玄武岩纤维混凝土的微结构及BFRP筋纤维混凝土梁斜截面承载力试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋锈蚀问题是现代土木工程领域广泛关注的主要问题,纤维筋的应用为解决这一问题提供良好的途径。纤维筋具有比强度高、耐腐蚀、抗疲劳以及耐电磁等独特优点,一般可应用于有特殊性能要求和钢筋易受到化学因素侵蚀的环境中。玄武岩纤维筋成为继碳纤维筋、玻璃纤维筋后又一种可以在土木工程中应用的新型纤维筋材,并具有更好的性价比。目前土木工程领域对玄武岩纤维研究主要集中在运用纤维布加固混凝土结构,也有少量关于玄武岩FRP(简写BFRP)筋代替钢筋的混凝土板的应用研究及混凝土梁正截面受弯性能试验研究,而BFRP筋或其它FRP筋用于纤维混凝土梁的斜截面受剪性能的研究基本空白。
     针对BFRP筋的特点以及目前BFRP筋混凝土结构的实际研究情况,本文主要进行以下几方面研究内容:
     (1)对C30和C60玄武岩纤维混凝土的力学性能进行试验,通过不同玄武岩纤维掺量研究玄武岩纤维混凝土的立方体抗压强度、棱柱体轴心抗压强度、抗折强度、劈裂强度及弹性模量,分析玄武岩纤维对混凝土的力学性能影响,初步得出最合适纤维掺量。试验结果可知,无论是C30普通强度混凝土还是C60高强混凝土,初步确定较合适纤维掺量为0.1%的体积掺量。
     (2)针对玄武岩纤维混凝土的微观性能及孔结构进行试验研究,对玄武岩纤维混凝土的界面性能及纤维对混凝土的增强机理进行分析;对玄武岩纤维混凝土的微观孔结构通过压汞试验进行相关研究,分析玄武岩纤维混凝土的孔结构特性与抗压强度和渗透性的关系,通过微观分析进一步确认玄武岩纤维的合适掺量。结果表明,适量的纤维掺入混凝土中可以使混凝土内部的粗大孔径得到细化,小孔径分布增加,其中0.1%的纤维掺量对C30或C60混凝土的孔结构改善效果最为明显,增加了混凝土孔结构孔道的曲折度,降低了孔结构的渗透性,说明0.1%的纤维掺量为合适掺量得到进一步的确认。
     (3)研究BFRP筋与玄武岩纤维混凝土的粘结锚固性能,分析粘结-滑移曲线特点及粘结强度的影响因素。根据试验结果,粘结强度随着混凝土强度提高而提高,随着锚固长度增加而减小,随着纤维筋直径的增加而降低;在混凝土中掺加适量的玄武岩纤维,能够提高BFRP筋与混凝土的极限粘结强度,增加极限粘结强度所对应的滑移值,改善粘结延性。通过试验结果确定粘结强度、锚固长度的计算经验公式,并分析得出BFRP筋与玄武岩纤维混凝土的粘结滑移本构模型符合连续曲线模型。
     (4)重点对18根BFRP筋纤维混凝土梁和3根钢筋纤维混凝土梁的斜截面受剪性能进行试验研究。研究BFRP筋不同纵筋配筋率、不同纵筋类型、BFRP箍筋不同配箍率、不同箍筋类型及不同剪跨比等条件对混凝土梁的斜截面初裂荷载及破坏荷载的影响。结果表明,纵筋配筋率、箍筋类型对承载力影响不大,而配箍率、纵筋类型及剪跨比对承载力影响明显,随着BFRP箍筋配箍率增大梁的承载力不断提高,随着剪跨比增大梁的承载力降低。当剪跨比、纵筋配筋率、箍筋配箍率都相同时,与钢筋混凝土梁相比,BFRP筋混凝土梁的初裂荷载略小于钢筋混凝土梁,但破坏荷载差别不大。针对14根BFRP筋混凝土梁的斜初裂荷载和极限荷载回归分析得到斜截面抗裂度和极限承载力的计算公式。
     (5)利用修正的压力场理论(MCFT),建立了BFRP筋纤维混凝土梁在弯剪复合作用条件下的截面分析模型。利用该模型对本人及他人所做的FRP筋混凝土梁的试验全过程进行数值分析,结果表明,该模型对FRP筋混凝土梁斜截面承载力、箍筋应变和剪压区混凝土压应变均能给出精度比较高的预测值。
     (6)对BFRP筋纤维混凝土梁的延性进行分析。主要通过延性系数和能量吸收比研究不同影响因素下梁的延性及剪切耗能能力变化情况。从试验结果可知,斜截面开裂后,在相同荷载作用下,BFRP筋混凝土梁的挠度和裂缝大于同等配筋条件下的钢筋混凝土梁,而二者的破坏荷载和能量吸收比基本相当。
Rebar corrosion problem is widespread concerned in the field of civil engineering today. FRP applications provide a good way to solve this problem, which has big advantages in terms of high specific strength, corrosion resistance, anti-fatigue performance, and resistance to electromagnetism. This material can be applied to special performance requirements and rebar under chemical erosion environment. Basalt FRP(BFRP for short) has, following carbon FRP and glass FRP, become another new type of popular building material, with better price/performance ratio than other two. At present, the field of civil engineering for basalt fiber research is mainly focused on the use of fiber reinforced concrete structure, with a few application researches on the use of concrete sheet with BFRP in place of rebar and experimental researches on flexural behavior of the normal section of concrete beams. However, the researches on BFRP or other FRP bars for oblique section shear properties of fiber reinforced concrete beam have not been conducted.
