纳米复合中性阴离子受体的合成及光学传感性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阴离子识别在生物学、医学、化学和环境中均有着重要作用,所以基于分子识别和传感的阴离子识别已经成为超分子化学领域研究重要课题。目前已经有很多关于阴离子识别的研究。但是受制于阴离子本身结构特点,对阴离子识别的研究远没有对阳离子识别的研究进行的深入。因而设计合成高选择性、高灵敏性的阴离子受体具有相当的挑战性,已成为当今超分子化学领域中研究的焦点之一。硫脲是优良的氢键给体,易与阴离子通过氢键相互作用,不易受溶液的pH值影响,已被广泛地应用于阴离子受体的设计和合成中。化学识别传感器一般包括两部分,一是氢键给体的识别基团;二是光谱信号单元(荧光团、生色团等)。这两部分是通过共价键相连的。本研究以纳米金球体为建筑平台,设计合成一系列的含硫脲基的有机阴离子受体,通过Au-S键的生成,使得有机阴离子键合单元有序组装在纳米金颗粒表面,构成有机键合单元和无机纳米材料信号单元组成的复合阴离子传感体系。借助有机键合单元和无机纳米粒子材料的特殊性质,该受体通过氢键与客体阴离子相互作用,可以灵敏的检测、传感特定的阴离子。对这类复合体系在阴离子传感中可能会出现的一些新现象或者性质进行研究,开发出一类新型复合阴离子受体体系。
     第一章绪论
     阴离子特别是二羧酸离子在生物、环境、医学领域起着非常重要的作用,阴离子的识别已经成为超分子化学的一个重要组成部分。设计和合成能有效识别二羧酸阴离子的受体也越来越引起人们的关注,已经成为近二十年来高分子科学,生物学,药学,药物制剂学等方面的研究重点和热点。本章综述了阴离子与传感器之间的作用方式、阴离子识别传感器的设计、合成以及硫脲型阴离子传感器(特别是钳形硫脲型阴离子传感器)的研究进展。
     第二章不同粒径纳米金颗粒的合成与表征
     由于金的特殊光学性质,纳米金属粒子特别是纳米金粒子的表面修饰研究引起了人们的广泛关注。纳米金颗粒的光学性质主要是由它的激元共振效应引起的,这种发光受外部环境以及纳米粒子团聚状态的影响。纳米金表面修饰自组装膜或改变溶剂环境都会改变等离激元共振效应,从而改变纳米金的发光效应。由于金具有特殊的光学性质,良好的生物兼容性,金纳米颗粒很可能被广泛应用于生物分子识别中。本章我们分别用柠檬酸钠还原法和硼氢化钠还原法(相转移法)合成了13 nm左右金颗粒和3 nm左右巯基保护的纳米金颗粒。
     第三章线型硫脲/纳米金颗粒复合受体
     合成了两种不同的线型有机硫脲受体,并通过Au-S键的生成,使得有机阴离子键合单元有序组装在纳米金颗粒表面,构成有机键合单元和无机纳米材料的信号单元组成的复合阴离子传感体系。通过紫外-可见分光光度计,在不断加入不同阴离子的四丁基盐的情况下,检测了它们的紫外光谱变化,研究了它们的紫外—可见光谱性质。结果发现,此类受体对F-、Br-、I-、AcO-以及二羧酸离子响应均不大,说明它们之间的络合强度不大。
     第四章钳型硫脲/纳米金颗粒复合受体
     用简单的一步还原法,合成了一种能对丙二酸特定响应的、含硫脲基的钳型有机-纳米金球体复合阴离子受体。它通过多重氢键与阴离子发生相互作用,使受体体系中纳米金颗粒与有机体系之间的电荷分布发生改变,导致金颗粒表面等离激元共振的改变而引发其最大紫外吸收的改变,表现出对二羧酸阴离子的特定光学传感效应。工作曲线(Job图)表明钳型硫脲/纳米金颗粒复合受体与F-、Cl-、Br-、H2PO4-、CH3COO-等阴离子形成1:2型超分子配合物,而与二羧酸阴离子形成1:1型超分子配合物。识别作用的推动力源于两个硫脲基与阴离子之间的多重氢键作用。受体在实验范围内的二羧酸阴离子的络合识别顺序为:丙二酸>丁二酸>戊二酸>己二酸>庚二酸>癸二酸。
Anion plays a fundamental role in a wide range of biological, medical, chemical and environmental processes. So the development of artificial anion receptors has attracted increasing interest in the field of supramolecular chemistry. And up to the present, numerous efforts have been devoted to the development of abiotic receptors for anionic species. However, because of the properties of anions, it is more difficult to design suitable receptors for anion than for cation. Bacause the strong hydrogen-bond donor capaility and lessened dependence on pH values, thiourea groups have been used as binding units for design and synthesis of neutral anion receptors. Most of artificial receptors includ hydrogen bonding donor units and signal subunits(chromophores, fluorophores, and electropotential unit), which are covalently linked. In our research, Some anion receptors containing thiourea groups were synthesized and assembled on to the surface of gold gold nanoparticles (GNPs) by the formation of Au-S bond to obtain a complex receptor for anions. The inorganic-organic nanohybrids optical sensing systems, especially GNPs-based optical sensing, which have thiourea subunits acting as anion binding sites, can selectively recognize anions.
