光照及回流的银纳米颗粒对葡萄糖氧化酶活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高葡萄糖氧化酶电极的性能,人们尝试了多种材料来固定葡萄糖氧化酶(GOD)。金属纳米颗粒表面积大,吸附能力强,能够很牢固地吸附酶等生物分子,同时金属纳米颗粒还具有生物相容性好、催化效率高等特点,金属纳米颗粒广泛应用于酶的固定。研究表明,金纳米颗粒(AuNPs)具有从周围环境中获取电子的能力,这种能力可以加速GOD催化过程中活性中心(FAD)传递电子的速率,从而起到增强酶活性的作用。与AuNPs相比,银纳米颗粒(AgNPs)对GOD活性的影响要复杂的多。本文通过对AgNPs进行光照、回流等处理,意在探讨AgNPs对GOD活性的影响。
     光照的AgNPs对GOD活性的影响。将光照不同时间的AgNPs与GOD作用形成GOD-AgNPs异质体,考察GOD-AgNPs异质体活性的变化。光照的AgNPs可以抑制GOD的活性。延长光照时间,AgNPs对GOD活性的抑制作用增强。本实验主要利用UV-vis吸收光谱、Zeta-电位、TEM和XPS等表征手段对AgNPs的光照过程进行跟踪。实验结果表明,光照可以改变AgNPs的表面组成和结构。Ag+浓度的增加可以抑制GOD的活性,AgNPs表面结构的变化,也会影响固定到AgNPs上GOD构象的变化。初步探讨了AgNPs的光照过程对GOD活性的抑制作用。
     AgNPs的回流对GOD活性的影响。实验发现经过较短时间回流的AgNPs对GOD的活性有抑制作用。延长AgNPs的回流时间,AgNPs对GOD活性的抑制作用减弱,回流一定时间的AgNPs可以增强GOD活性。本实验主要利用UV-vis吸收光谱、DLS等表征手段对AgNPs的回流过程进行跟踪,发现随着回流时间的延长,AgNPs的粒径逐渐增大。在回流不同时间的AgNPs上固定时,GOD的构象变化不同,GOD-AgNPs异质体的活性不同。探讨了AgNPs的回流过程对GOD生物活性抑制和增强的作用。
     不同形貌的纳米银对GOD活性的影响。利用光照和热熟化的手段得到不同形貌的片状纳米银,包括三角片状、六角片状和圆片状的纳米银。通过UV-vis吸收光谱等表征手段,对不同形貌的片状纳米银的形成过程进行跟踪,探讨了不同形貌的片状纳米银的形成机制。采用电化学的方法考察不同形貌片状纳米银对GOD活性的影响。实验结果表明,由于对H202的催化能力不同,六角片状和圆片状的纳米银对GOD活性的影响不尽相同。
In order to improve the performance of glucose oxidase biosensor, a lot of materials were employed to immobilize glucose oxidase. Metal nanoparticles exhibit interesting properties such as a large surface-to-volume ratio, strong adsorption ability that make them attaching enzyme and other biological molecules firmly. Metal nanoparticles also have good biocompatibility and high catalytic efficiency. Metal nanoparticles are widely used in enzyme immobilization. Discoveries have demonstrated that gold nanopaticles (AuNPs) have the capability to obtain electronic from the surrounding environment. This capability can accelerate electron transfer rate of the active site (FAD) in glucose oxidase (GOD) catalytic process, which can enhance enzyme activity. The effect of silver nanoparticles (AgNPs) on the GOD activity is much more complicated than that of AuNPs. AgNPs with different irradiation and refluxing time were used to investigae the effect nanoparticles on the GOD activity.
     Effect of irradiated AgNPs on the GOD activity. The GOD-AgNPs hybrids were formed by mixing GOD and AgNPs with different irradiation time, then their activity were studied. We found that the irradiated AgNPs can inhibit the GOD activity. Increasing the irradiation time the activity of the GOD-AgNPs hybrid decreased. To investigate the experiment process described above, the monitoring methods of TEM、UV-vis、XRD、XPS were used. The results showed that, irradiation can change the surface composition and structure of AgNPs. Increasing concentration of Ag+ can inhibit the GOD activity, change of AgNPs surface structure was also affect the conformational of GOD immobilized onto AgNPs. We study the inhibitory effect of AgNPs irradiation on GOD activity preliminary.