     Based on the characteristics of BFRP and the research progress of BFRP reinforced concrete structure at present, the current research includes the following contents:
     The experimental researches on the mechanical properties of C30and C60basalt fiber reinforced concrete were carried out. The cubic compressive strength, axial compressive strength, flexural strength, splitting strength, and elastic modulus of basalt fiber reinforced concrete with different amounts of basalt fibers were investigated, in order to analyze the influence of basalt fiber on the mechanical properties of concrete and preliminarily find out the optimal amount of fibers in the concrete. The results show that for both C30normal strength concrete and C60high strength concrete, the suitable amount of fibers is0.1%of fiber volume fraction.
     In order to analysis of the interface properties and the strengthening mechanism of the basalt fiber reinforced concrete, the experimental research on micro-properties and pore structure of basalt fiber reinforced concrete were also carried out. The mercury intrusion experimentations on pore structure at micro level were done for the analysis of relationships between the compressive strength and permeability of basalt fiber reinforced concrete and the characteristics of pore structure in it. The suitable mixed amount of basalt fiber was further confirmed by microscopic analysis. The result indicated that the concrete pore size could be reduced, the number of small pores could be increased, and the pore structure of the C30and C60concrete could be greatly improved with0.1%fiber content. Because of the fibers mixed in, the curvature of the tunnels of the pore structure increased and permeability decreased.0.1%of the fiber volume fraction is the best dosage has been further confirmed.
     The bond properties of BFRP bar and basalt fiber reinforced concrete were studied. The bond-slip curve characteristics and influencing factors of bond strength were also analysis. The results show that adhesive strength increased as the strength of concrete increased, and decreased as anchorage length and the diameters of the fiber bars increased. Mixing certain amount of basalt fibers into the concrete could increase the limit bond strength of BFRP and concrete, and increase the value of the slip corresponding to the limit bond strength, improve bond ductility. The experience formulas for calculating bond strength and anchorage length were acquired based on the results. The bond slip constitutive model of BFRP and basalt fiber reinforced concrete accorded with continuous curve model was also found.
     In order to study the oblique section shear performance of beam,18BFRP fiber reinforced concrete beams and3reinforced fiber concrete beams were tested. The influence of the different ratios of BFRP longitudinal reinforcement, longitudinal reinforcement types, BFRP stirrup ratios, stirrup types, and shear span ratios on the load of initial crack of oblique section and the damage load of concrete beams were analyzed. The results show that longitudinal reinforcement ratio and stirrup type have less impact on the carrying capacity, but BFRP stirrup ratio, longitudinal reinforcement type, and shear span ratio have obvious impact on the carrying capacity. As the stirrup ratio increase, the load of beams increases. As the shear span ratio increase, the load of beams goes down. When the shear span ratio, the ratio of longitudinal reinforcement, and stirrup are the same, the load of initial crack of BFRP beam is slightly lower than the rebar beam, while the damage load of the two are basically the same. The experience formulas for calculating the crack resistance and limit bearing capacity of inclined section were acquired by conducting regressive analyses of the load of initial crack and limit load of inclined section of14BFRP beams.
     Based on the Modified Compression Field Theory(MCFT). the numerical analysis model of the sections of BFRP reinforced basalt fiber concrete beams under the combined action of shear and moment was established. The whole test process of FRP reinforced concrete beams were numerical analyzed by this model. It is clearly seen from the results that this model showing high accuracy in prediction in terms of the shear resistant capacity, tension strain of stirrups and the ultimate compressive strain of concrete in compression&shear region.
