, 2007, 79(19): 7492-7500
    [28] Gao Z Q, Rafea S, Lim L H. Detection of nucleic acids using enzyme-catalyzed template-guided deposition of polyaniline[J]. Advanced Materials, 2007, 19(4): 602–606
    [29] Kavanagh P, Leech D. Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization[J]. Analytical Chemistry, 2006, 78(8): 2710–2716
    [30] Miranda-Castro R, de-los-Santos-Alvarez P, Lobo-Castanon M J, et al. Hairpin-DNA probe for enzyme-amplified electrochemical detection of legionella pneumophila[J]. Analytical Chemistry, 2007, 79(11): 4050–4055
    [31] Li B, Wang Y, Wei H, et al. Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model[J]. Biosensors and Bioelectronics, 2008, 23(7): 965-970
    [32] Zheng J, Feng W, Lin L, et al. A new amplification strategy for ultrasensitive electrochemical aptasensor with network-like thiocyanuric acid/gold nanoparticles[J]. Biosensors and Bioelectronics, 2007, 23(3): 341-347
    [33] Centi S, Tombelli S, Minunni M. et al. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads[J]. Analytical Chemistry, 2007, 79(4): 1466-1473
    [34] Polsky R, Gill R, Kaganovsky L, et al. Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules[J]. Analytical Chemistry, 2006, 78(7): 2268-2271
    [35] Numnuam A, Chumbimuni-Torres K Y, Xiang Y, et al. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes[J]. Analytical Chemiatry, 2008, 80(3): 707-712
    [36] Liu Y J, Yin F, Long Y M, et al. Study of the immobilization of alcohol dehydrogenase on Au-colloid modified gold electrode by piezoelectric quartz crystal sensor, cyclic voltammetry, and electrochemical impedance techniques[J]. Journal of Colloid and Interface Science, 2003, 258(1): 75-81
    [37] Storhoff J J, Elahanian R, Mucic R C, et al. One-pot colorimetric differentiationof polynucleotides with single base imperfections using gold nanoparticle probes[J]. Journal of the American Chemical Society, 1998, 120(9): 1959-1964
    [38] He H, Xie C, Ren J. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging[J]. Analytical Chemistry, 2008, 80(15): 5951-5957
    [39] Lin S Y, Chen C h, Lin M C, et al. A cooperative effect of bifunctionalized nanoparticles on recognition: sensing alkali Ions by crown and carboxylate moieties in aqueous media[J]. Analytical Chemistry, 2005, 77(15): 4821-4828
    [40] Huang C C, Huang Y F, Cao Z, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors[J]. Analytical Chemistry, 2005, 77(17): 5735-5741
    [41] Thanh N T K, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles[J]. Analytical Chemistry, 2002, 74(7): 1624-1628
    [42] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature, 1996, 382(15): 607-609
    [43] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science, 1997, 277(22): 1078-1080
    [44] Sato K, Hosokawa K, Maeda M. Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions[J]. Nucleic Acids Research, 2005, 33 (1): e4
    [45] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin[J]. Journal of the American Chemical Society, 2004, 126(38): 11768-11769
    [46] Liu J. Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles[J]. Angewandte Chemie International Edition, 2004, 45(1): 90-94
    [47] Lin S Y, Liu S W, Lin C M, et al. Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles[J]. Analytical Chemistry, 2002, 74(2): 330-335
    [48] Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization[J]. Journal of the American Chemical Society, 2003, 125(27): 8102-8103
    [49] Aslan K, Lakowicz J R, Geddes C D. Nanogold plasmon resonance-based glucose sensing wavelength-ratiometric resonance light scattering[J]. Analytical Chemistry, 2005, 77(7): 2007-2014
    [50] Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles[J]. Proceedings of the National Academy of Sciences, 2004, 101 (39): 14036-14039
    [51] Heyduk E, Heyduk T. Nucleic acid-based fluorescence sensors for detecting proteins[J]. Analytical Chemiatry, 2005, 77 (4): 1147-1156
    [52] Schweitzer B, Wiltshire S, Lambert J, et al. Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection[J]. Proceedings of the National Academy of Sciences USA, 2000, 97(18): 10113-10119
    [53] Famulok M, Hartig J S, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy[J]. Chemical Reviews, 2007, 107 (9): 3715-3743
    [54] So H M, Won K, Kim Y H, et al. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements[J]. Journal of the American Chemical Society, 2005, 127 (34): 11906-11907
    [55] Jayasena S D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics[J]. Clinical Chemistry, 1999, 45(9): 1628-1650
    [56] Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids[J]. Proceedings of the National Academy of Sciences USA, 2005, 102 (48): 17278-17280
    [57] Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins[J]. Analytical Biochemistry, 2001, 294(2): 126-131
