聚合物复合胶束的制备及其作为可控载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嵌段共聚物复合胶束将具有不同性质的聚合物嵌段引入到同一胶束中,使其具有复合的“核”或“壳”结构,能更好地满足药物控制释放、催化剂载体等方面的应用。本论文利用嵌段共聚物之间的氢键和/或静电相互作用设计并制备了多种聚合物复合胶束。并在复合胶束调控所包裹药物的释放速率和所负载的金纳米催化剂的催化活性方面开展了研究。主要内容包括:
     1、利用聚丙烯酸和聚(4-乙烯基吡啶)之间的氢键作用,将聚(N-异丙基丙烯酰胺)-b-聚(4-乙烯基吡啶)(PNIPAM-b-P4VP)与聚乙二醇-b-聚丙烯酸(PEG-b-PAA)在乙醇中自组装,首次制备了一种纤维状复合胶束。该胶束具有PAA/P4VP的复合核和一个PEG&PNIPAM的混合壳层。通过改变溶液中两种聚合物的质量比(W_(PNIPAM-b-P4VP)/W_(PEG-b-PAA))可以调节所形成的纤维状胶束的长度,并且,该纤维状胶束的端基是“活的”,新加入的PNIPAM-b-P4VP链可以继续沿端基生长,并可以在两个胶束聚集体之间起到一种桥连作用,将两个聚集体连接起来,使得纤维状胶束的长度增加。
     2、巧妙地运用了层层自组装的方式,通过PAA和P4VP之间的氢键作用,在乙醇中将分别具有温度和pH值敏感的聚合物嵌段引入到聚苯乙烯-b-聚丙烯酸(PS-b-PAA)聚合物胶束的表面,制备了一种多层胶束。胶束的冠层由PNIPAM链和过量的P4VP链段组成。将胶束转移到酸性水中时,其多层复合结构不会发生变化。多层胶束具有pH和温度双重敏感性,升高溶液的温度到最低临界溶液温度(LCST)以上时,PNIPAM塌缩到PAA/P4VP复合层上而过量的P4VP链依然伸展到酸性水溶液中,形成一种冠层反转胶束。
     3、用1,2-二氯乙烷作辅助,在水中制备了一种PS-b-PAA空心胶束,胶束的空腔被1,2-二氯乙烷所占据。向胶束溶液中加入PNIPAM-b-P4VP和PEG-b-P4VP时,高分子链会通过PAA和P4VP之间的静电和氢键作用组装在胶束表面。这样,就形成了一种多层复合胶束,胶束具有一个相对独立的空腔、PAA/P4VP复合壳层以及由PEG和PNIPAM的混合物构成的冠层。将体系的温度升高到LCST以上时,PNIPAM塌缩在复合层上。与此同时,PEG依然伸展到水溶液中,在塌缩的PNIPAM层中构筑了一种亲水性通道,为小分子,尤其是亲水性小分子进出胶束提供了一条有效的途径。通过改变胶束冠层PNIPAM和PEG链的比例可以调节胶束表面通道的数量和密度,进而可以有效地调控所包裹药物的释放速率。
     4、利用PAA和P4VP之间的静电和氢键作用,通过层层组装的方式,制备了一种新型的以PS为核、PAA/P4VP复合层为壳、PNIPAM和PEG的混合物为冠的核-壳-冠胶束,并将金纳米粒子负载到胶束的壳层中。升温后,PNIPAM塌缩,对小分子的扩散形成一种障碍,同时也使得所负载的金粒子不易从胶束中脱落。PEG链穿过塌缩层伸展到水溶液中,形成允许小分子通过的亲水性通道。这种通道可以用来调控所负载金催化剂的催化活性:通过改变PEG链在冠层中的比例可以调节胶束表面的PEG通道的数量和密度,进而可以调节小分子进出胶束的速率和催化反应的速率。这种在胶束表面制备亲水性通道的同时又保持了胶束在溶液中的稳定性的方法在许多疏水性药物的传输、控制释放以及基因治疗等方面有着十分广泛的应用前景。
     5、将传统的乳液聚合和原子转移自由基聚合结合起来,利用乳液作为模版制备了具有空心结构的杂臂交联聚合物。在乳液体系中,单体和催化体系在油相中,含有疏水端基的水溶性大分子引发剂在水相中。大分子引发剂的疏水端基进入到油相中后就可以引发聚合。所得聚合物具有一个空腔,并且同时含有PEG和PNIPAM的臂,这两种臂的比例可以通过改变引发剂中二者的质量比来控制,所得聚合物中空腔的大小也可以通过改变聚合体系的水油比来调控。这种具有空心结构的多臂交联聚合物具有其他核交联聚合物所具备的特性,其在药物释放、催化剂载体、涂料添加剂以及材料的改性方面有极其重要的应用价值。
Polymeric complex micelles,which were synthesized by introducing more than one kind of polymer blocks with different properties into the same micelle,have a complex core or shell and would match well with the higher requirement of drug release and catalyst carrying.In this thesis,many kinds of complex micelles were designed and synthesized through the hydrogen bonding and/or the electrostatic interactions between differene polymer blocks.The complex micelles were used to control the release velocity of the encapsulated drug and to madulate the catalytic activity of the loaded metallic nanoparticles.The contents of the corresponding research works are shown as follows.
     Novel kind of worm-like complex micelles were synthesized through the hydrogen bonding between PAA block and P4VP block by adding poly(N-isopropylacrylamide)-block-poly(4-vinylpyridine)(PNIPAM-b-P4VP) into the solution of poly(ethylene glycol)-block-poly(acrylic acid)(PEG-b-PAA) in ethanol.The resulted micelles have a PAA/P4VP complex core and a PEG&PNIPAM mixed shell.The length of worm-like aggregates could be adjusted by changing the weight ratio of W_((PNIPAM-b-P4VP))/W_((PEG-b-PAA)).The terminal group of the aggregates is "living".The newly added PNIPAM-b-P4VP chains would grow onto the aggregates from the group and acted as a bridge to connect two aggregates, and the length of the micelles increased.
     Multilayered micelles was synthesized through the electrostatic interaction and the hydrogen bonding between PAA block and P4VP block using the layer by layer assembly method by adding PNIPAM-b-P4VP and PEG-b-P4VP into the polystyrene-block-poly(acrylic acid)(PS-b-PAA) micellar solution.The corona of the micelles consisted of a kind temperature sensitive polymer block and a kind of pH sensitive polymer block.The multi-layered morphology would not change when the micelles were transferred into water.The micelles have both pH and temperature sensitivity.PNIPAM would collapse onto the PAA/P4VP complex layer when the solution was heated above LCST,and the excessive P4VP chains would still extend into the solution.Accordingly,a kind of reverse micelles formed.
     PS-b-PAA spherical micelle with a liquid core and PAA shell were prepared with the assistance of 1,2-dichloroethane.In the process of adding the mixture of PNIPAM-b-P4VP and PEG-b-P4VP,multi-layered micelles with mixed corona consisted of both PNIPAM and PEG chains were constructed through the electrostatic interaction and hydrogen bonding between PAA block and P4VP block. When heating above LCST,PNIPAM chains collapsed onto the PAA/P4VP complex layer while PEG chains still stretched into the solution through the collapsed PNIPAM layer,leading to the formation of hydrophilic channels around PEG chains. The ratio of the channels in the corona of the micelles can be modified by changing the weight ratio of W_((PNIPAM-b-P4VP))/W_((PEG-b-P4VP)),and accordingly,the release velocity of the drugs encapsulated in the hollow space can be controlled through this method.
     Polymeric micelles with a PS core,PAA/P4VP complex shell and PEG&PNIPAM mixed corona were synthesized through the layer by layer assembly method and used as the supporter for the gold nanoparticles(GNs).When heated above LCST,PNIPAM would collapse onto the PAA/P4VP complex layer,acting as a barrier for the diffusion of small molecules and also preventing the sheeding of the GNs.Hydrophilic channels around PEG chains formed when PNIPAM chains collapsed above LCST.The ratio of the channels in the corona can be tuned by changing the weight ratios of PEG chains to PNIPAM chains in the corona and the catalytic activity of the GNs can be modulated by the channels.This concept of constructing the hydrophilic channels in the corona while the micelles were stabilized by the extended PEG chains can be further used in controlled drug delivery, DNA transfer and gene therapy.
     Hollow crosslinked polymers(HCPs) were synthesized using arm first method via atom transfer radical polymerization.The polymerization process was performed in mini-emulsion system,in which the macro initiators,PEG-Br and PNIPAM-Cl, were in the water phase whileas the vinyl-monomer,4VP,and the cross-linker,DVB, were in the butanone phase.The resulted polymer contained a hollow space,and the volume of the hollow space could be adjusted by changing the ratio of water to butanone.There were two kinds of arms,PEG and PNIPAM,in the polymer,and their ratio can be well controlled.