     The ductility of BFRP reinforced basalt fiber concrete beams was also analyzed. Effect of different factors on the ductility and shear capacity of energy dissipation were studied through the ductility and energy absorption ratio. From the results, it's could be found that when the oblique section cracked, with the same load, the deflection and cracks of BFRP concrete beams were bigger than the rebar beams with the same reinforcements; the damage loads and energy absorption ratios of the two were basically the same respectively.
引文
[1]张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海:科学技术出版社,2003,12.
    [2]洪乃丰.建筑腐蚀可持续发展[J].工业建筑,2006,vol.36(3):76-79.
    [3]洪乃丰.钢筋混凝土基础设施的腐蚀与全寿命经济分析[J].建筑技术,2002,vol.34.(4):254-257.
    [4]赵国藩,金芷生,王璋水等.纤维混凝土研究与应用[M].大连:大连理工大学出版社,1992.
    [5]黄承奎.纤维混凝土结构[M].北京:机械工业出版社,1999.
    [6]周建方,吴国松.碳纤维增强水泥/混凝土材料力学性能的若干研究[J].高科技纤维与应用,2002,27(6):30-33
    [7]张勇.不同纤维对轻集料混凝土韧性性能影响的研究[J].混凝土,2002,151(5):30-32.
    [8]邢士波,许斌,田清波.改性聚丙烯纤维对钢筋混凝土杭压强度、碳化及钢筋腐蚀影响的实验研究[J].建筑技术开发,2006,33(4):49-50.
    [9]李学章,陈建辉.耐久纤维在建筑抗裂防水工程中的应用[J].房材与应用,2001,29(6):31-35.
    [10]黄昊.聚丙烯纤维改性混凝土路用性能研究[D].长安大学工学硕士学位论文,2005.
    [11]朱海堂,高丹盈,张启明.钢纤维高强混凝土的劈拉及剪切变形能[J].水利水电科技进展,2008,28(6):5-8.
    [12]孙家瑛.混杂聚丙烯纤维混凝土性能研究[J].混凝土,2003,11:16-20.
    [13]谢尔盖,李中郢.玄武岩纤维材料的应用前景[J].纤维复合材料,2003(3):15-18.
    [14]杨勇新等.BFRP布的耐久性试验研究[J].江苏建筑2007,37(6):11-13.
    [15]霍文静.复合材料用BFRP耐酸碱性实验研究[J].复合材料学报2007,24(1):77-82.
    [16]奇峰杰,李锦文等.连续玄武岩纤维研究综述[J].2006,34(2)41-42.
    [17]毛俊芳,董卫国,丛森滋等.玄武岩纤维特性及其应用前景[J].2007(10):38-40.
    [18]雷静,党新安,李建.玄武岩纤维的性能应用及最新进展[J].化工新型材料,2007,35(3):9-11.
    [19]胡显奇等.玄武岩纤维及其复合材料[J].高科技纤维与应用,2002,4(2):1-5.
    [20]曹海琳,郎海军,孟松鹤.连续玄武岩纤维结构与性能试验研究[J].高科技纤维与应用,2007,32(5):8-13.
    [21]胡显奇,申屠年.连续玄武岩纤维在军工及民用领域的应用[J].高科技纤维与应用,2005(30):48.
    [22]王明超.连续玄武岩纤维及其复合材料耐腐蚀特性[J].北京航空航天大学学报,2006,32(10):1255-1258.
    [23]国家水泥混凝土制品质量监督检验中心.玄武岩纤维混凝土与聚丙烯纤维混凝土、聚丙烯睛纤维混凝土性能测试研究报告[R].国家水泥混凝土制品质量监督检验中心.2006.
    [24]JIRI MILITKY, VLADIMIR KOVACIC, JITKARUBNEROVA. Influence of thermal treatment on tensile failure of basalt fibers[J]. Engineering fracture mechanics,2002,69:1025-1033.
    [25]石钱华.国外连续玄武岩纤维的发展及其应用[J].玻璃纤维,2003,4:27-31.
    [26]Jong Sung Sim, Charlwood Park, and Do Young Moon. Characteristics of basalt fiber as a strengthening material for concrete structures[J]. Composites:Part B,2005,36(6):504-510.
    [27]Dylmar Penteado Dias, Clelio Thaumaturgo. Fracture toughness of geopolymeric concretes reinforced with basalt fibers [J].Cement & Concrete Composites,2005,27:49-54.