     Chapter 1:Introduction
     Anions play a fundamental role in a wide range of chemical, biological, industrial, and environmental biological processes, numerous efforts have been devoted to the development of a biotic receptor for anionic species. Especially, given the important role of dicarboxylates in biology, such as their critical roles in numerous metabolic processes, the need for their selective recognition by synthetic sensors utilizing weak hydrogen bonding interactions is of great importance in molecular recognition research. Researches of anion recognition systems have been reported. Therefore the content of this chapter includes:(i) The interaction of anions and receptors, measure of anion recognition. (ii) The design of anion receptors, the development of thiourea based anion receptors which have tweezer structure.
     Chapter 2:Synthesis and characteristic of gold nanoparticles (GNPs) of about 13 nm and 3 nm.
     In recent years, surface functionalizations of gold nanoparticles (GNPs) has attracted growing attention due to the singular physical properties of gold nanoparticles, the possibility of cooperativity between receptor sites at the surfaces and the practicality of device fabrication. The optical properties of gold nanoparticles are dominated by the changes in the surface plasmon resonance (SPR) which is dependent on the aggregation state, surface morphology and so on. The surface plasmon band is highly sensitive to changes in the environment near to the nanoparticles surface, such as the composition of the self-assembled monolayer (SAM) on the nanoparticles and the solution around the nanoparticles. As gold nanoparticles have tremendously high molar absorptive in the visible region, and may be encrusted with biomolecule, they must have considerable potential for optical detection of small anions and molecules such as dicarboxylate. In this chapter, gold nanoparticles (AuNPs) of 13 nm and 3.2 nm have been prepared by the method of chemical reduction of gold salts in aqueous and the two phase liquid-liquid.
     Chapter 3:Organic-inorganic nanohybrided receptor functionalized with mono-thiourea
     Two types of anion receptors containing mono-thiourea groups was synthesized and assembled on to the surface of gold nanoshells by the formation of Au-S bond to obtain a complex receptor for anions. The recognition behavior of receptors towards anions was investigated by measuring the UV-vis absorption spectra upon the addition of several anions as their tetrabutylammonium salt. But upon addition of anions such as F-, Br-, I-, AcO-and dicarboxylate anions, a slight change (enhancement) was observed. Thus, it indicated that receptors was weakly binding or not interacting significantly with anions in this solvent medium (DMSO).