引文
[1]Black CT, Murray CB, Sandstrom R L, et al. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science, 2000, 290(5494): 1131-1134
    [2] Higgins A M, Jones R. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. Nature, 2000, 404 ( 6777) : 476-478
    [3] Whitesides G M, Mathias J P. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science, 1991, 254(5036): 1312-1319
    [4] Boal A K, Ilhan F, Derouchey J E, et al. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature, 2000, 404 ( 6779) : 746-748
    [5]Gau H, Herminghaus S, Lenz P, et al. Liquid morphologies on structured surfaces: from microchannels to microchips. Science, 1999, 283(5398): 46-49
    [6] Thurn-Albrecht T, Schotter J, Kastle C A, et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science, 2000, 290(5499): 2126-2129
    [7] Moss W C, Clarke D B, Young D A. Calculated pulse widths and spectra of a single sonoluminescing bubble. Science, 1997, 276(5317): 1398-1401
    [8]Spatz J P, Mossmer S, Hartmann C, et al. Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir, 2000, 16(2): 407-415
    
    [9] Alexandridis P , Lindman B. Amphiphilic block copolymers: self-assembly and applications. Elsevier,2000
    
    [10] Piirma I. Polymeric surfactants, surfactant science series. Marcel Dekker,1992
    [11]Muthukumar M, Ober C K, Thomas EL. Competing interactions and levels of ordering in self-organizing polymeric materials. Science, 1997, 277(5330): 1225-1232
    [12] Chen X L, Jenekhe S A. Block conjugated copolymers: toward quantum-well nanostructures for exploring spatial confinement effects on electronic, optoelectronic, and optical phenomena. Macromolecules, 1996, 29 (19) : 6189-6192
    [13] Liu G. Growth and morphology change of PS-b-PCEMA particles in solvent-nonsolvent mixtures before precipitation. Macromolecules, 1999, 32(25): 8413-8420
    [14] Guo A, Liu G, Tao J. Star polymers and nanospheres from cross-linkable diblock copolymers. Macromolecules, 1996, 29(7): 2487-2493
    [15] Zhao J, Allen C, Eisenberg A. Partitioning of pyrene between 'crew cut' block copolymer micelles and H_2O/DMF solvent mixtures. Macromolecules, 1997, 30 (23 ): 7143-7150
    [16] Zhang W, Shi L, An Y, et al. A convenient method of tuning amphiphilic block copolymer micellar morphology. Macromolecules, 2004, 37 (7) : 2551-2555
    [17] Zhang W, Shi L, Ma R, et al. Micellization of thermo- and pH-responsive triblock copolymer of PEG-b-P4VP-b-PNIPAM. Macromolecules, 2005, 38(21): 8850-8852
    [18] Yu Y, Zhang L, Eisenberg A. Morphogenic effect of solvent on crew-cut aggregates of apmphiphilicdiblock copolymers. Macromolecules, 1998, 31 (4) : 1144-1154
    [19]Lu Z,Liu G,Liu F.Block copolymer microspheres containing intricate nanometer-sized segregation patterns.Macromolecules,2001,34(25):8814-8817
    [20]Zhang L,Eisenberg A.Multiple morphologies and characteristics of"crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions.J Am Chem Soc,1996,118(13):3168-3181
    [21]Zhang W,Shi L,An Y,et al.Adsorption of P4VP unimers into PS-b-PAA micelles in ethanol due to hydrogen bonding.Macromolecules,2004,37(8):2924-2929
    [22]A.Halperin M T T P.Tethered chains in polymer microstructures.Adv Polym Sci,1992,100(1):31-37
    [23]Chen J T,Thomas E L,Ober C K,et al.Self-assembled smectic phases in rod-coil block copolymers.Science,1996,273(5273):343-346
    [24]Chen J T,Thomas E L,Ober C K,et al.Zigzag morphology of a poly(styrene-b-hexyl isocyanate) rod-coil block copolymer.Macromolecules,1995,28(5):1688-1697
    [25]Widawski G,Rawiso M,Francois B.Self-organized honeycomb morphology of star-polymer polystyrene films.Nature,1994,369(6479):387-389
    [26]Halperin A.Rod-coil copolymers:their aggregation behavior.Macromolecules,1990,23(10):2724-2731
    [27]Williams D R M,Fredrickson G H.Cylindrical micelles in rigid-flexible diblock copolymers.Macromolecules,1992,25(13):3561-3568
    [28]Zhang L,Yu K,Eisenberg A.Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers.Science,1996,272(5269):1777-1779
    [29]Zhang L,Eisenberg A.Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly(acrylic acid) block copolymers.Science,1995,268(5218):1728-1731
    [30]Esselink F J,Dormidontova E,Hadziioannou G.Evolution of block copolymer micellar size and structure evidenced with cryo electron microscopy.Macromolecules,1998,31(9):2925-2932
    [31]Lam Y M,Grigorieff N,Goldbeck-Wood G.Direct visualisation of micelles of pluronic block copolymers in aqueous solution by cryo-TEM.Phys Chem Chem Phys,1999,1(14):3331-3334
    [32]Cameron N S,Corbierre M K,Eisenberg A.1998 E.W.R.steacie award lecture asymmetric amphiphilic block copolymers in solution:a morphological wonderland.Can J Chem,1999,77(8):1311-1326
    [33]Liu S Y,Jiang M.New approaches to polymer micellization and the structural evolution of the micelles.Chem J Chinese U,2001,22(6):1066-1072
    [34]Tao J,Liu G,Ding J,et al.Cross-linked nanospheres of PCEMA with immediately attached surface functional groups.Macromolecules,1997,30(14):4084-4089
    [35]Lodge T P,Pudil B,Hanley K J.The full phase behavior for block copolymers in solvents of varying selectivity.Macromolecules,2002,35(12):4707-4717
    [36]Discher D E,Eisenberg A.Polymer vesicles.Science,2002,297(5583):967-973
    [37]Antonietti M,Forster S.Vesicles and liposomes:a self-assembly principle beyond lipids.Adv Mater,2003,15(16):1323-1333
    [38]Napoli A,Valentini M,Tirelli N,et al.Oxidation-responsive polymeric vesicles.Nature Materials,2004,3(3):183-189
    [39]Holowka E P,Sun V Z,Kamei D T,et al.Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery.Nature MaterialS,2007,6(1):52-57
    [40]Martin T J,Prochazka K,Munk P,et al.pH-dependent micellization of P2VP-b-PEO.Macromolecules,1996,29(18):6071-6073
    [41]Lowe A B,Billingham N C,Armes S P.Synthesis and aqueous solution properties of novel zwitterionic block copolymers.Chem Commun,1997,(11):1035-1036
    [42]Vural B(u|¨)t(u|¨)n C E B M.Selective betainisation of tertiary amine methacrylate block copolymers.J Mater Chem,1997,7:1693-1695
    [43]Liu S Y,Armes S P.Polymeric surfactants for the new millennium:a pH-responsive,zwitterionic,schizophrenic diblock copolymer.Angew Chem Int Edit,2002,41(8):1413-1416
    [44]Creutz S,Jerome R.Effectiveness of PVP block copolymers as stabilizers of aqueous titanium dioxide dispersions of a high solid content.Langmuir,1999,15(21):7145-7156
    [45]Patrickios C S,Sharma L R,Armes S P,et al.Precipitation of a water-soluble ABC triblock methacrylic polyampholyte:effects of time,pH,polymer concentration,salt type and concentration,and presence of a protein.Langmuir,1999,15(5):1613-1620
    [46]Ma Y,Tang Y,Billingham N C,et al.Synthesis of biocompatible,stimuli-responsive,physical gels based on ABA triblock copolymers.Biomacromolecules,2003,4(4):864-868
    [47]Liu S,Weaver J V M,Save M,et al.Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles.Langmuir,2002,18(22):8350-8357
    [48]Zhang W,Zhou X,Li H,et al.Conformational transition of tethered PNIPAM chains in coronas of micelles and vesicles.Macromolecules,2005,38(3):909-914
    [49]Chen Guohua H A S.Graft copolymers that exhibit temperature-induced phase transitions over a wide range ofpH.Nature,1995,373(6509):49-51
    [50]Qiu Y,Park K.Environment-sensitive hydrogels for drug delivery.Adv Drug Deliver Rev,2001,53(3):321-339
    [51]江明,艾森伯格,刘国军,张希等著.北京:科学出版社
    [52]Zhang W,Shi L,Wu K,et al.Thermoresponsive micellization of PEG-b-PNIPAM in water.Macromolecules,2005,38(13):5743-5747
    [53]Butun V,Billingham N C,Armes S P.Synthesis of shell cross-linked micelles with tunable hydrophilic/hydrophobic cores.J Am Chem Soc,1998,120(46):12135-12136
    [54]Liu S,Armes S P.The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids.J Am Chem Soc,2001,123(40):9910-9911
    [55]Kataoka K,Harada A.Block copolymer micelles for drug delivery:design,characterization and biological significance.Adv Drug Deliver Rev,2001,47(1):113-131
    [56]Cohen Stuart M A,Besseling N A M,Fokkink R G.Formation ofmicelles with complex coacervate cores.Langmuir,1998,14(24):6846-6849
    [57]Wakebayashi D,Nishiyama N,Itaka K,et al.Polyion complex micelles of pdna with acetal-poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) block copolymer as the gene carrier system:physicochemical properties of micelles relevant to gene transfection efficacy.Biomacromolecules,2004,5(6):2128-2136
    [58]Harada A,Kataoka K.Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol)segments.Macromolecules,1995,28(15):5294-5299
    [59]Kataoka K,Togawa H,Harada A,et al.Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline.Macromolecules,1996,29(26):8556-8557
    [60]Kabanov A V,Vinogradov S V,Suzdaltseva Y G,et al.Water-soluble block polycations as carriers for oligonucleotide delivery.Bioconjugate Chem,1995,6(6):639-643
    [61]Kabanov A V,Bronich T K,Kabanov V A,et al.Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions.Macromolecules,1996,29(21):6797-6802
    [62]Seo J,Lutkenhaus J L,Kim J,et al.Development of surface morphology in multilayered films prepared by layer-by-layer deposition using poly(acrylic acid) and hydrophobically modified poly(ethylene oxide).Macromolecules,2007,40(11):4028-4036
    [63]Kim B,Park S W,Hammond P T.Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces.ACS Nano,2008,2(2):386-392
    [64]Li Z,Ding J,Day M,et al.Molecularly imprinted polymeric nanospheres by diblock copolymer self-assembly.Macromolecules,2006,39(7):2629-2636
    [65]Lee S C,Lee H J.pH-controlled,polymer-mediated assembly of polymer micelle nanoparticles.Langmuir,2007,23(2):488-495