    [28]Zielinski, Krzysztof, Olszewski, Prcemyslaw. The impact of basaltic fibre on selected Physical and mechanical properties of cement mortar[J].Concrete Precasting Plant and Technology, 2005:28-33.
    [29]林智荣等.玄武岩纤维混凝土的动力性能的试验研究[J].纤维混凝土的技术进展与工程应用.第十一届全国纤维混凝土学术会议论文集,2006:37-41.
    [30]杨进勇,许金余,李为民等.玄武岩纤维混凝土冲击压缩韧性[J].新型建筑材料,2008(6):69-71.
    [31]李光伟等.玄武岩连续纤维混凝土抗冲磨特性的试验研究[J].新型建筑材料,2008(13):241-243.
    [32]贺东青,卢哲安.短切玄武岩纤维混凝土的力学性能试验研究[J].河南大学学报,2009,39(3):320-322.
    [33]邓宗才,薛会青.玄武岩纤维混凝土的抗弯冲击性能[J].建筑科学与工程学报,2009,26(1):80-83.
    [34]李为民,许金余.玄武岩纤维混凝土的冲击力学行为及本构模型[J].工程力学,2009,26(1):86-91.
    [35]董进秋.玄武岩纤维混凝土抗冲击性能研究[D].燕山大学工学硕士学位论文,2011.
    [36]T. Alkhrdaji, L. Ombres, A. Nanni. Flexural Behavior of one-Way Concrete slabs Reinforced With Deformed GBFRP Bars[J].3rdInteniational Conference on Advanced Composite Materials in Bridges and Structures, Aug15-18,2000, Ottawa, Ontario:Canada:217-224.
    [37]Mohamed F.M. Fahmya, Zhishen Wua, Gang Wub, Zeyang Sunb. Post-yield stiffnesses and residual deformations of RC bridge columns reinforced with ordinary rebars and steel fiber composite bars[J]. Engineering Structures 32 (2010) 2969-2983.
    [38]M. A. Davila. Using Fibre Reinforced Plastic (BFRP) reinforcing bars in RC beams and slabs[J].Creative Systems in Structural and Construction Engineering, Honolulu, Hawaii, USA, 2001:473-477.
    [39]Haitang Zhu, Yakun Zhang and Danying Gao.Deformation Behavior of Concrete Two-Way Slabs Reinforced with BFRP Bars Subjected to Eccentric Loading[J]. Advances in FRP Composites in Civil Engineering,2011, Part 6:296-300.
    [40]宋洋.BFRP筋混凝土梁正截面抗弯性能试验研究[D].辽宁工程技术大学工学硕士论文,2006.
    [41]吴刚,吴智深等.玄武岩纤维在土木工程中的应用研究现状及进展[C].第五届全国FRP学术交流会论文集,2007:422-427.
    [42]薛伟辰,郑乔文,杨雨.BFRP筋混凝土梁正截面抗弯承载力设计研究[J].工程力学,2009,26(1):79-85.
    [43]熊文韬.玄武岩连续纤维增强塑料及增强结构用集成材的研究[D].北京林业大学工学硕士学位论文,2008.
    [44]吴敬宇.玄武岩纤维复合筋高温性能研究[D].中国地震局工程力学研究所工学硕士论文,2011.
    [45]王怡忠.BFRP筋混凝土双向板承载力弹塑性分析[D].郑州大学工学硕士学位论文,2011.
    [46]霍宝荣,张向东BFRP筋的力学性能试验[J].沈阳建筑大学学报,2011,27(4):626-630.
    [47]张志春,欧进萍.玄武岩纤维FRP筋耐久性研究[J].第五届全国FRP学术交流会论文集,2007,12.
    [48]沈新,顾兴宇,陆佳颖.玄武岩纤维(BFRP)筋与混凝土粘结性能试验研究.交通运输工程与信息学报,2010,(8)3:124-130.
    [49]吴刚,吴智深等.新型钢-连续纤维复合材料及其应用研究[C].第六届全国FRP学术交流会论文集,2009:321-328.
    [50]飞渭等.后张无黏结预应力BFRP筋混凝土梁受弯性能试验研究[J].中国塑料,2011,25(5):79-84.
    [51]甘怡等.先张预应力BFRP筋混凝土梁受弯性能试验研究[J].后勤工程学院学报,2011,27(1):7-15.
    [52]杜明干.纤维混凝土细观力学模型与应用[D].清华大学工学硕士学位论文,2004.
    [53]廉杰等.短切BFRP增强混凝土力学性能的试验研究[J].工业建筑2007,37(6):8-10.