     Chapter 4:Organic-inorganic nanohybrided receptor functionalized with bis-thiourea arms
     A novel organic-inorganic nanohybrided receptor functionalized with bis-thiourea arms and then assembled on gold nanoparticles was synthesized by a simple method. The bis-thiourea receptor showed a selective binding ability to dicarboxylates, which is unsurprising given that the hydrogen bonding alignment for dicarboxylates and bis-thiourea are complementary. It is because receptor has two thiourea motieties that can form hydrogen bonding complexes with bis-anions. And it showed that the two thiourea motieties gives rise to the selective binding of dicarboxylates anions compared with the free receptor. Job plots showed that receptor formed 1:2 complexes with simple anions, such as acetate and dihydrogen phosphate (F-, Cl-, Br-, H2PO4-, CH3COO-) and 1:1 complexes with dicarboxylate anions. Receptor can bind dicarboxylate anions in the order of malonate> adipate> glutarate > adipate> pimelate> sebacate.
引文
[1]P. D. Beer, P. A. Gale, Angew. Chem. Int. Ed.,2001,40.486.
    [2]J. M. Llinares, D. Powell, K. Bowman-James, Coord. Chem. Rev.2003,240,57.
    [3]C. R. Bondy, S. J. Loeb, Coord. Chem. Rev.2003,240,77.
    [4]V. Amendola, L. Fabbrizzi, E. Monzani, Chem. Eur. J.2004,10,76.
    [5]K. A. Schug, W. Lindner, Chem. Rev.2005,105,67.
    [6]J. Liu, Y. Lu, Angew. Chem. Int. Ed.2006,45,90.
    [7]L. G Lang, J. F. Riordan, B. L. Vallee, Biochemistry,1974,13,4361.
    [8](a)L. G. Lang, J. F. Riordan, B. L. Vallee, Biochemistry,1974,13,4361. (b) E. Holm, Radiochim. Acta,1993,63,57.
    [9](a) J. Dzengel, J. Theurich, D.W. Bahnemann, Environ. Sci. Techno 1.1999,33,294.(b)张文兵,肖贤明,傅家谟等,中国环境科学,2002,22,301.(c)杨炯,李莉,侯涛等,中国环境检测,2002,18,48。
    [10]R. Vilar, Angew. Chem. Int. Ed. Eng.2003,42,1460.
    [11]A. L. Sisson, V. del Amo Sanchez, G Magro, A. M. E. Griffin, S. Shah, J. P. H. Charmant, A. P. Davis, Angew. Chem. Int. Ed.2005,44,6878.
    [12]刘育,张衡益,主-客体化学的现状及展望,21世纪有机化学发展战略,杜灿屏,刘鲁生,张恒编,化学工业出版社,北京,2002,p322。
    [13]P. D. Ber. Chem.Comu.1996,689.
    [14]P. D. Beer, P. A. Gale. Angew. Chem. Int. Ed. Eng.2001,40,486.
    [15]H.Xie, Y. Yi, X.Yang, S. Wu, New J. Chem.1999,23,1105.
    [16]J. Y. Kiln, Y. J. Jang, S. K. Kim, J. S. Kim, J. Yoon, Org. Chem,2004,69.5155.
    [17]D. J. Cram, J. M. Cram, Science,1974,183,803.
    [18](a) J.-M. Lehnm,超分子化学—概念和展望(沈兴海译),北京大学出版社,北京,2002, p4。 (b) J.-M. Lehn, Chem. Int. Ed. Engl.1990,29,1304.
    [19](a) R. Vilar, Angew. Chem. Int. Ed.2003,42,1460. (b) K. A. Schug, W. Lindner,, Chem. Rev.2005,105,67.
    [20]单成祥,传感器的理论与设计基础及其应用,国防工业出版社,北京,1999,p2。
    [21](a) C. Suksai, T. Tuntulani, Chem. Soc. Rev.2003,32,192. (b) R. A. Bissell, P. de Silva, H. Q. N. Gunaratne, Chem. Soc. Rev.1992,21,187.
    [22]R. Martmez-Manez, F. Sancenon, Chem. Rev.2003,103,4419.
    [23]C. Suksai, T. Tuntulani, Chem. Soc. Rev.2003,32,192.
    [24]E. P. Schmidtchen, M. Berger, Chem. Rev.1997,97,1609.
    [25]J. M. linates, D. Powell, D. Bowman, Chem. Rev.2003,240,57.