    [66]Lee S C,Kim K J,Jeong Y,et al.pH-induced reversible complexation of PEG and PCL-b-PMAA copolymer micelles.Macromolecules,2005,38(22):9291-9297
    [67]Karanikolas A,Tsolakis P,Bokias G,et al.Stimuli-responsive PEO-b-P2VP-b-PEO tfiblock copolymers and complexation with PAA at low pH.Eur Phys J E,2008,27(3):335-343
    [68]Atmaja B,Cha J N,Marshall A,et al.Supramolecular assembly of block copolypeptides with semiconductor nanocrystals.Langmuir,2009,25(2):707-715
    [69]Kuo S W,Lee H F,Huang C F,et al.Synthesis and self-assembly of helical polypeptide-random coil amphiphilic diblock copolymer.J Polym Sci Pol Chem,2008,46(9):3108-3119
    [70]Abraham S,Ha C S,Batt C A,et al.Synthesis of stable "gold nanoparticle-polymeric micelle" conjugates:a new class of star "molecular chimera" that self-assemble into linear arrays of spherical micelles.J Polym Sci Pol Chem,2007,45(16):3570-3579
    [71]Zhang L J,Long Y Z,Chen Z J,et al.The effect of hydrogen bonding on self-assembled polyaniline nanostructures.Adv Funct Mater,2004,14(7):693-698
    [72]Wang M,Jiang M,Ning F,et al.Block-copolymer-free strategy for preparing micelles and hollow spheres:self-assembly of poly(4-vinylpyridine) and modified polystyrene.Macromolecules,2002,35(15):5980-5989
    [73]Harada A.K K.Formation of stable and monidispersive polyion complex micelles in aqueous medium from poly(L-lysine) and PEG-b-PAsp block copolymer.Journal of Macromolecular Science:Pure & Applied Chemistry,1996,A34:2119-2133
    [74]Harada A,Kataoka K.Chain length recognition:core-shell supramolecular assembly from oppositely charged block copolymers.Science,1999,283(5398):65-67
    [75]Bronich T K,Kabanov A V,Kabanov V A,et al.Soluble complexes from PEO-b-PMA anions and N-alkylpyridinium cations.Macromolecules,1997,30(12):3519-3525
    [76]Lysenko E A,Bronich T K,Eisenberg A,et al.Block ionomer complexes from polystyrene-block-polyacrylate anions and n-cetylpyridinium cations.Macromolecules,1998,31(14):4511-4515
    [77]Yokoyama M.O T S Y.Introduction of cisplatin into polymeric micelle.J Control Release,1996,39:351-356
    [78]Kataoka K,Ishihara A,Harada A,et al.Effect of the secondary structure of poly(L-lysine)segments on the micellization in aqueous milieu of poly(ethylene glycol)-poly(L-lysine)block copolymer partially substituted with a hydrocinnamoyl group at the N~ε-position.Macromolecules,1998,31(18):6071-6076
    [79]Nishiyama N,Yokoyama M,Aoyagi T,et al.Preparation and characterization of self-assembled polymer-metal complex micelle from cis-dichlorodiammineplatinum(Ⅱ) and PEG-b-PAsp block copolymer in an aqueous medium.Langmuir,1999,15(2):377-383
    [80]Liu S,Zhu H,Zhao H,et al.Interpolymer hydrogen-bonding complexation induced micellization from polystyrene-b-poly(methyl methacrylate) and PS(OH) in toluene.Langmuir,2000,16(8):3712-3717
    [81]Liu S Y,Jiang M,Liang H J,et al.Intermacromolecular complexes due to specific interactions.13.Formation of micelle-like structure from hydrogen-bonding graft-like complexes in selective solvents.Polymer,2000,41(24):8697-8702
    [82]Jiang M,Duan H W,Chen D Y.Macromolecular assembly:from irregular aggregates to regular nanostructures.Macromol Symp,2003,195:165-170
    [83]Zhao H Y,Gong J,Jiang M,et al.A new approach to self-assembly of polymer blends in solution.Polymer,1999,40(16):4521-4525
    [84]Zhang Y,Jiang M,Zhao J,et al.Hollow spheres from shell cross-linked,noncovalently connected micelles of carboxyl-terminated polybutadiene and poly(vinyl alcohol) in water.Macromolecules,2004,37(4):1537-1543
    [85]Liu X Y,Jiang M,Yang S,et al.Micelles and hollow nanospheres based on epsilon-caprolactone-containing polymers in aqueous media.Angew Chem Int Edit,2002,41(16):2950-2953
    [86]Peng H,Chen D,Jiang M.Self-assembly of formic acid/polystyrene-block-poly(4-vinylpyridine) complexes into vesicles in a low-polar organic solvent chloroform.Langmuir,2003,19(26):10989-10992
    [87]Duan H W,Kuang M,Wang J,et al.Self-assembly of rigid and coil polymers into hollow spheres in their common solvent.J Phys Chem B,2004,108(2):550-555
    [88]Wang M,Zhang G,Chen D,et al.Noncovalently connected polymeric micelles based on a homopolymer pair in solutions.Macromolecules,2001,34(20):7172-7178
    [89]Yuan X,Jiang M,Zhao H,et al.Noneovalently connected polymeric micelles in aqueous medium.Langmuir,2001,17(20):6122-6126
    [90]Zhang Y,Jiang M,Zhao J,et al.pH-responsive core-shell particles and hollow spheres attained by macromolecular self-assembly.Langmuir,2005,21(4):1531-1538
    [91]Ilhan F,Galow T H,Gray M,et al.Giant vesicle formation through self-assembly of complementary random copolymers.J Am Chem Soc,2000,122(24):5895-5896
    [92]Thibault R J,Hotchkiss P J,Gray M,et al.Thermally reversible formation of microspheres through non-covalent polymer cross-linking.J Am Chem Soc,2003,125(37):11249-11252
    [93]Uzun O,Sanyal A,Nakade H,et al.Recognition-induced transformation of microspheres into vesicles:morphology and size control.J Am Chem Soc,2004,126(45):14773-14777
    [94]Katayose S,Kataoka K.Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer.Bioconjugate Chem,1997,8(5):702-707
    [95]Katayose S,Kataoka K.Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol) poly(L-lysine) block copolymer.J Pharm Sci-Us,1998,87(2):160-163
    [96]Harada A,Kataoka K.Novel polyion complex micelles entrapping enzyme molecules in the core:preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium.Macromolecules,1998,31(2):288-294
    [97]Harada A,Kataoka K.Novel polyion complex micelles entrapping enzyme molecules in the core.2.Characterization of the micelles prepared at nonstoichiometric mixing ratios.Langmuir,1999,15(12):4208-4212
    [98]Harada A,Kataoka K.On-off control of enzymatic activity synchronizing with reversible formation of supramolecular assembly from enzyme and charged block copolymers.J Am Chem Soc,1999,121(39):9241-9242
    [99]Kataoka K,Harada A,Wakebayashi D,et al.Polyion complex micelles with reactive aldehyde groups on their surface from plasmid DNA and end-functionalized charged block copolymers.Macromolecules,1999,32(20):6892-6894
    [100]Talingting M R,Munk P,Webber S E,et al.Onion-type micelles from polystyrene-block-poly(2-vinylpyridine) and poly(2-vinylpyridine)-block-poly(ethylene oxide).Macromolecules,1999,32(5):1593-1601
    [101]J Plescarontil J K R,Zcaron,Webber Z T K P.Small-angle neutron scattering study of onion-type micelles.Macromol Chem Phys,2001,202(4):553-563
    [102]Tsitsilianis C,Voulgaris D,Stepanek M,et al.Polystyrene/poly(2-vinylpyridine)heteroarm star copolymer micelles in aqueous media and onion type micelles stabilized by diblock copolymers.Langmuir,2000,16(17):6868-6876
    [103]Zhu J,Hayward R C.Wormlike micelles with microphase-separated cores from blends of amphiphilic AB and hydrophobic BC diblock copolymers.Macromolecules,2008,41(21):7794-7797
    [104]Li G Y,Shi L Q,Ma R J,et al.Formation of complex micelles with double-responsive channels from self-assembly of two diblock copolymers.Angew Chem Int Edit,2006,45(30):4959-4962
    [105]Lin J,Zhu J,Chen T,et al.Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer.Biomaterials,2009,30(1):108-117
    [106]Zhuang Y,Lin J,Wang L,et al.Self-assembly behavior of AB/AC diblock copolymer mixtures in dilute solution.The Journal of Physical Chemistry B,2009,113(7):1906-1913
    [107]Shim D F K,Marques C,Cates M E.Diblock copolymers:comicellization and coadsorption.Macromolecules,1991,24(19):5309-5314
    [108]Palyulin V V,Potemkin I I.Mixed versus ordinary micelles in the dilute solution of AB and BC diblock copolymers.Macromolecules,2008,41(12):4459-4463
    [109]Hui T,Chen D,Jiang M.A one-step approach to the highly efficient preparation of core-stabilized polymeric micelles with a mixed shell formed by two incompatible polymers.Macromolecules,2005,38(13):5834-5837
    [110]Stepanek M,Podhajecka K,Tesarova E,et al.Hybrid polymeric micelles with hydrophobic cores and mixed polyelectrolyte/nonelectrolyte shells in aqueous media.1.preparation and basic characterization.Langmuir,2001,17(14):4240-4244
    [111]Zhang W,Shi L,Gao L,et al.Comicellization of poly(ethylene glycol)-block-poly(acrylic acid) and poly(4-vinylpyridine) in ethanol.Macromolecules,2005,38(3):899-903
    [112]Zhang W,Shi L,An Y,et al.Adsorption of poly(4-vinyl pyridine) unimers into polystyrene-block-poly(acrylic acid) micelles in ethanol due to hydrogen bonding.Macromolecules,2004,37(8):2924-2929
    [113]Li J,He W,He N,et al.Synthesis of PEG-PNIPAM-PLys hetero-arm star polymer and its variation of thermo-responsibility after the formation of polyelectrolyte complex micelles with paa.Journal of Polymer Science Part A:Polymer Chemistry,2009,47(5):1450-1462
    [114]Bronstein L M,Sidorov S N,Gourkova A Y,et al.Interaction of metal compounds with 'double-hydrophilic' block copolymers in aqueous medium and metal colloid formation.Inorg Chim Acta,1998,280(1-2):348-354
    [115]Bronstein L M,Sidorov S N,Valetsky P M,et al.Induced micellization by interaction of poly(2-vinylpyridine)-block-poly(ethylene oxide) with metal compounds,micelle characteristics and metal nanoparticle formation.Langmuir,1999,15(19):6256-6262
    [116]Karanikolas A,Tsolakis P,Bokias G,et al.Stimuli-responsive poly(ethylene oxide)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) triblock copolymers and complexation with poly(acrylic acid) at low pH.Eur Phys J E,2008,27(3):335-343
    [117]Kim B S,Park S W,Hammond P T.Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces.ACS Nano,2008,2(2):386-392
    [118]Abraham S,Ha C S,Batt C A,et al.Synthesis of stable "gold nanoparticle-polymeric micelle" conjugates:a new class of star "molecular chimera" that self-assemble into linear arrays of spherical micelles.J Polym Sci Pol Chem,2007,45(16):3570-3579