    [54]李为民,BFRP对混凝土的增强和增韧效应[J].硅酸盐学报2008,36(4):476-488.
    [55]江朝华.BFRP及聚丙烯纤维对水泥砂浆性能影响的对比分析[J].硅酸盐通报,2007,26(6)1084-1088.
    [56]张敏,吴刚等.连续玄武岩纤维增强复合材料力学性能试验研究[J].高科技纤维与应用,2007,32(2):15-21.
    [57]RAB INOV ICH F N, ZUEVA V N, MAKEEVA L V. Stability of basalt fibers in a medium of hydrating cement[J]. Glass and Ceramics,2001,58(11-12).
    [58]普通混凝土拌合物性能试验方法标准(GB/T50080-2002)[S].中国建筑工业出版社,2002.
    [59]普通混凝土力学性能试验方法标准(GB/T50081-2002)[S].中国建筑工业出版社,2002.
    [60]湖南大学,天津大学,同济大学,东南大学.土木工程材料[M].中国建筑工业出版社,1997.
    [61]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [62]姚燕,王玲,田培.高性能混凝土[M].化学工业出版社,2006.
    [63]郭成举.混凝土的物理和化学[M],中国铁道出版社,2004,5.
    [64]D.M.Roy, Idorn. Hydration Structure and Properties of Blast Funace Slag Cements, Mortars and Concrete, Journal of ACI.Proc1982,79:444-457 T.Nudsen.On Particle Size Distribution in Cement Hydration.Proc.ofthe 7th ICCC.1980,2:170-175.
    [65]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].清华大学出版社,1996.
    [66]P.K.Metha.混凝土的结构、性能与材料[M].同济大学出版社,1991.
    [67]王爱勤,承志.水泥石—集料界面过渡区的形成机理及改善途径[J].混凝土与水泥制品,1994(10):5.
    [68]Berton D, Carles-Gibergues A,Balivy G, etal. Contribution to the Formation Mechanism of the Transition Zone Between Rock-Cement Paste[J]. Cement and Concrete research,1993(23).
    [69]王爱勤,承志.水泥石—集料界面过渡区的形成机理及改善途径[J].混凝土与水泥制品,1994(10):5.
    [70]李建权,许红升,谢红波,李国忠.硅灰改性水泥/石灰砂浆微结构的研究[J].硅酸盐通报.2006(8):4.
    [71]廖宪廷,何元,杨序纲,王依民.PP纤维水泥复合材料的界面行为(Ⅱ)[J].建筑材料学报,2000,3(1):64-67.
    [72]解松善.水泥基复合材料中界面粘结的研究[J].硅酸盐学报,1983(11):4.
    [73]孙伟.钢纤维高强混凝土宏观力学性能与微观机理研究[J].上海建材学院学报,1993,NO.2:131-137.
    [74]T.C.Powers. Structure and physical of hardened Portland cement[J]. paste.J.Am.Ceram.Soc,1985(4):4.
    [75]Bames P. Structure and Performance of cements[J].APPlied Sience Publishers LTD,1983, 1:304-307.
    [76]鲍俊玲,李悦等.水泥混凝土孔结构研究进展[J].商品混凝土,2009,10:18-20.
    [77]Laskar A I,Kumar R,Bhattacharjee B. Cement Concrete Research[J],1997,27(l):93.
    [78]Rakesh Kumar,Bhattacharjee B. Cement Concrete Research[J],2003,33(1):155.
    [79]吴中伟.混凝土中心质假说[R].北京水泥科学研讨会报告集,1959.
    [80]Malbotra V M, Mehta P K. Advances in concrete technology[C].Ottawa:Overseas Publisher Association,1996.
    [81]S.Diamond. Mercury porosimetry an inappropriate method for the measurement of pore size distributions in cement-based materials, Cem.Concr.Res.30(10)(2000):1517-1525.
    [82]ZHANG B, LI S. Determination of the surface fractal dimension for porous media by mercury porosimetry[J].Industrial and Engineering Chemistry Research,1995,34 (4):1383-1386.
    [83]唐明,李晓.多种因素对混凝土孔结构分形特征的影响研究[J].沈阳建筑大学学报:自然科学版,2005,21(3):232-237.
    [84]金珊珊,张金喜,李爽.混凝土孔结构分形特征的研究现状与进展[J].混凝土,2009,240(10):34-37.
    [85]尹红宇.混凝土孔结构的分形特征研究[D].广西大学工学硕士学位论文,2006(6):40-42.
    [86]邓世汉,张杰等.纤维对混凝土抗渗性能及硬化水泥浆体孔结构的影响[J].港工技术,2007,3:34-37.