     Effect of refluxed AgNPs on the GOD activity. It was found that AgNPs with a short refluxing time can inhibit the GOD activity. the inhibitoty effect of AgNPs reduced along with the refluxing time. AgNPs with a period of refluxing time can enhance the GOD activity. Various methods, such as UV-vis spectra, dynamic light scattering (DLS) were employed to probe into AgNPs refluxing process. It found that as the refluxing time increasing, AgNPs size increased. Conformational change of GOD is different when GOD immobilized onto AgNPs with different refluxing time. In this chapter we discussed preliminary that the GOD activity was influence by the refluxing process of AgNPs.
     Effect of different shape of AgNPs on the GOD activity. By light irradiating and heat aging we get AgNPs of different shape, which including triangular sheet、hexagonal and round sheet of AgNPs Sheet. During the reaction period, the monitoring method such as UV-vis spectra is used to investigate the shape of AgNPs,. The formation mechanism of AgNPs of the different shape was discussed. Electrochemical method was used to investigate the effect of AgNPs with different shape on the GOD activity. The results indicated that due to the different catalytic ability on H2O2, the effect of hexagonal sheet and circular sheet of AgNPs on the GOD activity was different.
引文
[1]Underlofler LA. Proceedings of the international sympodium on enzyme [J], Chemistry, 1969,45,486-496.
    [2]Yang H P, Zhu Y F. Glucose biosensor based on nano-SiO2 and "unprotected" Pt nanoclusters [J]. Biosensors and Bioelectronics,2007,22,2989-2993.
    [3]Tischer, W.; Kasche, V. Immobilized enzymes:crystals or carriers? [J]. Trends in Biotechnology.1999,17,326-335.
    [4]N. C.Foulds, C. R.Lowe. Anal. Chem.1988,60,2473-2478.
    [5]赵文元,王亦军.功能高分子材料化学[M],化学工业出版社,2003.
    [6]钱军民,张兴,酶固定化载体材料研究新进展[J],化工新型材料,2000,30,10.
    [7]Hoshi T, Anzai J I, Osa T. AnalyticalChemistry [J],1995,4,770-774.
    [8]Liu S, Leech D, Ju H. Application of colloidal gold in protein immobilization, electron transfer, and biosensing. Anal. Lett.2003,36(1):1-19.
    [9]Horisberger M. Colloidal gold as a tool in molecular biology [J] Trends Biochem Sci 1983,8,395-397.
    [10]Xiao Y, Patolsky F, Eugenii K, Hainfeld J F, Willner. "Plugging into enzymes": nanowiring of redox enzymes by a gold nanoparticle [J] Science,2003,299,1877-1881.
    [11]Chen Z J, Qu X M, Tang F Q, Jiang L. Effect of nanometer particles on the adsorbability and enzymatic activity of glucose oxidase [J]. Colloid. Surface. B 1996,7,173-179.
    [12]Park E H, Shin Y M, Lim Y Y. Expression of glucose oxidase by using recombinant yeast [J] JBiotechnol,2000,81 (1):35-44.
    [13]罗九甫 酶和酶工程[M].上海:上海交通大学出版社,1996
    [14]Scott D. Enzymes in fod processing.New York; Academic Press,1975,219.
    [15]Frederick K R, Tung J, Emerick J. Glucose oxidase from Aspergillus niger [J].Biol.Chem,1990,265:3793-3802.
    [16]Hecht H J, Kalisz H M, Hendle J, Schmid R D, Schomburg D. Crystal structure of glucose oxidase from aspergillus niger refined at 2.3 A resolution [J] Mol. Biol 1993,229 (1):153-172.
    [17]Vemulapalli V, Miller K A, Hosenney R C. Glucose oxidace in breaking systes [J].Cereal Chemistry,1998,75 (4):439-442.