    [119]Zhang W Q,Shi L Q,An Y L,et al.Adsorption of poly(4-vinyl pyridine) unimers into polystyrene-block-poly(acrylic acid) micelles in ethanol due to hydrogen bonding.Macromolecules,2004,37(8):2924-2929
    [120]Nizri G,Makarsky A,Magdassi S,et al.Nanostructures formed by self-assembly of negatively charged polymer and cationic surfactants.Langmuir,2009,25(4):1980-1985
    [121]Li J,He W D,He N,et al.Synthesis of peg-pnipam-plys hetero-arm star polymer and its variation of thermo-responsibility after the formation of polyelectrolyte complex micelles with paa.J Polym Sci Pol Chem,2009,47(5):1450-1462
    [122]Yu K,Han Y C.Effect of block sequence and block length on the stimuli-responsive behavior of polyampholyte brushes:hydrogen bonding and electrostatic interaction as the driving force for surface rearrangement.Soft Matter,2009,5(4):759-768
    [123]Kishimura A,Liamsuwan S,Matsuda H,et al.pH-dependent permeability change and reversible structural transition of pegylated polyion complex vesicles(picsomes) in aqueous media.Soft Matter,2009,5(3):529-532
    [124]Gadt T,Ieong N S,Cambridge G,et al.Complex and hierarchical micelle architectures from diblock copolymers using living,crystallization-driven polymerizations.Nature Materials,2009,8(2):144-150
    [125]Yockman J W,Kastenmeier A,Erickson H M,et al.Novel polymer carriers and gene constructs for treatment of myocardial ischemia and infarction.J Control Release,2008,132(3Sp.Iss.SI):260-266
    [126]Yan Y,Hamau L,Besseling N,et al.Spherocylindrical coacervate core micelles formed by a supramolecular coordination polymer and a diblock copolymer.Soft Matter,2008, 4 (11) : 2207-2212
    [127]Dufresne M H, Elsabahy M, Leroux J C. Characterization of polyion complex micelles designed to address the challenges of oligonucleotide delivery. Pharm Res, 2008, 25 ( 9): 2083-2093
    [128] Talelli M, Pispas S. Complexes of cationic block copolymer micelles with DNA: histone/DNA complex mimetics. Macromol Biosci, 2008, 8(10): 960-967
    [129] Chen Y, Ding D, Mao Z Q, et al. Synthesis of hydroxypropylcellulose-poly(acrylic acid) particles with semi-interpenetrating polymer network structure. Biomacromolecules, 2008, 9 (10) : 2609-2614
    [130] Liu QT, Wang Y L, Li W, et al. Vesicular aggregation and morphologic evolvement of a flexible-rigid block hydrogen-bonding complex. Polymer, 2008, 49(19): 4159-4167
    [131] Yan Y, De Keizer A, Stuart M, et al. Stability of complex coacervate core micelles containing metal coordination polymer. J Phys Chem B , 2008, 112(35): 10908-10914
    [132] Li X, Li J. Supramolecular hydrogels based on inclusion complexation between poly(ethylene oxide)-b-poly (epsilon-caprolactone) diblock copolymer and alpha-cyclodextrin and their controlled release property. Journal Of Biomedical Materials Research Part A, 2008, 86A(4): 1055-1061
    [133] Levins A D, Wang X F, Moughton A O, et al. Synthesis of core functionalized polymer micelles and shell cross-linked nanoparticles. Macromolecules, 2008, 41(9): 2998-3006
    [134]Kuo S W, Tung P H, Lai C L, et al. Supramolecular micellization of diblock copolymer mixtures mediated by hydrogen bonding for the observation of separated coil and chain aggregation in common solvents. Macromol Rapid Comm, 2008, 29(3) : 229-233
    [135] Lee S H, Choi S H, Kim S H, et al. Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of sirna: swelling induced physical disruption of endosome by cold shock. J Control Release, 2008, 125(1): 25-32
    [136] Talelli M, Pispas S. Complexes of cationic block copolymer micelles with dna: histone/DNA complex mimetics. Macromol Biosci, 2008, 8(10): 960-967
    [1]Szwarc M,Levy M,Milkovich R.Polymerization initiated by electron transfer to monomer.A new method of formation of block polymers.J Am Chem Soc,1956,78(11):2656-2657
    [2]Throssell J J,Sood S P,Szwarc M,et al.The instantaneous polymerization of styrene by trifluoroacetic acid.J Am Chem Soc,1956,78(6):1122-1125
    [3]Perez H,Noel V,Cavaliere-Jaricot S,et al.Nanocomposite langmuir-blodgett films based on crown derivatized platinum nanoparticles:synthesis,characterization,and electrical properties.Thin Solid Films,2008,517(2):755-763
    [4]张洪敏,侯元雪.活性聚合.北京:中国石化出版社,1998
    [5]Wan X H,Tu H L,Tu Y F,et al.Nitroxide-mediated free radical synthesis of mesogen-jacketed liquid crystal polymers.Chinese J Polym Sci,1999,17(2):189-192
    [6]Zaremskii M Y,Stoyachenko Y I,Plutalova A V,et al.Kinetics of nitroxide-mediated pseudoliving radical styrene polymerization.Vysokomolekulyarnye Soedineniya Seriya A & SeriyaB,1999,41(3):389-398
    [7]Georges M K.An overview of the nitroxide-mediated living-radical polymerization process. Abstracts of Papers of The American Chemical Society. 1999, 217 (Part 2) : 54
    [8] Prodpran T. Dimonie V L, Sudol E D, et al. Nitroxide-mediated living free radical miniemulsion polymerization of styrene. Abstracts of Papers of The American Chemical Society, 1999, 217 (Part 2) : 324
    [9] Goto A, Fukuda T. Kinetic study on nitroxide-mediated free radical polymerization of tert-butylacrylate. Macromolecules, 1999, 32 (3) : 618-623
    [10] Georges M K, Hamer G K, Listigovers N A. Block copolymer synthesis by a nitroxide-mediated living free radical polymerization process. Macromolecules, 1998, 31 (25) : 9087-9089
    [11] Matyjaszewski K, Nakagawa Y, Gaynor S G. Synthesis of well-defined azido and amino end-functionalized polystyrene by atom transfer radical polymerization. Macromol Rapid Comm, 1997, 18 (12) : 1057-1066
    [12] Gao B, Chen X Y, Ivan B, et al. Living atom transfer radical polymerization of 4-acetoxystyrene. Macromol Rapid Comm, 1997, 18 (12) : 1095-1100
    [13] Matyjaszewski K, Coca S, Jasieczek C B. Polymerization of acrylates by atom transfer radical polymerization. homopolymerization of glycidyl acrylate. Macromol Chem Phys, 1997, 198 (12) : 4011-4017
    [14] Xia J H, Matyjaszewski K. Controlled/"living" radical polymerization. homogeneous reverse atom transfer radical polymerization using AIBN as the initiator. Macromolecules, 1997, 30 (25) : 7692-7696
    [15] Xia J H, Matyjaszewski K. Controlled/"living" radical polymerization. atom transfer radical polymerization using multidentate amine ligands. Macromolecules, 1997, 30 (25) : 7697-7700
    [16] Baum M, Brittain W J. Synthesis of polymer brushes on silicate substrates by reversible addition fragmentation chain transfer technique. Abstracts of Papers of The American Chemical Society, 2000, 220 (Part 2) : 164
    [17] Monteiro M J, De Brouwer H. Intermediate radical termination as the mechanism for retardation in reversible addition-fragmentation chain transfer polymerization. Macromolecules, 2001, 34 (3) : 349-352
    [18] De Brouwer H, Tsavalas J G, Schork F J, et al. Living radical polymerization in miniemulsion using reversible addition-fragmentation chain transfer. Macromolecules, 2000, 33 (25) : 9239-9246
    [19] Destarac M, Charmot D, Franck X, et al. Dithiocarbamates as universal reversible addition-fragmentation chain transfer agents. Macromol Rapid Comm, 2000, 21 (15) : 1035-1039
    [20] Monteiro M J, Sjoberg M, Van Der Vlist J, et al. Synthesis of butyl acrylate-styrene block copolymers in emulsion by reversible addition-fragmentation chain transfer: effect of surfactant migration upon film formation. J Polym Sci Pol Chem, 2000, 38 (23) : 4206-4217
    [21]Percec V,Barboiu B."living" radical polymerization of styrene initiated by arenesulfonyl chlorides and cui(bpy)ncl.Macromolecules,1995,28(23):7970-7972
    [22]Ueda J,Matsuyama M,Kamigaito M,et al.Multifunctional initiators for the ruthenium-mediated living radical polymerization of methyl methacrylate:di- and trifunctional dichloroacetates for synthesis of multiarmed polymers.Macromolecules,1998,31(3):557-562
    [23]Sawamoto M,Kamigaito M.Living radical polymerization with transition metal complexes.Kobunshi Ronbunshu,1997,54(12):875-885
    [24]Teodorescu M,Matyjaszewski K.Atom transfer radical polymerization of (meth)aerylamides.Maeromolecules,1999,32(15):4826-4831
    [25]Mandal T K,Fleming M S,Walt D R.Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates.Chem Mater,2000,12(11):3481-3487
    [26]Wang W Z,Song W B,Wang R,et al.ATRP synthesis of poly(4-bromostyrene)-b-poly (propylene glycol) block copolymer and its self-assembly in catalystic emulsion polymerization to form luminescent nanospheres with core-shell structure.J Polym Sci Pol Chem,2009,47(5):1478-1483
    [27]Fan W C,Wang L,Zheng S X.Nanostructures in thermosetting blends of epoxy resin with polydimethylsiloxane-block-poly(epsilon-eaprolactone)-block-polystyrene ABC triblock copolymer.Macromolecules,2009,42(1):327-336
    [28]Bouilhac C,Cloutet E,Taton D,et al.Block copolymer micelles as nanoreactors for single-site polymerization catalysts.J Polym Sci Pol Chem,2009,47(1):197-209
    [29]Xiao Q Z,Zhang X F,Yi J,et al.Synthesis of poly(ethylene oxide)-b-polystyrene-b-poly(4-vinylpyridine) ABC triblock copolymers by two-step atom transfer radical polymerization.Iran Polym J,2008,17(10):781-790
    [30]Abraham S,Ha C S,Kim I.Synthesis of poly(styrene-block-tert-butyl acrylate) star polymers by atom transfer radical polymerization and micellization of their hydrolyzed polymers.J Polym Sci Pol Chem,2005,43(24):6367-6378
    [31]Huang C F,Kuo S W,Chen J K,et al.Synthesis and characterization of polystyrene-b-poly(4-vinyl pyridine) block copolymers by atom transfer radical polymerization.Journal of Polymer Researeh,2005,12(6):449-456
    [32]Richard R E,Sehwarz M,Ranade S,et al.Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paelitaxel delivery from coronary stents.Biomacromolecules,2005,6(6):3410-3418