    [87]沈荣熹.低掺量合成纤维在混凝土中的作用机制[M].水泥基复合材料科学技术.中国建材工业出版社,1999.
    [88]E.E.Berry,R.T.Hemmings, B.J.Cornelius. Mechanisims of Hydration Reactions in High Volume Fly Ash Pastes and Mortars[J]. Cement and Concrete Composition.1990,(12):253-267.
    [89]R.Wasserman, A.Bentur. Effect of lightweight fly ash aggregate microstructure on the strength of concretes[J]. Cement and Concrete research.1997,27(4):525-537.
    [90]金南国,金贤玉,田野.基于人工神经网络研究混凝土孔结构与强度关系[J].稀有金属材料与工程,2008,37:712-717.
    [91]金南国.混凝土强度与孔结构模型建立[J].浙江大学学报,2005,(11):1680-1685.
    [92]徐辉,李克亮等.矿物掺合料对高性能混凝土的孔结构及抗冻性能的影响[J],工业建筑,2006(36).
    [93]孟庆超.混凝土耐久性与孔结构影响因素的研究[D].哈尔滨工业大学硕士学位论文,2006(6):24-26.
    [94]孟庆超.混凝土耐久性与孔结构影响因素的研究[D].哈尔滨工业大学学硕士学位论文,2006.
    [95]D.Whiting,D.Stark. Control of Air Content in Concrete. Report 258,National Cooperative Highway Research Program,Washington DC,1983:32-34.
    [96]P.Plante,M.Pigeon,F.Daucier. Air Void Stability, Part I:Influence of Superplasticizers and Cement[J].ACI Materials Journal,1989,86(6):581-589.
    [97]陈立军,王永平等.混凝士孔径尺寸对其抗渗性的影响[J].硅酸盐学报,2005,33(4):500-505.
    [98]Achillides, Z., Pilakoutas, K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction,2004,8(2):173-181.
    [99]Benmokrane, B.,Zhang, B.R., Chennouf, A.. Tensile properties and pullout behavior of AFRP and CFRP rods for grouted anchor applications[J]. Construction and Building Materials,2000, 14(3):157-170.
    [100]CSA (Canadian Standard Association),2002. CSA S806 02 Design and Construction of Building Components with Fibre Reinforced Polymers [S]. Canadian Standards Association International, Toronto, Canada.
    [101]Bartos, P.J.M.. Bond in fibre reinforced cement and concretes[J].The International Journal of Cement Composites,1981,3(3):159-177.
    [102]Giaccio, G.and Zerbino, R.. Discussion of paper'Bond-slip mechanisms of steel fibre concrete by Naaman, A.E., and Najm, H. [J].ACI Materials Journal,1992,89(1):108-109.
    [103]薛伟辰.不同试验方法对GFRP筋粘结强度的影响研究[J].玻璃钢/复合材料,2003(5):10-13.
    [104]朱浮声,张海霞.FRP筋与混凝土粘结滑移力学性能研究综述[J].混凝土,2006(2):12-15.
    [105]郝庆多,王勃,欧进萍.FRP筋与混凝土的粘结性能[J].建筑技术,2007,38(1):15-17.
    [106]高丹盈,谢晶晶,李趁趁.纤维聚合物筋混凝土粘结性能的基本问题[J].郑州大学学报.2002,23(1):1-5.
    [107]杜锋,肖建庄,高向铃.钢筋与混凝土间粘结试验方法研究[J].结构工程师,2006,22(2):94-97.
    [108]徐有邻,沈文都,汪洪.钢筋混凝土粘结锚固性能的试验研究[J].建筑结构学报.1994,15(3):26-37.
    [109]王洪吕.超高韧性水泥基复合材料与钢筋粘结性能的试验研究[D].大连:大连理工大学,2007.
    [110]薛伟辰,康清梁.纤维塑料筋在混凝土结构中的应用[J].工业建筑,1999,29(2):19-21.
    [111]Brahim Benmokrane,Haixue Xu and Eric Bellavance. Bond strength of cement grouted glass fiber reinforced plastic (GFRP) anchor bolts,Int.1.Rock Mech.Min.Sci.&Geomeck. Abstr5 1996:455-165.
    [112]朱浮声,张海霞.影响FRP筋与混凝土黏结性能的主要因素[J].沈阳建筑大学学报(自然科学版),2006,22(3):397-401.
    [113]Guide for the Design and Construction of Concrete Reinforced with FRP Bars[S]. ACI440.1R-03.