    [58] Heyduk T, Heyduk E. Molecular beacons for detecting DNA binding proteins[J]. Nature Biotechnology, 2002, 20 (2): 171-176
    [59] Zuo X, Song S, Zhang J, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP[J]. Journal of the American Chemical Society, 2007, 129 (5): 1042-1043
    [60] Nutiu R, Li Y. Structure-switching signaling aptamers[J]. Journal of the American Chemical Society, 2003, 125 (6): 4771-4778
    [61] Zayats M, Huang Y, Gill R, Ma C. Label-free and reagentless aptamer-based sensors for small molecules[J]. Journal of the American Chemical Society, 2006, 128 (42): 13666-13667
    [62] Xiao Y, Lai R, Plaxco K W. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing[J]. Nature Protoc, 2007, 2 (11): 2875-2880
    [63] Gill R, Polsky R, Willner I. Pt nanoparticles functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins[J]. Small, 2006, 2(8-9): 1037-1041
    [64] Hansen J A, Wang J, Kawde A N, et al. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor[J]. Journal of the American Chemical Society, 2006, 128 (7): 2228-2229
    [65] Yang L, Fang C W, Cho E J, et al. Real-time rolling circle amplification for protein detection[J]. Analytical Chemistry, 2002, 79 (9): 3320-3329
    [66] Wang X L, Li F, Su Y H, et al. Ultrasensitive detection of protein using an Aptamer-based exonuclease protection assay[J]. Analytical Chemistry, 2004, 76 (19): 5605-5610
    [67] Fredriksson S,Gullberg M, Jarvius J, et al. Protein detection using proximity-dependent DNA ligation assays[J]. Nature Biotechnology, 2002, 20 (5): 473-477
    [68] He F, Tang Y,, Wang S, et al. Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection[J]. Journal of the American Chemical Society, 2005, 127 (35): 12343-12346
    [69] Xiao Y, Piorek B D , Plaxco K W , et al. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society, 2005, 127 (51): 17990-17991
    [70] Zhang S, Xia J, Li X. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles[J]. Analytical Chemistry, 2008, 80 (22): 8382-8388
    [71] Lu Y, Li X, Zhang L, et al. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe[J]. Analytical Chemistry, 2008, 80 (6): 1883-1890
    [72] Baker B R, Lai R Y, Wood M S, et al. An electronic aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids[J]. Journal of the American Chemical Society, 2006, 128 (10): 3138-3139
    [73] Str?mberg M, G?ransson J, Gunnarsson K, et al. Sensitive molecular diagnostics using volume-amplified magnetic nanobeads[J]. Nano letters, 2008, 8 (3): 816-821
    [74] Daniel A. Di Giusto, Wlassoff W A , Gooding J J, et al. Proximity extension of circular DNA aptamers with real-time protein detection[J]. Nucleic Acids Res, 2005, 33(6): e64- e64
    [75] Zhao W, Ali M M, Brook M A, et al. Rolling Circle Amplification: Applications in Nanotechnology and Biodetection with Functional Nucleic Acids[J]. Angewandte Chemie International Edition, 2008, 47 (34): 6330-6337
    [76] Wu Z S, Zheng F, Shen G L, et al. A Hairpin Aptamer-based Electrochemical Biosensing Platform for the Sensitive Detection of Proteins[J]. Biomaterials, 2009, 30 (15): 2950-2955
    [77] Stojanovic M N, Kolpashchikov D M. Modular aptameric sensors[J]. Journal of the American Chemical Society, 2004, 126 (30): 9266-9270
    [78] Zhao W, Chiuman W, Lam J C F, et al. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors[J]. Journal of the American Chemical Society, 2008, 130 (11): 3610-3618
    [79] Li D, Shlyahovsky B, Elbaz J, et al. Amplified analysis of low-molecular-weight Substrates or proteins by the self-assembly of DNAzyme?aptamer conjugates[J]. Journal of the American Chemical Society, 2007, 129 (18): 5804-5805
    [80] Fischer N O, Tarasow T M, Tok J B H. Protein detection via direct enzymatic amplification of short DNA aptamers[J]. Analytical Biochemistry, 2008, 373 (1): 121-128
    [81] Panke O, Kirbs A, Lisdat F. Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay[J]. Biosensors and Bioelectronics, 2007, 22 (11): 2656-2662
    [82] Feng K J, Sun C H , Kang Y, et al. Label-free electrochemical detection of nanmolar adenosine based on target-induced aptamer displacement[J]. Electrochemistry communications, 2008, 10(4): 531-535
    [83] Wain A J, Zhou F. Scanning Electrochemical Microscopy Imaging of DNA Microarrays Using Methylene Blue as a Redox-Active Intercalator[J]. Langmuir, 2008, 24 (9): 5155-5160
    [84] Zuo X, Xiao Y, Plaxco K W. High Specificity, Electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices[J]. Journal of theAmerican Chemical Society, 2009, 131 (20): 6944-6945
    [85] Erdem A, Kerman K, Meric B, et al. A novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus[J]. Analytica Chimica Acta, 2000, 422 (2): 139-149
    [86] Li J, Zhong W. Typing of multiple Single-nucleotide polymorphisms by a microsphere-based rolling circle amplification assay[J]. Analytical Chemistry, 2007, 79 (23): 9030-9038