    [33]Meng T,Gao X,Zhang J,et al.Graft copolymers prepared by atom transfer radical polymerization(ATRP) from cellulose.Polymer,2009,50(2):447-454
    [34]Ma R,Song Z Y,Hou Y B,et al.Synthesis of norbornene and methyl methacrylate graft copolymers with high norbornene content by using mixed catalytic system.Journal of Macromolecular Science Part A-Pure And Applied Chemistry,2009,46(2):193-201
    [35]Yang Y,Yan X H,Cui Y,et al.Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a "graft-from" method.J Mater Chem,2008,18(47):5731-5737
    [36]Choi J K,Kim Y W,Koh J H,et al.Proton conducting membranes based on poly(vinyl chloride) graft copolymer electrolytes.Polym Advan Technol,2008,19(7):915-921
    [37]Vivek A V,Pradipta S M,Dhamodharan R.Synthesis of silver nanoparticles using a novel graft copolymer and enhanced particle stability via a "polymer brush effect".Macromol Rapid Comm,2008,29(9):737-742
    [38]Zhou H,Jiang P,Yang C,et al.Graft polymerization of 2-hydroxyethyl methacrylate on soy protein isolate via atom transfer radical polymerization.Acta Polym Sin,2008,(5):424-429
    [39]Yamazaki Y,Ajioka N,Yokoyama A,et al.Synthesis of well-defined miktoarm star copolymers of aromatic polyether and polystyrene by chain-growth condensation polymerization and atom transfer radical polymerization.Macromolecules,2009,42(3):606-611
    [40]Hussain H,Tan B H,Gudipati C S,et al.Synthesis and characterization of organic/inorganic hybrid star polymers of 2,2,3,4,4,4-hexafluorobutyl methacrylate and octa(aminophenyl) silsesquioxane nano-cage made via atom transfer radical polymerization.J Polym Sci Pol Chem,2008,46(22):7287-7298
    [41]Nor I,Sandu V,Ibanescu C,et al.Synthesis and characterization of star and brush grafted polysiloxanes,obtained by atom transfer radical polymerization.E-Polymers,2008,(138)
    [42]Cao Y,Hong Y,Zhai G Q,et al.Facile synthesis and characterization of star-shaped polystyrene:self-condensing atom transfer radical copolymerization of N-[4-(alpha-bromoisobutyryloxy)phenyl]maleimide and styrene.Polym Int,2008,57(10):1090-1100
    [43]Zhang H H,Huang Z Q,Zhang Q.Synthesis of core-shell star poly(methyl methacrylate)with benzene arborol core by atom transfer radical polymerization.Polym J,2008,40(6):549-553
    [44]Nagai A,Hirabayashi T,Kudo H,et al.Synthesis of star polymer by atom transfer radical polmerization with resorcinol-core multifunctional initiator:the construction of nanocapsule via hydrolysis and olefin metathesis reaction of the obtained star polymer.J Polym Sci Pol Chem,2008,46(14):4879-4888
    [45]Pugh C,Kasko A M,Grunwald S R.The effect of the core on the thermotropic behavior of three-arm star poly[11-(4'-cyanophenyl-4"-phenoxy)undecyl acrylate]s synthesized by atom transfer radical polymerization.J Polym Sci Pol Chem,2008,46(13):4363-4382
    [46]Tang X D,Gao L C,Han N F,et al.Synthesis and characterization of tri-arm star side-chain liquid crystalline polymers containing azobenzene via atom transfer radical polymerization.Acta Chim Sinica,2007,65(16):1736-1740
    [47]Wan L S,Lei H,Ding Y,et al.Linear and comb-like acrylonitrile/N-isopropylacrylamide copolymers synthesized by the combination of RAFT polymerization and ATRP.J Polym Sci Pol Chem,2009,47(1):92-102
    [48]Hussain H,Mya K Y,He C B.Self-assembly of brush-like poly[poly(ethylene glycol)methyl ether methacrylate]synthesized via aqueous atom transfer radical polymerization.Langmuir,2008,24(23):13279-13286
    [49]Li A X,Lu Z J.Synthesis and characterization of well-defined comb-like branched polymers.Acta Polym Sin,2008,(3):203-208
    [50]Zhai G Q,Cao Y,Gao J.Covalently tethered comb-like polymer brushes on hydrogen-terminated Si surface via consecutive aqueous atom transfer radical polymerization of methacrylates.J Appl Polym Sci,2006,102(3):2590-2599
    [51]Li X L,Ji J,Shen J C.Preparation of comb-like block polymer hydroxy-capped poly(ethylene glycol)methacrylate with high density via atom transfer radical polymerization.Chem J Chinese U,2005,26(2):388-390
    [52]Liu P,Liu W M,Xue Q J.Preparation of comb-like styrene grafted silica nanoparticles.J Macromol Sci Pure,2004,A41(9):1001-1010
    [53]Cianga I,Yagci Y.Synthesis and characterization of comb-like polyphenylenes via suzuki coupling of polystyrene macromonomers prepared by atom transfer radical polymerization.Eur Polym J,2002,38(4):695-703
    [54]Ciampolini M,Nardi N.Five-coordinated high-spin complexes of bivalent cobalt,nickel,andcopper with tris(2-dimethylaminoethyl)amine.Inorg Chem,1966,5(1):41-44
    [1]Xiong D,Shi L,Jiang X,et al.Composite worm-like aggregates formed from a pair of block-copolymers containing hydrogen-bonding donor and acceptor.Macromol Rapid Commun,2007,28:194-199
    [2]Seo J,Lutkenhaus J L,Kim J,et al.Development of surface morphology in multilayered films prepared by layer-by-layer deposition using poly(acrylic acid) and hydrophobically modified poly(ethylene oxide).Macromolecules,2007,40(11):4028-4036
    [3]Kim B,Park S W,Hammond P T.Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces.ACS Nano,2008,2(2):386-392
    [4]Li Z,Ding J,Day M,et al.Molecularly imprinted polymeric nanospheres by diblock copolymer self-assembly.Macromolecules,2006,39(7):2629-2636
    [5]Lee S C,Lee H J.pH-controlled,polymer-mediated assembly of polymer micelle nanoparticles.Langmuir,2007,23(2):488-495
    [6]Lee S C,Kim K J,Jeong Y,et al.pH-induced reversible complexation of PEG and PCL-b-PMAA copolymer micelles.Macromolecules,2005,38(22):9291-9297
    [7]Karanikolas A,Tsolakis P,Bokias G,et al.Stimuli-responsive PEG-b-P2VP-b-PEG triblock copolymers and complexation with PAA at low pH.Eur Phys J E,2008,27(3):335-343
    [8]Atmaja B,Cha J N,Marshall A,et al.Supramolecular assembly of block copolypeptides with semiconductor nanocrystals.Langmuir,2009,25(2):707-715
    [9]Kuo S W,Lee H F,Huang C F,et al.Synthesis and self-assembly of helical polypeptide-random coil amphiphilic diblock copolymer.J Polym Sci Pol Chem,2008,46(9):3108-3119
    [10]Abraham S,Ha C S,Batt C A,et al.Synthesis of stable "gold nanoparticle-polymeric micelle" conjugates:a new class of star "molecular chimera" that self-assemble into linear arrays of spherical micelles.J Polym Sci Pol Chem,2007,45(16):3570-3579
    [11]Zhang L J,Long Y Z,Chen Z J,et al.The effect of hydrogen bonding on self-assembled polyaniline nanostructures.Adv Funct Mater,2004,14(7):693-698
    [12]Harada A,Kataoka K.Chain length recognition:core-shell supramolecular assembly from oppositely charged block copolymers.Science,1999,283(5398):65-67
    [13]Kato T,Mizoshita N,Kanie K.Hydrogen-bonded liquid crystalline materials:supramolecular polymeric assembly and the induction of dynamic function.Macromol Rapid Comm,2001,22(11):797-814
    [14]Cate A T T,Sijbesma R P.Coils,rods and rings in hydrogen-bonded supramolecular polymers.Macromol Rapid Comm,2002,23(18):1094-1112
    [15]Hu J,Liu G.Chain mixing and segregation in B-C and C-D diblock copolymer micelles.Macromolecules,2005,38(19):8058-8065
    [16]Gohy J,Varshney S K,Jerome R.Water-soluble complexes formed by P2VP-b-PEG and PSMA-b-PEG copolymers.Macromolecules,2001,34(10):3361-3366
    [17]Kataoka K,Harada A,Wakebayashi D,et al.Polyion complex micelles with reactive aldehyde groups on their surface from plasmid dna and end-functionalized charged block copolymers.Macromolecules,1999,32(20):6892-6894
    [18]Zhang W,Shi L,Gao L,et al.Comicellization of poly(ethylene glycol)-block-poly(acrylic acid) and poly(4-vinylpyridine) in ethanol.Macromolecules,2005,38(3):899-903
    [19]Gr(o|¨)ger S,Geschke D,K(a|¨)rger J,et al.Co-micellization investigated by pulsed field gradient-nmr spectroscopy.Macromol Rapid Comm,2004,25(10):1015-1018
    [20]Bronstein L M,Dixit S,Tomaszewski J,et al.Hybrid polymer particles with a protective shell-synthesis,structure,and templating.Chem Mater,2006,18(9):2418-2430
    [21]Kakizawa Y,Kataoka K.Block copolymer micelles for delivery of gene and related compounds.Adv Drug Deliver Rev,2002,54(2):203-222
    [22]C.-A.Fustin V A J-.Triblock terpolymer micelles:a personal outlook.The European Physical Journal E,2005,16:291-302
    [23]Cai Y,Armes S P.A zwitterionic ABC triblock copolymer that forms a "trinity" of micellar aggregates in aqueous solution.Macromolecules,2004,37(19):7116-7122
    [24]Weaver J V M,Armes S P,Liu S.A "holy trinity" of micellar aggregates in aqueous solution at ambient temperature:unprecedented self-assembly behavior from a binary mixture of a neutral-cationic diblock copolymer and an anionic polyelectrolyte.Macromolecules,2003,36(26):9994-9998
    [25]Yan X,Liu G,Hu J,et al.Coaggregation of B-C and D-C diblock copolymers with H-bonding C blocks in block-selective solvents.Macromolecules,2006,39(5):1906-1912
    [26]Li Z,Ding J,Day M,et al.Molecularly imprinted polymeric nanospheres by diblock copolymer self-assembly.Macromolecules,2006,39(7):2629-2636
    [27]Hui T,Chen D,Jiang M.A one-step approach to the highly efficient preparation of core-stabilized polymeric micelles with a mixed shell formed by two incompatible polymers.Macromolecules,2005,38(13):5834-5837
    [28]Wu K,Shi L Q,Zhang W Q,et al.Formation of hybrid micelles between PEG-b-P4VP cations and sulfate anions in an aqueous milieu.Soft Matter,2005,1(6):455-459
    [29]Zhang W Q,Shi L Q,Gao L C,et al.Comicellization of PEG-b-PAA and P4VP in ethanol.Macromolecules,2005,38(3):899-903
    [1](a)Xiong D A,He Z P,An Y L,et al.Temperature-responsive multilayered micelles formed from the complexation of PNIPAM-b-P4VP block-copolymer and PS-b-PAA core-shell micelles.Polymer,2008,49(10):2548-2552.