    [114]B Tighiouart, B Benmokrane, D Gao.Investigation of bond in concrete member with fiber reinforced polymer(FRP)bars[J].Construction and Building Materials,1998,12:453-462.
    [115]高丹盈,B. Brahim.纤维聚合物筋与混凝土粘结性能的影响因素[J].工业建筑,2001,31(2):9-14.
    [116]Zenon Achillides and Kypros Pilakoutas. Bond Behavior of Fiber Reinforced Polymer Bars under Direct Pullout Conditions [J]. Journal of Composites for construction/MARCH/APRIL 2004:173-181.
    [117]郭恒宁.FRP筋与混凝土粘结锚固性能的试验研究和理论分析[D1.东南大学工学硕士学位论文,2006.
    [118]Faoro M. Bearing and deformation behaviour of structural components with Reinforcements comprising resin bounded glass fibre bars and conventional ribbed steel bars. Proc. Int. Conf. On Bond in concrete.1992.
    [119]Roman Okelo and Robert L Yuan. Bond Strength of Fiber Reinforced Polymer Rebars in Normal Strength Concrete [J]. JOURNAL OF COMPOSITES FOR CONSTRUCTION, MAY/JUNE 2005:203-213.
    [120]Malvar L. J. Bond Stress-slip Characteristics of FRP Rebars. Rep.TR-2013-SHR, Naval Fac.Engrg.Service Ctr., Port Hueneme. Calif:1994.
    [121]Ehsani M R, Saadatmanesh H.TAO S. Design Recommendations for Bond of GFRP Rebars to Concrete [J]. Materials and Structural Engineering,1996:247-254.
    [122]Ehsani M R, Saadatmanesh H.TAO S. Design Recommendations for Bond of GFRP Rebars to Concrete [J]. Journal of Structural Engineering,1996:266-273.
    [123]Eligehausen R, Popov E P, Berteor V. Local Bond Stress-Slip Relationships of Deformed bars under Generalized Excititations. Report no.83/23, EERC, University of California, Berkele, 1983:162.
    [124]陈剑.GFRP筋与纤维混凝土粘结滑移试验研究[D].大连理工大学工学硕士学位论文,2007.
    [125]LEES JM, BURGOYNE C J. Transfer bond stresses generated between FRP tendons and Concrete[J]. Magazine of Concrete Research,1999,51(4):229-239.
    [126]吴芳.玄武岩纤维筋与混凝土粘结性能试验研究[D].大连理工大学工学硕士学位论文,2009.
    [127]周俊龙,李炳宏等.玄武岩纤维增强塑料筋混凝土黏结性能的梁式试验研究[J].中国塑料2011,25(4):83-87.
    [128]Cosenza.E.,Manfredi. G. and Realfonzo. R. Behaviour and modeling of bond of FRP rebars to concrete [J]. Compos. For Constr., ASCE,1997,1(2):40-51.
    [129]Cosenza E, Manfredi G, Realfonzo R. Analytical modeling of bond between FRP reinforcing bars and concrete. Proc.,2nd Int.RILEM Symp. (FRPRCS-2), L.Taerwe, ed,1995.
    [130]高丹盈,朱海堂,谢晶晶.纤维增强塑料筋混凝土粘结滑移本构模型[J].工业建筑,2003,33(7):41-43.
    [131]混凝土结构试验方法标准(GB50152-92)[S].中国建筑工业出版社,1992.
    [132]混凝十结构设计规范GB50010-2002[S].中国建筑工业出版社,2002.
    [133]东南大学、同济大学、天津大学主编.混凝土结构[M].中国建筑工业出版社,2006.
    [134]赵国藩.高等钢筋混凝土结构学[M).北京:中国电力出版社,1999.
    [135]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004.
    [136]Jongsung Sim, Cheolwoo Park, Do Young Moon. Characteristics of basalt fiber as a Strengthening material for concrete structures [J].Composites:Part B 2005 (36):504-512.
    [137]中国工程建设标准化协会标准.纤维混凝土结构技术规程CECS 38:2004[S],中国计划出版社,2004.
    [138]朱虹,钱洋.工程结构用FRP筋的力学性能[J].建筑科学与工程学报,2006,23(3):26-31.
    [139]Yost J R, Gross S P, Dinehart D W. Shear strength of normal strength concrete beams reinforced with deformed GFRP bars [J].Journal of Composites for Construction,2001,5(4):268-275.
    [140]Viki L. Brown and Charles L. Butholomew. FRP Reinforcing Bars in Reinforced Concrete Members[J], ACI MATERLALS JOURNAL January-February 1993:34-39.