    [18]David S.Goodsell an information portal to biological macromolecular structures 2006
    [19]Lehninger A L, Nel M M. COX Principles of Biochemistry [M], Worth Publishers,1993.
    [20]Wohlfallrtetal.1.8and1.9 A resolution structures of the penicilliu amagasakiense primary and As pergillus niger glueose oxidase as basis for modeling substrate complexes [J].Acta Crystallogra Phica SeetionD:Biological Crystallography,1999,55,969-977.
    [21]张树政.酶制剂工业[M].北京:科学出版社,1998.
    [22]Beddows C G, Mirauer R A, Guthrie T T, Biotech and Bioeng,1980,6,12-13.
    [23]Anthony E G, Graham D, Graeme D. Francis, and Allen H O, Analytical Chemistey,1984, 56,4-8.
    [24]Freedhold N J, Worthington Biochemical Corporation, Enzyme catalog,1969
    [25]张广栋,罗仓学,生物传感器及其在食品工业中的应用[J].食品研究与开发,2005,26(1):133-134.
    [26]汤琳,曾光明,沈国励,基于抑制作用的新型葡萄糖氧化酶传感器测定环境污染物汞离子的研究[J],分析科学学报,2005,2(2):123-126.
    [27]张立德,牟季美,纳米材料和纳米结构[M]北京:科学出版社,2001.
    [28]曹茂盛.超微颗粒制备科学与技术[M]哈尔滨:哈尔滨工业大学出版社,1995.
    [29]曹茂盛,关长斌,纳米材料导论[M]哈尔滨:哈尔滨工业大学出版,2001.
    [30]曹茂盛,殷景华,物理学与高科技[M]哈尔滨:哈尔滨工业大学出版社,1998.
    [31]Johanck V et al, Science,2004,304,1639
    [32]Kubo R, Phys. Letters,1962,1,49-62.
    [33]Cavicchi R E, Silsbee E, Phys. Rew. Lett,1984,52,1453.
    [34]Kimoto K, Nishida I, J. Phys. Soc. Jpn,1967,22,940.
    [35]Nishida I, Kimoto K, Thin Solid Films,1974,23,1979.
    [36]张立德.纳米材料[M],北京:化学工业出版社,2000
    [37]Wang J, Pamidi P, Anal.Chem,1997,69 (21):4490-4494.
    [38]Bharathi S, Anal.Commun,1998,35(1):29-31.
    [39]Nie S, Eniory S R, Probing single moleeules and single nanopartieles by surfaee-enhaneed raman seattering, Science,1997,275,1102-1106.
    [40]Imahori H, Fukuzumi S, Porphyrin monolayer-modified gold elusters as photoactive material [J] Adv.Mater.,2001,13,1197-1199.
    [41]Rongchao J, et al. Photoinduced conversion of silver nanospheres to nanoprisms [J], Science,2001,1901,294.
    [42]Yin B S, Ma H, Wang S, Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone) [J], Physical Chemistry B,2003,34.
    [43]Pileni M P. Nature Materials [J],2003,2(3):145.
    [44]Kang Z H, Wang E B, Lian S Y, Surfactant-assisted electrochemical method for dendritic silver nanocrystals with advanced structure [J]. Materials Letters,2005,59 (3):2289-2291.
    [45]Crumbliss A L, Perine S C, Stonehuerner J, Tubergen K R, Zhao J, Henkens R W, Biotechnol,1992,40,483.
    [46]Koyama K, Yamaguchi N, Miyazaka T, Antibody-mediated bacteriorhodopsin orientation for molecular device architectures. Science 1994,265,762-765.
    [47]Lee N S, Hsieh Y Z, Morris M D, Schopfer L M, Reinterpretation of surface-enhanced resonance raman scattering of flavoproteins on silver colloids. J. Am. Chem. Soc,1987, 109(5):1358-1363.
    [48]Copeland R A, Fodor S P, Spiro T G, Surface-enhanced raman spectra of an active flavoenzyme:glucose oxidase and riboflavin binding protein on silver particles[J] J.Am. Chem. Soc.1984,106,3872-3874.