    (b) Zhang Y B,Li M,Fang Q,et al.Effect of incorporating a trace amount of fluorocarbon into poly(N-isopropylacrylamide) on its association inwater.Macromolecules,1998,31(8):2527-2532
    [2]Zhu P W,Napper D H.Effects of thermal history on the dynamics of relaxation of poly(Nisopropylacrylamide)adsorbed at latex interfaces in water.Phys Rev E,1998,57(3Part B):3101-3106
    [3]Zhou S Q,Chu B.Synthesis and volume phase transition of poly(methacrylic acid-co-Nisopropylacrylamide)microgel particles in water.J Phys Chem B,1998,102(8):1364-1371
    [4]Bokias G,Hourdet D,Iliopoulos I,et al.Hydrophobic interactions of poly(Nisopropylacrylamide)with hydrophobically modified poly(sodium acrylate) in aqueous solution.Macromolecules,1997,30(26):8293-8297
    [5]Qiu X P,Wu C.Study of the core-shell nanoparticle formed through the "coil-to-globule"transition of poly(N-isopropylacrylamide) grafted with poly(ethylene oxide).Macromolecules,1997,30(25):7921-7926
    [6]Zhu D M,Wu K,Wu B,et al.Physisorption of poly(N-isopropylacrylamide) in its swollen and collapsed states:effects of molecular conformation and substrate interaction.Journal of Physical Chemistry C,2007,111(50):18679-18686
    [7]Wang H,An Y,Huang N,et al.Investigation of the cononsolvency effect on micellization behavior of poly(styrene)-b-poly(N-isopropylacrylamide).J Colloid Interf Sci,2008,317(2):637-642
    [8]Kataoka K,Harada A,Wakebayashi D,et al.Polyion complex micelles with reactive aldehyde groups on their surface from plasmid DNA and end-functionalized charged block copolymers.Macromolecules,1999,32(20):6892-6894
    [9]Dennis E.Discher A E.Polymer vesicles.Science,2002,297(5583):967-973
    [10]S H Y.Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers.Adv Funct Mater,2002,12(8):541-545
    [11]Shimoboji T,Larenas E,Fowler T,et al.Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates.Bioconjugate Chem.,2003,14(3):517-525
    [12]Hu J,Liu G.Chain mixing and segregation in B-C and C-D diblock copolymer micelles.Macromolecules,2005,38(19):8058-8065
    [13]Riess G.Micellization of block copolymers.Prog Polym Sci,2003,28(7):1107-1170
    [14]De X L.Composite worm-like aggregates formed from a pair of block-copolymers containing hydrogen-bonding donor and acceptor.Macromol Rapid Comm,2007,28(2):194-199
    [15]Kataoka K,Harada A,Nagasaki Y.Block copolymer micelles for drug delivery:design,characterization and biological significance.Adv Drug Deliver Rev,2001,47(1):113-131
    [16]Podhajecka K,Stepanek M,Prochazka K,et al.Hybrid polymeric micelles with hydrophobic cores and mixed polyelectrolyte/nonelectrolyte shells in aqueous media.2.studies of the shell behavior.Langmuir,2001,17(14):4245-4250
    [17]Yao X,Chen D,Jiang M.Formation of PS-b-P4VP/formic acid core-shell micelles in chloroform with different core densities.J.Phys.Chem.B,2004,108(17):5225-5229
    [18]Hui T,Chen D,Jiang M.A one-step approach to the highly efficient preparation of core-stabilized polymeric micelles with a mixed shell formed by two incompatible polymers.Macromolecules,2005,38(13):5834-5837
    [19]Erhardt R,Zhang M,Boker A,et al.Amphiphilic janus micelles with polystyrene and poly(methacrylic acid) hemispheres.J Am Chem Soc,2003,125(11):3260-3267
    [20]Chang Y,Chen W,Sheng Y,et al.Intramolecular janus segregation of a heteroarm star copolymer.Macromolecules,2005,38(14):6201-6209
    [21]Erhardt R,Boker A,Zettl H,et al.Janus micelles.Macromolecules,2001,34(4):1069-1075
    [22]Li G Y,Shi L Q,Ma R J,et al.Formation of complex micelles with double-responsive channels from self-assembly of two diblock copolymers.Angew Chem Int Edit,2006,45(30):4959-4962
    [23]Zheng R,Liu G,Yan X.Polymer nano- and microspheres with bumpy and chain-segregated surfaces.J.Am.Chem.Soc.,2005,127(44):15358-15359
    [24]Khanal A,Inoue Y,Yada M,et al.Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure.J.Am.Chem.Soc.,2007,129(6):1534-1535
    [25]Zhang W,Jiang X,He Z,et al.Thermoresponsive core-shell-corona micelles of poly(ethyleneglycol)-b-poly(N-isopropylacrylamide)-b-polystyrene.Polymer,2006,47(24):8203-8209
    [26]Jean-Fran G N.Core-shell-corona micelles with a responsive shell.Angewandte Chemic International Edition,2001,40(17):3214-3216
    [27]Chou S H,Tsao H K,Sheng Y J.Morphologies of multicompartment micelles formed by triblock copolymers.J Chem Phys,2006,125:194903-194909
    [28]Li G,Shi L,An Y,et al.Double-responsive core-shell-corona micelles from self-assembly of diblock copolymer of poly(t-butyl acrylate-co-acrylic acid)-b-poly(N-isopropyl acrylamide).Polymer,2006,47(13):4581-4587
    [29]Zhang W Q,Shi L Q,Ma R J,et al.Micellization of thermo- and ph-responsive triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacryl amide).Macromolecules,2005,38(21):8850-8852
    [30]Lysenko E A,Chelushkin P S,Bronich T K,et al.Formation of multilayer polyelectrolyte complexes by using block ionomer micelles as nucleating particles.J.Phys.Chem.B,2004,108(33):12352-12359
    [31]Pergushov D V,Remizova E V,Gradzielski M,et al.Micelles of polyisobutylene-block-poly(methacrylic acid) diblock copolymers and their water-soluble interpolyelectrolyte complexes formed with quatemized poly(4-vinylpyridine).Polymer,2004,45(2):367-378
    [32]Wangqing Z L.Formation of core-shell-corona micellar complexes through adsorption of double hydrophilic diblock copolymers into core-shell micelles.Macromol Rapid Comm,2005,26(16):1341-1345
    [33]Wangqing Z L.Core-shell-corona micellar complexes between poly(ethylene glycol)-block-poly(4-vinyl pyridine) and polystyrene-block-poly(acrylic acid).Macromol Chem Phys,2005,206(23):2354-2361
    [34]Zhang W,Shi L,An Y,et al.Adsorption of poly(4-vinyl pyridine) unimers into polystyreneblock -poly(acrylic acid) micelles in ethanol due to hydrogen bonding.Macromolecules,2004,37(8):2924-2929
    [35]Wangqing Zhang L S Y A.Initial copolymer concentration influence on self-assembly of PS-b-P(AA-co-MA) in water.Phys.Chem.Chem.Phys.,2004,6:109-115
    [36]Stefan G,Dieter G,J(o|)rg K,et al.Co-micellization investigated by pulsed field gradient-NMR spectroscopy.Macromol Rapid Comm,2004,25(10):1015-1018
    [37]Kakizawa Y,Kataoka K.Block copolymer micelles for delivery of gene and related compounds.Adv Drug Deliver Rev,2002,54(2):203-222
    [1](a) Xiong D A,An Y L,Li Z,et al.Nanometer-Scaled Hollow Spherical Micelles with Hydrophilic Channels and the Controlled Release of Ibuprofen.Macromolecular Rapid Communications,2008,29(23):1895~1901.
    (b) Discher D E,Eisenberg A.Polymer vesicles.Science,2002,297(5583):967-973
    [2]Lehn J M. Toward self-organization and complex matter. Science, 2002, 295 (5564): 2400-2403
    [3] Antonietti M, Forster S. Vesicles and liposomes: a self-assembly principle beyond lipids. Adv Mater, 2003, 15 (16) : 1323-1333
    [4] Battaglia G, Ryan A J. Pathways of polymeric vesicle formation. J Phys Chem B , 2006, 110 (21) : 10272-10279
    [5] Stoenescu R, Meier W. Vesicles with asymmetric membranes from amphiphilic ABC triblock copolymers. Chem Commun, 2002, (24) : 3016-3017
    [6] Uzun O, Xu H, Jeoung E, et al. Recognition-induced polymersomes: structure and mechanism of formation. Chem-EurJ, 2005, 11 (23) : 6916-6920
    [7] Li Y, Lokitz B S, Mccormick C L. Thermally responsive vesicles and their structural "locking" through polyelectrolyte complex formation. Angew Chem Int Edit, 2006, 45(35) : 5792-5795
    [8] Choi H J, Montemagno C D. Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett, 2005, 5 (12) : 2538-2542
    [9] Donath E, Sukhorukov G B, Caruso F, et al. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Edit, 1998, 37 (16) : 2202-2205
    [10]Dufes C, Schatzlein A G, Tetley L, et al. Niosomes and polymeric chitosan based vesicles bearing transferrin and glucose ligands for drug targeting. Pharm Res, 2000, 17 (10) : 1250-1258
    [11] Ahmed F, Discher D E. Self-porating polymersomes of PEG-b-PLA and PEG-b-PCL: hydrolysis-triggered controlled release vesicles. J Control Release, 2004, 96(1): 37-53
    [12] Vangala A, Bramwell V W, Mcneil S, et al. Comparison of vesicle based antigen delivery systems for delivery of hepatitis B surface antigen. J Control Release, 2007, 119(1): 102-110
    [13] Volodkin D, Mohwald H, Voegel J C, et al. Coating of negatively charged liposomes by polylysine: drug release study. J Control Release, 2007, 117(1): 111-120
    [14] Karathanasis E, Bhavane R, Annapragada A V. Triggered release of inhaled insulin from the agglomerated vesicles: pharmacodynamic studies in rats. J Control Release, 2006, 113 (2) : 117-127
    [15] Hiruta Y, Hattori Y, Kawano K, et al. Novel ultra-deformable vesicles entrapped with bleomycin and enhanced to penetrate rat skin. J Control Release, 2006, 113(2): 146-154
    [16] Sandstrom M C, Ickenstein L M, Mayer L D, et al. Effects of lipid segregation and lysolipid dissociation on drug release from thermosensitive liposomes. J Control Release, 2005, 107 (1) : 131-142
    [17]Nardin C, Widmer J, Winterhalter M, et al. Amphiphilic block copolymer nanocontainers as bioreactors. EurPhys J E , 2001, 4 (4) : 403-410
    [18]Mecke A, Dittrich C, Meier W. Biomimetic membranes designed from amphiphilic block copolymers. Soft Matter, 2006, 2 (9) : 751-759
    [19] Sauer M, Haefele T, Graff A, et al. Ion-carrier controlled precipitation of calcium phosphate in giant ABA triblock copolymer vesicles. ChemCommun, 2001, (23): 2452-2453
    [20]Napoli A, Valentini M, Tirelli N, et al. Oxidation-responsive polymeric vesicles. Nature Materials, 2004, 3 (3) : 183-189