    [26]M. D. Best, S. L. Tobey, E. Anslyn, V. Coord. Chem. Rev.2003,240,3.
    [27]S. L. Wiskur, H. A(?)t-Haddou, J. J. Lavigne, Acc. Chem. Res.2001,34,963.
    [28]尤长城,赵彦利,刘育。高等学校化学学报2001,22,218。
    [29]A. P. De Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev.1997,97,1515.
    [30]M. Y. Chae, A. W. Czamik, J. Am. Chem. Soc.1992,114,9704.
    [31]V. Dujols, F. Ford, A. W. Czarnik, J. Am. Chem,Soc.1997,119,7386.
    [32]T. Hayashita, T. Onodera, R. Kato, S. Nishizawa, N. Teramae, Chem. Commun. 2000,755.
    [33]K. H. Lee, J. I. Hong, Tetrahedron Lett.2000,41,6083.
    [34]S. Nishizawa, R. Kato, T. Hayashi, E. Teramae, Anal. Sci.1998,14,595.
    [35]吴芳英,温珍昌,江云宝。化学进展2004,16,776。
    [36]梅明华,吴世康。化学学报2001,59,1112。
    [37]L. J. Blanco, P. Bootello, J. M. Benito, C. O. Mellet, J. M. G Fernandez, J. Org. Chem.2006,71,5136.
    [38]S. I. Sasaki, M. Mizuno, K. Naemura, J. Org. Chem.2000,65,275.
    [39](a) R. Martinez, F. Sancenon, Chem. Rev.2003,103,4419. (b) P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, et al, Chem. Rev.1997,97,1515.
    [40]吴世康,超分子光化学导论—基础与应用,科学出版社,北京,2005。
    [41]刘育,张衡益,李莉,王浩。纳米超分子化学—从合成受体到功能组装体,化学工业出版社,北京,2004。
    [42](a)江云宝,电荷转移荧光传感与分子识别,分析化学新近展,汪尔康主编,科学出版社,北京,2002, p321。 (b) L. Pu, Chem. Rev.2004,104,1687.
    [43]S. J. Oldenburg, R. D. Averitt, N. J. Halas, United States Patent, No.6344272, 2002.
    [44]张金中,王中林,刘俊等著;曹茂盛,曹传宝译,自组装纳米结构,化学工业出版社,北京,2005。
    [45]J. L. West, R. A. Drezek, N. J. Halas. "Nanotechnology provides new tools for biomedical optics" in "Tissue Engineering and Artificial Organs", CRC Press. 2005.
    [46]C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature 1996,382,607.
    [47]D. Fitzmaurice, S. N. Rao, J. A. Preece, J. F. Stoddart, S. Wenger, N. Zaccheroni. Angew. Chem. Int. Ed.1999,38,1147.
    [1]J.Turkevitch, P. C. Stevenson, J. Hilier, Discussion of the Faraday Society 1951, 11,55.
    [2]G.. Frens, Nature:Physical Science 1973,241,20.
    [3]M. Brust, D. Bethell, D. Schiffrin, J. Chem. Soc. Chem. Commun.1994,7,801.
    [4]P. N. Njoki, S. I-Im Lim, D. Mott, H.-Y. Park, B. Khan, J. Phys. Chem. C,2007, 111,14664.
    [5]蒋治良,冯忠伟,李廷胜,李芳,钟福新,谢济运,义祥辉,中国科学B辑,2001,31,18。
    [6]M. J. Hostetler, J. E. Wingate, C.-J. Zhong, J. E. Harris, R. W. Vachet, J. D. Clark, M. R. Londono, S. J. Green, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans,. R. W. Murray, Langmuir,1998,14,17.
    [7]R. C. Fuson, H.O. House, L. R. Melby, J. Am. Chem. Soc.,1953,75,5952.
    [8]S. Sasaki, D. Citterio, S. Ozawa, K. Suzuki, Perkin Trans.2,2001,2309.
    [1]L. Fabbrizzi, M. Hcchelli, G Rabaioli, Coor. Chem. Rev.2000,205,85.