    [49]Copeland R A, Fodor S P A, Spiro T G, Surface-enhanced Raman spectra of an active flavoenzyme:glucose oxidase and riboflavin binding protein on silver particles [J]. J. Am. Chem. Soc.,1984,106:3872-3874.
    [50]Wen Z, Ye B, Zhou X. Direct electron transfer reaction of glucose oxidase at bare silver electrodes and its application in analysis [J]. Electroanalysis,1997,9,8.
    [51]任湘菱,孟宪伟,唐芳琼,纳米铂颗粒在酶生物传感器中的应用研究,功能材料与器件学报,2005,11(2):246-250.
    [52]Zhong X, Yuan R, Chai Y Q, Glucose biosensor based on self-assembled gold nanoparticles and double-layer polymer onto gold substrate [J]. Sensors and Actuators B Chemical,2005,104 (2):191-198.
    [53]侯宪全,唐芳琼等,纳米ZnO增强葡萄糖生物传感器的制备和应用,分析化学,2006,34(4):303—306.
    [54]孟宪伟,高凤堂,任湘菱,韦正,唐芳琼,含超细Au颗粒的乳酸氧化酶和葡萄糖氧化酶生物传感器,过程工程学报,2002,2(4):351-354.
    [55]Wu G Q, Zhong L Y, Application of chitosan—gold nanoparticles hybrid film biosensor in glucose measurement [J], Journal of Clinical Rehabilitative Tissue Engineering Research,2009,13 (29):5789-5792.
    [56]唐芳琼,沈继锋,张金芳,张改莲;超细Ag颗粒对葡萄糖氧化酶生物传感器响应灵敏度 的增强效应[J],高等学校化学学报,1999,04,2.
    [57]Pendry J, Science,1999,285,1687.
    [58]Feldstein M J, Keating C D, Liau Y, Natan M, Scherer N, Am. Chem. Soc.,1997,119, 6638.
    [59]Tang B, An J, Li D, Silver nanodisks with tunable size by heat aging, J. Phys. Chem. C, 2008,112,18361-18367.
    [60]Maillard M, Huang P, Brus L, Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed, Nano Letters,2003,3,1611-1615.
    [61]Mulvaney P, Linnert T, Henglein A, J. Phys. Chem.,1991,95.
    [62]A. Rembaum, W.J. Dreyer, Science,1980,208,364-368.
    [63]Xiao Y, Patolsky F, Katz E, Hainfeld J F, Willner, Science 2003,299,1877.
    [64]Luo X L, Aoife M, Anthony J K, Application of nanoparticles in electrochemical sensors and biosensors [J]. Electroanalysis,2006,18,319-326.
    [65]Gan X, liu T, Zhang J, et al. Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin [J]. ChemBioChem,2004,5, 1686-1691.
    [66]Karnat P V. Photophysical photochem ical and photocatalytic aspects of metal nanoparticles [J], JPhys Chem B,2002,106,7729.
    [67]Xue C, Mirkin C A, Angew. Chem. Int, Ed,2007,46,2036.
    [68]Sun Y, Wiley B, Li Z Y, Xia Y, J. Am. Chem. Soc.2004,126,9399.
    [69]Mie G., Ann. Phys, Weinheim, G E, Mirkin C A, Mechanistic study of photomediated triangular silver nanoprism Growth. J. Am. Chem. Soc.,2008,130, (26):8337-8344.
    [71]沈钟,王果庭,胶体与表面化学[M],化学工业出版社,1996
    [72]Hiemenz P C, Rajagopalan R, Principles of colloid and surface chemistry, Marcel Dekker Inc., New York,1997.
    [73]Li Z, Shen Y H, Xie A J, Li S K, Jin B K, Zhang Q F, One-step synthesis of monodisperse silver nanoparticles beneath vitamine langmuir monolayers, J. Phys. Chem. B,2006,110,6615-6620.
    [74]Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corp, Physical Electronics Division:Norwalk, CT,1979.
    [75]Li D X, He Q, Yue C, Li D, Li J B, Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability Biochemical and Biophysical Research Communications,2007,355,488-493.
    [76]Kraus C K, The constitution of metallic substances, J. Am. Chem. Soc.1922,44.