    [21]Holowka E P, Sun V Z, Kamei D T, et al. Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nature Materials, 2007, 6(1): 52-57
    [22] You L C, Schlaad H. An easy way to sugar-containing polymer vesicles or glycosomes. J Am ChemSoc, 2006, 128 (41) : 13336-13337
    [23] Kishimura A, Koide A, OsadaK, etal. Encapsulation of myoglobin in pegylated polyion complex vesicles made from a pair of oppositely charged block lonomers: a physiologically available oxygen carrier. Angew Chem Int Edit, 2007, 46 (32) : 6085-6088
    [24] Bellomo E G, Wyrsta M D, Pakstis L, et al. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nature Materials, 2004, 3 (4) : 244-248
    [25] Kumar M, Grzelakowski M, Zilles J, et al. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z. Proceedings of The National Academy of Sciences of the United States of America, 2007, 104(52): 20719-20724
    [26]Chiu H C, Lin Y W, Huang YF, et al. Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels. Angew Chem Int Edit, 2008, 47 (10) : 1875-1878
    [27] Broz P , Driamov S, Ziegler J, et al. Toward intelligent nanosize bioreactors: a pH-switchable, channel-equipped, functional polymer nanocontainer. Nano Lett, 2006, 6 (10) : 2349-2353
    [28] Graff A , Sauer M , Van G P , et al. Virus-assisted loading of polymer nanocontainer. Proceedings of The National Academy of Sciences of The United States of America, 2002, 99 (8) : 5064-5068
    [29] Stoenescu R, Graff A, Meier W. Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins. Macromol Biosci, 2004, 4 (10) : 930-935
    [30]Li G Y, Shi L Q, Ma R J, et al. Formation of complex micelles with double-responsive channels from self-assembly of two diblock copolymers. Angew Chem Int Edit, 2006, 45 (30) : 4959-4962
    [31] Koide A, Kishimura A, Osada K, et al. Semipermeable polymer vesicle (picsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J Am Chem Soc, 2006, 128 (18) : 5988-5989
    [1]Acharya C K,Turner C H.Co oxidation with Pt(111) supported on pure and boron-doped carbon:a DFT investigation.Surf Sci,2008,602(23):3595-3602
    [2]Kim I T,Lee H K,Shim J.Synthesis and characterization of Pt-Pd catalysts for methanol oxidation and oxygen reduction.J Nanosci Nanotechno,2008,8(10Sp.Iss.SI):5302-5305
    [3]Chen X,An Y L,Zhao D Y,et al.Core-shell-corona Au-micelle composites with a tunable smart hybrid shell.Langmuir,2008,24(15):8198-8204
    [4]Chen X,Zhao D Y,An Y L,et al.Formation and catalytic activity of spherical composites with surfaces coated with gold nanoparticles.J Colloid Interf Sci,2008,322(2):416-420
    [5]Chen X,Liu Y,An Y,et al.Novel structured composites formed from gold nanopartnocles and diblock copolymers.Macromol Rapid Comm,2007,28(12):1350-1355
    [6]Zhang J Z,Zhang W Q,Wang Y,et al.Palladium-iminodiacetic acid immobilized on pH-responsivc polymeric microspheres:efficient quasi-homogeneous catalyst for suzuki and beck reactions in aqueous solution.Adv Synth Catal,2008,350(13):2065-2076
    [7]Wei G W,Zhang W Q,Wen F,et al.Suzuki reaction within the core-corona nanoreactor of poly(N-isopropylacrylamide)grafted pd nanoparticle in water.Journal of Physical Chemistry C, 2008, 112 (29) : 10827-10832
    [8]Wen F. Zhang WQ, Wei G W. et al. Synthesis of noble metal nanoparticles embedded in the shell layer of core-shell poly(styrene-co-4-vinylpyridine) micospheres and their application in catalysis. Chem Mater, 2008, 20 (6) : 2144-2150
    [9]Kuo P L, Chen C C, Jao M W. Effects of polymer micelles of alkylated polyethylenimines on generation of gold nanoparticles. The Journal of Physical Chemistry B, 2005, 109 (19):9445-9450
    [10]Li X, Li Y, Tan Y, et al. Self-assembly of gold nanoparticles prepared with 3,4-ethylenedi oxythiophene as reductant. The Journal of Physical Chemistry B, 2004, 108 (17) : 5192-5199
    [11] Shang L, Qin C, Wang T, et al. Fluorescent conjugated polymer-stabilized gold nanoparticles for sensitive and selective detection of cysteine. The Journal of Physical Chemistry C, 2007, 111 (36) : 13414-13417
    [12] Gittins D I, Caruso F. Tailoring the polyelectrolyte coating of metal nanoparticles. The Journal of Physical Chemistry B, 2001, 105 (29) : 6846-6852
    [13] Faupel F , Zaporojtchenko V , Strunskus T , et al . Functional polymer nanocomposites. Polym Polym Compos, 2008, 16 (8) : 471-481
    [14]Tamai T, Watanabe M, Hatanaka Y, et al. Formation of metal nanoparticles on the surface of polymer particles incorporating polysilane by UV irradiation. Langmuir, 2008, 24 (24): 14203-14208
    [15] Kho K W, Qing K Z, Shen Z X, et al. Polymer-based microfluidics with surface-enhanced raman-spectroscopy-active periodic metal nanostructures for biofluid analysis. J Biomed Opt, 2008, 13 (0540265)
    [16] Sangermano M, Perruchas S, Gacoin T, et al. Synthesis of Au@SiO_2 core/shell nanoparticles and their dispersion into an acrylic photocurable formulation: film preparation and characterization. Macromol Chem Phys, 2008, 209 (22) : 2343-2348
    [17] Peng Z Q, Guo L M, Zhang Z H, et al. Micelle-assisted one-pot synthesis of water-soluble polyaniline-gold composite particles. Langmuir, 2006, 22 (26) : 10915-10918
    [18] Zhu Z X, Anacker J L, Ji S X, et al. Formation of block copolymer-protected nanoparticles via reactive impingement mixing. Langmuir, 2007, 23 (21) : 10499-10504
    [19] Yang T, Li Z, Wang L, et al. Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Langmuir, 2007,23(21): 10533-10538
    
    [20] Merican Z, Schiller T L, Hawker C J, et al. Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules. Langmuir, 2007, 23 (21) : 10539-10545
    [21] Lu Y, Mei Y, Drechsler M, et al. Thermosensitive core-shell particles as carriers for metal nanoparticles: modulating the catalytic activity by the volume transition in networks. Abstracts of Papers of The American Chemical Society, 2006, 231: 168
    [22]Lu Y, Mei Y, BallauffM, et al. Thermosensitive core-shell particles as carrier systems for metallic nanoparticles.J Phys Chem B,2006,110(9):3930-3937
    [23]Ballauff M,Lu Y."Smart" nanoparticles:preparation,characterization and applications.Polymer,2007,48(7):1815-1823
    [24]Lu Y,Mei Y,Drechsler M,et al.Thermosensitive core-shell particles as carriers for Ag nanoparticles:modulating the catalytic activity by a phase transition in networks.Angew Chem Int Edit,2006,45(5):813-816
    [25]Chen X,Zhao D Y,An Y L,et al.Formation and catalytic activity of spherical composites with surfaces coated with gold nanoparticles.J Colloid Interf Sci,2008,322(2):414-420
    [26]Koh H,Kang N,Lee J.Location control of Au/Cds nanoparticles in block copolymer micelles.Langmuir,2007,23(23):11425-11429
    [27]Naoe K,Petit C,Pileni M P.Use of reverse micelles to make either spherical or worm-like palladium nanocrystals:influence of stabilizing agent on nanocrystal shape.Langmuir,2008,24(6):2792-2798
    [28]Aizawa M,Buriak J M.Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces.Chem Mater,2007,19(21):5090-5101
    [29]Kielbassa S,Habich A,Schnaidt J,et al.On the morphology and stability of au nanoparticles on TiO_2(110) prepared from micelle-stabilized precursors.Langmuir,2006,22(18):7873-7880
    [30]Cho S H,Park S M.Electrochemistry of conductive polymers 39.contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.The Journal of Physical Chemistry B,2006,110(51):25656-25664
    [31]Rahme K,Gauffre F,Marty J D,et al.A systematic study of the stabilization in water of gold nanoparticles by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)triblock copolymers.The Journal of Physical Chemistry C,2007,111(20):7273-7279
    [32]Edwards E W,Chanana M,Wang D.Capping gold nanoparticles with stimuli-responsive polymers to cross water-oil interfaces:in-depth insight to the trans-interfacial activity of nanoparticles.The Journal of Physical Chemistry C,2008,112(39):15207-15219
    [33]Bhattacharjee R R,Chakraborty M,Mandal T K.Reversible association of thermoresponsive gold nanoparticles:polyelectrolyte effect on the lower critical solution temperature of poly(vinyl methyl ether).The Journal of Physical Chemistry B,2006,110(13):6768-6775
    [34]Mei Y,Lu Y,Polzer F,et al.Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels.Chem Mater,2007,19(5):1062-1069
    [1]Rider D A,Cavicchi K A,Power-Billard K N,et al.Diblock copolymers with amorphous atactic polyferrocenylsilane blocks:synthesis,characterization,and self-assembly of PS-b-PFEMS in the bulk state.Macromolecules,2005,38(16):6931-6938
    [2]Liu M,Fu Z S,Wang Q,et al.Study of amphiphilic poly(L-dodecene-co-para-methyl styrene)- graft-poly(ethylene glycol),part Ⅱ:preparation and micellization behavior of the amphiphilic copolymers.Eur Polym J,2008,44(12):4122-4128
    [3]Liu W Y,Liu R G,Li Y X,et al.Self-assembly of ethyl cellulose-graft-polystyrene copolymers in acetone.Polymer,2009,50(1):211-217
    [4]thou W,Lv S C,Shi W F.Preparation of micelle-encapsulated single-wall and multi-wall carbon nanotubes with amphiphilic hyperbranched polymer.Eur Polym J,2008,44(3):587-601
    [5]Kontoyianni C,Sideratou Z,Theodossiou T,et al.A novel micellar pegylated hyperbranched polyester as a prospective drug delivery system for paclitaxel.Macromol Biosci,2008,8(9):871-881
    [6]Lin Y,Liu X H,Dong Z M,et al.Amphiphilic core-shell nanocarriers based on hyperbranched poly(ester amide)-star-PCL:synthesis,characterization,and potential as efficient phase transfer agent.Biomacromolecules,2008,9(10):2629-2636
    [7]Naka K,Kobayashi A,Chujo Y.Synthesis of a star-shaped polymer via coordination of ester-linked pyridyl-terminated poly(oxyethylene) with Ru(Ⅱ).Macromol Rapid Comm,1997,18(12):1025-1032