    [2]J.H. Liao, C. T. Chen, J. M. Fang. Org Lett,2002. 4,561.
    [3]G Henmrich, H. Sonnenschein, U. Resch-Genger. Terahendron Lett.2001,42, 2805.
    [4]Y. Kubo, S. Tsukahara, S. Ishihara. Chem. Commun.2000,653
    [5]T. Gunnalaugsson, A. P. Davis, M. lynn, Chem. Commun 2001,2556.
    [6]解宏智,伊珊,杨晓萍等,中国科学2000,30,328。
    [7]K. H. Lee, H.Y. Lee, Terahendron Lett 2001,42,5447.
    [8]S. Nishizawa, Y. Kato, N. Teramae, J. Am. Chem. Soc.1999,121,9463.
    [9]P. Jr Amenbacher, K. Jursikova, J. L. Sessler, J. Am. Chem. Soc.2000.122,9350.
    [10]L. Fabbrizzi, M. Hcchelli, G Rabaioli, Coord. Chem. Rev.2000,205,85.
    [11]M. Buda, A. Ionl, J. C. Jean-Claude Moutet, J. Electroanal Chem.1999,469, 132.
    [12]Z.Y. Zeng, Y. B. He, L. H. Wei, Can. J. Chem.2004,82,454.
    [13]周名成,俞汝勤,紫外与可见分光光度分析法,化学工业出版社,北京,1986。
    [14]E. Asmus, A. Bull, F. Wollsdorf,. Analyt. Chem.1963,193,81.
    [15]T. Gunnlaugsson, J. P. Leonard, J. Chem. Soc., Perkin Trans.2,2002,1980.
    [16]M. Dudic, P. Lhotak, I. Stibor, K. Lang, P. Proskova, Org. Lett.2003,5,149.
    [17]V. Bernard, Molecular Fluorescence:Principles and Applications, Wiley-VCH: Weinheim, Germany,2002, p273.
    [1]F. P. Sclmlidtchen, M. Berger, Chem. Rev.1997,97,609.
    [2]P. S. Frarnz, Top. Curt. Chem.2005,255,1.
    [3]J. M. Llillares, D. Powell, J. K. Bowman, Coord. Chem. Rev.2003,2,57.
    [4]M. D. Best, S. L. Tobey, E. V. Anslyn, Coord. Chem. Rev.2003,240,3.
    [5]J. L. Sessleer, S. Camiolo, P. A. Gale, Coord. Chem. Rev.2003,240,17.
    [6]李玲,牟其明,杨祖幸,赵志刚,鄢琦,陈淑华,有机化学2003,23,452。
    [7]T. Ghosh, B. G.. Maiya, M. W. Wong, J. Phys. Chem. A.2004,108.11249.
    [8]王健,张清华,刘丽,陈淑华,物理化学学报2005,21.22。
    [9]D. A. Tomalia, B. Huang, D. R. Swanson, H. M. Brothers, J. W. Klimash, Tetrahedron 2003,59,3799.
    [10]A. J. Lowe, G. A. Dyson, F. M. Pfeffer, Eur. J. Org. Chem.2008,1559.
    [11]M. Mei, S. Wu, New J. Chem.2001,25,471.
    [12]S. Yamaguchi, A. Akiyama, K. Tamao, J. Am. Chem. Soc.2001,123,11372.
    [13]S. Sole, F. P. Gabba(?), A. Bidentate, Chem. Commun.2004,1284.
    [14]S. Nishizawa, R. Kato, T. Hayashita, Anal. Sci.1998,14,595.
    [15]T. L. Kurth, F. D. Lewis, J. Am. Chem. Soc.,2003,125,13760.
    [16]F. Sansome, E. Chierici, A. Casnati, Org. Biomol. Chem.2003,1,1802.
    [17]Y. Nishida, Y. Shingu, H. Dohi, Org. Lett.2003,5,2377.
    [18]Shao, J.; Lin, H; Lin, H. K. Talanta 2008,75(4),1015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700