    [87] Ali M M, Li Y. Colorimetric sensing by using allosteric-DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe[J]. Angewandte Chemie International Edition, 2009, 48(19): 3512-3515
    [88] Jiang Y, Fang X, Bai C. Signaling aptamer/protein binding by a molecular light switch complex[J]. Analytical Chemistry, 2004, 76(27): 5230-5235
    [89] Liao W, Cui X T. Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine PDGF[J]. Biosensors and Bioelectronics, 2007, 23 (2): 218-224
    [90] Konry T, Hayman R B, Walt D R. Microsphere-based rolling circle amplification microarray for the detection of DNA and proteins in a single assay[J]. Analytical Chemistry, 2009, 81 (14): 5777-5782
    [91] Fang X H, Sen A, Vicens M, et al. Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay[J]. Chem Biochemistry, 2003, 4 (9): 829-834
    [92] Liss M , Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor[J]. Analytical Chemistry, 2002, 74 (17): 4488-4495
    [93] Culha M, Stokes D, Allain L R, et al. Surface-enhanced raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics[J]. Analytical Chemistry, 2003, 75 (22): 6196-6201
    [94] Herne T M, Tarlov M J. Characterization of DNA probes immobilized on gold surfaces[J]. Journal of the American Chemical Society, 1997, 119 (38): 8916-8920
    [95] Ferapontova E E, Olsen E M, Gothelf K V. An RNA aptamer-based electrochemical biosensor for detection of theophylline in srem[J]. Journal of the American Chemical Society, 2008, 130(13): 4256-4258
    [96] Yao C Y, Qi Y Z, Zhao Y H, et al. Aptamr-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE[J]. Biosensors and Bioelectronics, 2009, 24(8): 2499-2503
    [97] Liu J W, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles[J]. Angewandte Chemie International Edition, 2006, 118(1): 96-100
    [98] Nutiu R, Yu Jasmine M Y, Li Y F. Signaling aptamers for monitoring enzymatic activity and for inhibitor screening[J]. ChemBioChem, 2004, 5(8): 1139- 1144
    [99] Wang J, Meng W Y, Zheng X F, et al. Combination of aptamer with gold nanoparticles for electrochemical signal amplification: Application to sensitive detection of platelet-derived growth factor[J]. Biosensors and Bioelectronics, 2009, 24(6): 1598-1602
    [100] Huang Y, Nie X M, Gan S L, et al. Electrochemical immunosensor of platelet-derived growth factor with aptamer-primed polymerase amplification[J]. Analytical Biochemistry, 2008, 382(1): 16-22
    [101] Fang X H, Cao Z H, Beck T, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy[J]. Analytical Chemistry, 2001, 73(23): 5752-5757
    [102] Maehashi K, Katsura T, Kerman K, et al. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors[J]. Analytical Chemistry, 2007, 79(2): 782-787
    [103] Liu J, Lu Y. Non-Base Pairing DNA Provides a new dimension for controlling aptamer-linked nanoparticles and sensors[J]. Journal of the American Chemical Society, 2007, 129(27): 8634-8643
    [104] Medley C D, Smith J E, Tang Z, et al. Gold nanoparticle-Based colorimetric assay for the direct detection of cancerous cells[J]. Analytical Chemistry, 2008, 80(4): 1067-1072
    [105] Yin X B, Qi B, Sun X, et al. 4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification[J]. Analytical Chemistry, 2005, 77(11): 3525-3530
    [106] Wu Z S, Jiang J H, Fu L, et al. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles[J]. Analytical Biochemistry, 2006, 353(1): 22-29
    [107] Dubertret B, Calame M, Libchaber A. Single-mismatch detection using gold-quenched fluorescent oligonucleotides[J]. Nature Biotechnology, 2001, 19(4): 365-370
    [108] Hamalainen H K, Tubman J C, Vikman S, et al. Identification and validation ofendogenous reference genes for expression profiling of T helper cell differentiation by quantitative real-time RT-PCR[J]. Analytical Biochemistry, 2001, 299(1): 63-70
    [109] Heyduk E, Dummit B, Chang Y H, et al. Molecular pincers: antibody-based homogeneous Protein Sensors[J]. Analytical Chemistry, 2008, 80(13):5152–5159
    [110] Gullberg M, Gustafsdottir S M, Schallmeiner E, et al. Cytokine detection by antibody-based proximity ligation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(22): 8420-8424
    [111] Li J J, Tan W. A real-time assay for DNA sticky-end pairing using molecular beacons[J]. Analytical Biochemistry, 2003, 312(2): 251-254
    [112] Chowdhury M H, Julian A M, Coates C J, et al. Detection of differences in oligonucleotide-influenced aggregation of colloidal gold nanoparticles using absorption spectroscopy[J]. Journal of Biomedical Optics, 2004, 9(6): 1347-1357
    [113] Gokulrangan G, Unruh J R, Holub D F, et al. DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy[J]. Analytical Chemistry, 2005, 77(7): 1963-1970

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700