    [8]Ghioca P,Buzdugan E,Stribeck N,et al.High density polyethylene modification with styrene-diene block copolymers.3.the effect of the elastomeric and plastomeric blocks nature from the star block-copolymers.Mater Plast,1997,34(3-4):180-186
    [9]Blencowe A,Kit G T,Best S P,et al.Synthesis of buckminsterfullerene C-60 functionalised core cross-linked star polymers.Polymer,2008,49(4):825-830
    [10]Wan D C,Pu H T.Synthesis of polystyrene microgel with a hyperbranched polyglycerol scaffold as core:effect of shell congestion.J Appl Polym Sci,2007,106(6):3688-3693
    [11]O R R,Joralemon M J,Hawker C J,et al.Preparation of orthogonally-functionalized core click cross-linked nanoparticles.New J Chem,2007,31(5):718-724
    [12]Zetterlund P B,Kagawa Y,Okubo M.Controlled/living radical polymerization in dispersed systems.Chem Rev,2008,108(9):3747-3794
    [13]Gungor E,Hizal G,Tunca U.A(2)B(2) type miktoarm star copolymers via alkyne homocoupling reaction.J Polym Sci Pol Chem,2008,46(20):6703-6711
    [14]Altintas O,Demirel A L,Hizal G,et al.Dendrimer-like miktoarm star terpolymers:A(3)-(B-C)(3) via click reaction strategy.J Polym Sci Pol Chem,2008,46(17):5916-5928
    [15]Pugh C,Kasko A M,Grunwald S R.The effect of the core on the thermotropic behavior of three-arm star poly[11-(4'-cyanophenyl-4"-phenoxy)undecyl acrylate]s synthesized by atom transfer radical polymerization.J Polym Sci Pol Chem,2008,46(13):4363-4382
    [16]Amin A,Ayoub M.Preparation of some Br-ended MMA three arm star block copolymers via ATRP and other amphiphilic hydroxyl ended ones.Polym-Plast Technol,2008,47(10):1002-1007
    [17]Ida D,Yoshizaki T.A monte carlo study of the second virial coefficient of semiflexible regular three-arm star polymers.Polym J,2008,40(11):1074-1080
    [18]Abd-El-Aziz A S,Pereira N M,Winram D J,et al.Synthesis and polymerization of a four-arm star with pendent cyclopentadienyliron moieties.Journal of Inorganic and Organometallic Polymers and Materials,2007,17(1):275-282
    [19]Frohlich M G,Vana P,Zifferer G.Shielding effects in polymer-polymer reactions,1-z-RAFT star polymerization of four-arm stars.Macromol Theor Simul,2007,16(6):610-618
    [20]Johnston-Hall G,Monteiro M J.Diffusion controlled termination of linear polystyrene radicals in linear,4-arm,and 6-arm star polymer matrices in dilute,semidilute,and concentrated solution conditions.Macromolecules,2008,41(3):727-736
    [21]Mu B,Shen R P,Liu P.Photo-tunable multi-arm star azobenzene side-chain polymer with hyperbranched polyether core.Synthetic Met,2008,158(17-18):732-738
    [22]Stavrouli N,Triftaridou A I,Patrickios C S,et al.Multi-compartment unimolecular micelles from(ABC)(n) multi-arm star triblock terpolymers.Macromol Rapid Comm,2007,28(5):560-566
    [23]Ternat C,Kreutzer G,Plummer C,et al.Amphiphilic multi-arm star-block copolymers for encapsulation of fragrance molecules.Macromol Chem Phys,2007,208(2):131-145
    [24]Furukawa T,Ishizu K,Yamane Y,et al.Diffusional behavior of multi-ann star polymers by H-1 pulsed field gradient spin-echo nmr method.Polymer,2005,46(6):1893-1898
    [25]Wiltshire J T,Qiao G G.Synthesis of core cross-linked star polymers with adjustable coronal properties.Macromolecules,2008,41(3):623-631
    [26]Hadjichristidis N.Synthesis of miktoarm star(Mu-star) polymers.J Polym Sci Pol Chem,1999,37(7):857-871
    [27]Wiltshire J T,Qiao G G.Recent advances in star polymer design:degradability and the potential for drug delivery.Aust J Chem,2007,60(10):699-705
    [28]Connal L A,Qiao G G.Honeycomb coated particles:porous doughnuts,golf balls and hollow porous pockets.Soft Matter,2007,3(7):837-839
    [29]Connal L A,Qiao G G.Preparation of porous poly(dimethylsiloxane)-based honeycomb materials with hierarchal surface features and their use as soft-lithography templates.Adv Mater,2006,18(22):3024-3028
    [30]Ho A K,Iin I,Gurr P A,et al.Synthesis and characterization of star-like microgels by one-pot free radical polymerization.Polymer,2005,46(18):6727-6735
    [31]Gungor E,Durmaz H,Hizal G,et al.H-shaped(ABCDE type) quintopolymer via click reaction[3+2]strategy.J Polym Sci Pol Chem,2008,46(13):4459-4468
    [32]Altintas O,Hizal G,Tunca U.ABCD 4-miktoarm star quarterpolymers using click[3+2]reaction strategy.J Polym Sci Pol Chem,2008,46(4):1218-1228
    [33]Yang L P,Zhou H X,Shi G Y,et al.Synthesis of ABCD 4-miktoarm star polymers by combination of RAFT,ROP,and "click chemistry"'.J Polym Sci Pol Chem,2008,46(19):6641-6653
    [34]Lu D R,Wang Y,Wu T Y,et al.A strategy for synthesis of ion-bonded amphiphilic miktoarm star copolymers via supramolecular macro-RAFT agent.J Polym Sci Pol Chem,2008,46(17):5805-5815
    [35]Moad G,Rizzardo E,Thang S H.Radical addition-fragmentation chemistry in polymer synthesis.Polymer,2008,49(5):1079-1131
    [36]Peleshanko S,Jeong J,Shevchenko V V,et al.Synthesis and properties of asymmetric heteroarm PEON-b-PSM star polymers with end functionalities.Macromolecules,2004,37(20):7497-7506
    [37]Gao H,Matyjaszewski K.Arm-first method as a simple and general method for synthesis of miktoarm star copolymers.J Am Chem Soc,2007,129(38):11828-11834
    [38]Zhou J F,Wang L,Dong X C,et al.Preparation of organic/inorganic hybrid nanomaterials using aggregates of star block copolymer consisting of PSMAA and poly(3-(trimethoxysilyl)propyl methacrylate)as precursor.J Appl Polym Sci,2008,108(3):2010-2016
    [39]Wang G W,Luo X L,Liu C,et al.Synthesis of ABCD 4-miktoarm star-shaped quarterpolymers by combination of the "click" chemistry with multiple polymerization mechanism.J Polym Sci Pol Chem,2008,46(6):2154-2166
    [40]Nagai A,Hirabayashi T,Kudo H,et al.Synthesis of star polymer by atom transfer radical polmerization with resorcinol-core multifunctional initiator:the construction of nanocapsule via hydrolysis and olefin metathesis reaction of the obtained star polymer.J Polym Sci Pol Chem,2008,46(14):4879-4888
    [41]Luo Y W,Gu H Y.A general strategy for nano-encapsulation via interfacially confined living/controlled radical miniemulsion polymerization.Macromol Rapid Comm,2006,27(1):21-25
    [42]Fujun L Y.A facile route to synthesize highly uniform nanocapsules:use of amphiphilic poly(acrylic acid)-block-polystyrene raft agents to interfacially confine miniemulsion polymerization.Macromol Rapid Comm,2007,28(7):868-874
    [43]Du J Z,Chen Y M.Star polymer,PCL-PS heteroarm star polymer by ATRP,and core-carboxylated ps star polymer thereof.Macromolecules,2004,37(10):3588-3594
    [44]Kafouris D,Gradzielski M,Patrickios C S.Hydrophilic,cationic large-core star polymers and polymer networks:synthesis and physicochemical characterization.J Polym Sci Pol Chem,2008,46(12):3958-3969
    [45]Luo Y,Gu H.Nanoencapsulation via interfacially confined reversible addition fragmentation transfer(RAFT) miniemulsion polymerization.Polymer,2007,48(11):3262-3272
    [46]Driva P,Lohse D J,Hadjichristidis N.Weel-defined complex macromolecular architectures by anionic polymerization of styrenic single and double homo/miktoarm star-tailed macromonomers.J Polym Sci Pol Chem,2008,46(5):1826-1842
    [47]Lorenzo A T,Muller A J,Priftis D,et al.Synthesis and morphological characterization of miktoarm star copolymers(PCL)(2)(PS)(2) of poly(epsilon-caprolactone) and polystyrene.J Polym Sci Pol Chem,2007,45(23):5387-5397
    [48]Priftis D,Pitsikalis M,Hadjichristidis N.Miktoarm star copolymers of poly(epsilon-caprolactone) from a novel heterofunctional initiator.J Polym Sci Pol Chem,2007,45(22):5164-5181
    [49]Fragouli P G,Iatrou H,Hadjichristidis N,et al.Synthesis and characterization of model 3-miktoarm star copolymers of poly(dimethylsiloxane) and poly(2-vinylpyridine).J Polym Sci Pol Chem,2006,44(1):614-619
    [50]Tsoukatos T,Hadjichristidis N.Synthesis of model PCH/polyethylene miktoarm star copolymers with three and four arms.J Polym Sci Pol Chem,2002,40(15):2575-2582
    [51]Mavroudis A,Hadjichristidis N.Synthesis of well-defined 4-miktoarm star quarterpolymers (4 Mu-sidv) with four incompatible arms:PS,polyisoprene-1,4(I),poly(dimethylsiloxane)(d),and poly(2-vinylpyridine)(V).Macromolecules,2006,39(2):535-540
    [52]Min K,Gao H F,Matyjaszewski K.Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer(AGET).J Am Chem Soc,2005,127(11):3825-3830
    [53]Hadjichristidis N,Iatrou H,Pitsikalis M,et al.Linear and non-linear triblock terpolymers.synthesis,self-assembly in selective solvents and in bulk.Prog Polym Sci,2005,30(7):725-782
    [54]Yamauchi K,Akasaka S,Hasegawa H,et al.Blends of a 3-miktoarm star terpolymer(3Mu-isD) of isoprene(I),styrene(S),and dimethylsiloxane(D) with PS and PDMS.effect on microdomain morphology and grain size.Macromolecules,2005,38(19):8022-8027
    [55]Cheng C,Qi K,Khoshdel E,et al.Tandem synthesis of core-shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures.J Am Chem Soc,2006,128(21):6808-6809
    [56]Gunawidjaja R,Peleshanko S,Tsukruk V V.Functionalized(X-PEO)(2)-(PS-Y)(2) star block copolymers at the interfaces:role of terminal groups in surface behavior and morphology.Macromolecules,2005,38(21):8765-8774
    [1]左榘.激光散射原理及在高分子科学中的应用,河南科学技术出版社,1994.
    [2]Burchard W.Light Scattering-Pricinples and Development,Brown W.Ed.Clarendon Press:Oxford,1996,Chap.B.
    [3]Wu C.,Zhou S.Physical Review Letters,1996,77,3053.
    [4]Chu B.,Yu J.,Wang Z.Prog.Colloid Polym.Sci.,1993,91,142
    [5]Wu C,Zhou S.Macromolecules,1995,28,5388-5390.
    [6]高均,吴奇.高分子学报,1997,3,324-330.
    [7]Niu A,Liaw D,Sang H,et al.Macromolecules,2000,33,3492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700