    [77]Wen X, Xie Y T, Mak M W, Dendritic nanostructures of silver:facile synthesis, structural characterizations, and sensing applications, Langmuir,2006,22,4836-4842.
    [78]Tang B, An J, Zheng X L, Xu S P, Li D, Zhou J, Zhao B, Xu W X, Silver Nanodisks with Tunable Size by Heat Aging, J. Phys. Chem. C,2008,112 (47):18361-18367.
    [79]Yu A B,Y SH. Xu, Chen S F, Lin B, Lin B, Tian X, Analysis of material removal for honing of alumina ceramics, Journal of Materials Processing Technology,2002,129, 167-170.
    [80]段学臣,曾真诚,高桂兰,纳米材料制备方法和展望[J]中南大学材料科学与工程系,2001.
    [81]Kelly L K, Coronado E, Zhao L L, J. Phys. Chem. B,2003,107,668.
    [82]Crumbliss A L, Perine S C, Stonehuerner J, etal, Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition, Biotechnol. Bioeng.1992,40,483-490.
    [83]Mossavarali S, Hosseinkhani S, Ranjbar B, Miroliaei M, Step wise modification of lysine residues of glucose oxidase with citraconic anhydride, Int. J. Biol. Macromol.2006,39, 192-196.
    [84]Verma V, Simard J M, Rotello V M, Effect of ionic strength on the binding of a-chymotrypsin to nanoparticle receptors, Langmuir 2004,20,4178-4181.
    [85]Haq S K, Ahmad M F, Khan R H, The acid-induced state of glucose oxidase exists as a compact folded intermediate, Biochem. Biophys. Res. Commun.,2003,303,685-692.
    [86]Hong R, Fischer N O, Verma A, Goodman C M, Emrick T, Rotello V M, Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds,J. Am. Chem. Soc.2004,126,739-743.
    [87]Swoboda B E S P, Massey V, Purification and properties of glucose oxidase from Aspergillus niger, J. Biol. Chem.1965,240,2209-2215.
    [88]Copeland R A, Fodor S P, Spiro T G, Surface-enhanced raman spectra of an active flavoenzyme:glucose oxidase and riboflavin binding protein on silver particles, J. Am. Chem. Soc.1984,106,3872-3874.
    [89]Pandey P, Singh S P, Arya S K, Gupta V, Datta M, Singh M, Malhotra B D, Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity, Langmuir,2007,23,3333-3337.
    [90]Greenfield N, Fasman G D. Computed circular dichroism spectra for the evaluation of p rotein conformation [J]. Biochemistry,1969,8(10):4108-4116.
    [91]Braun E, Eichen Y, Sivan U, Nature,1998,391,775.
    [92]Nikil J R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J], Chem. Commun.,2001,617.
    [93]Wan C C, Wang Y Y, Synthesis of metal nanoparticles via self-regulated reduction by an alcohol surfactant[J]. Adv Mater,2001, (11):334—347.
    [94]Storhoff R J, Mucic R C, Letstinger R L, Mirkin C A, Science,1997,277,1078.
    [95]Wang D B, Song C X, Hu Z S, Mater Lett [J],2005,59(1760):14-15.
    [96]Chen S H, Fan Z Y, Carroll D L, Jphys Chem[J],2002,106(42):10777.
    [97]Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G, Science,2001,294, 1901.
    [98]Wen Z, Ye B, Zhou X, Direct electron transfer reaction of glucose oxidase at bare silver electrodes and its application in analysis, Electroanalysis 1997,9,641-644.
    [99]Ostwald W, Lehrbruck der Allgemeinen Chemie, Germany,1896,2,1.
    [100]Iliev T D, Bilyarska L, Applcatal Environmental[J].2006,63,266.
    [101]Wang Z L, Jphys Chem [J],2000,104 (6):1153.
    [102]李芝华,王炎伟,卢健体,于倩倩,化学法制备片状纳米银粉的研究进展[J]稀有金属材料与工程,2009,6,119.
    [103]Adamson A W, Physical Chemistry of Surface, New York, John Wiley,1990, Chapter 5, Chapter 6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700