    [141]曾德光.FRP筋混凝土梁的受弯性能试验研究和理论分析[D].南京:东南大学工学硕士学位论文,2006.
    [142]郑乔文.FRP筋混凝土梁设计理论研究[D].上海:同济大学工学硕士学位论文,2006.
    [143]Vijiay and Hotav.S.Gangarao. Flexural behavior and Deformability of Glass Fiber-Reinforced Polymer Reinforced Concrete Members[J], ACI STRUCTRUAL November-December 2001:833-842.
    [144]Houane Masmoudi, Michele Theriault and Brahim Benmokrane. Flexural behavior of Concrete Beams Reinforced with Deformed Fiber-Reinforced Plastic Rods[J], ACI STRUCTURAL JOURNAL,1998(6):665-676.
    [145]A. Abdalla. Evaluation of deflection in concrete members reinforced with fiber reinforced polymer (FRP) bars[J]. Composite Structures,2002:63-71.
    [146]Benmokrane,O.Chaallal,and R.Masmoudi. Flexural Response of Concrete Beams Reinforced with FRP Reinforcing Bars[J]. ACI STRUCTURAL JOURNAL,1996(1):46-53.
    [147]L.Kelley,Michacl L.Brainerd.Milan Vatovec, Design Philosophy for Structural Strengthening with FRP[J],CONCRETE INTERNATIONAL,2000(2):77-82.
    [148]Marrco A. Pisani. A numerical survey on the behavior of beams pre-stressed with FRP cables [J].Construction and Building Materials,1998(12):221-232.
    [149]American Concrete Institute (ACI 2004). "Guide test methods for fiber reinforced polymers_FRPs_for reinforcing or strengthening concrete structures." ACI 440.3R-04[S],Committee 440, Farmington Hills, Mich.,40,2004.
    [150]American Concrete Institute (ACI 2006). "Guide for the design and construction of concrete reinforced with FRP bars." ACI 440.1R-06 [S], Committee 440, Farmington Hills, Mich.,44,2006.
    [151]Canadian Standard Association (CSA 2006). CAN/CSA S6-06[S], Canadian Highway Bridge Design Code, Rexdale, Ont.2006.
    [152]Canadian Standard Association (CSA 2009). CAN/CSA S6-09[S], Addendum, Canadian Highway Bridge Design Code, Rexdale, Ont.2009.
    [153]British Institution of Structural Engineers (BISE 1999) [S] "Interim guidance on the design of reinforced concrete structures using fiber composite reinforcement." IStructE, SETO Ltd., London.1999.
    [154]Japan society of civil engineers (JSCE1997) [S]. Recommendations for design and construction of concrete structures using continuous fiber reinforced material[S].Research committee on continuous fiber reinforced materials,1997.
    [155]Razaqpur A G, Isgor B O, Greenaway S, Selley A. Concrete contribution to the shear resistance of fiber reinforced polymer reinforce concrete members [J]. Journal of Composites for Construction, 2004,8(5):452-460.
    [156]El-Sayed, A. K., El-Salakawy, E., and Benmokrane, B. "Mechanical and structural characterization of new carbon FRP stirrups for concrete members." [J]. Compos. Constr.,2007,11(4),352-362.
    [157]Shehata, E. F. G. "Fiber reinforced polymer_FRP_ for shear reinforcement in concrete structures." [J].Ph.D. thesis, Department of Civil and Geological Engineering, Univ. of Manitoba, Manitoba, Canada.1999.
    [158]Emile Shehata, Ryan Morphy, and Sami Rizkalla. "Fibre reinforced polymer shear reinforcement for concrete members:behaviour and design guidelines." [J]. Can. J. Civ. Eng.2000, Vol.27:859-872.
    [159]Alsayed, S., Al-Salloum, Y., and Almusallam, T. "Shear design of beams reinforced by GFRP bars." [C]. Proc.,3rd Int. Symp. on Nonmetallic (FRP) Reinforcement for Concrete Structures, Japan Concrete Institute, Sapporo, Japan,1997,(2)285-292.
    [160]Nakamura, H., and Higai, T. "Evaluation of shear strength of concrete beams reinforced with FRP." [J].Concrete Library International (CLI), JSCE, Shinjuku-ku, Tokyo,1995(26):111-123.
    [161]Tottori, S., and Wakui, H. "Shear capacity of RC and PC beams using FRP reinforcement." [J].ACI special publications:Fiber reinforced plastic reinforcement for concrete structures, ACI-SP-138, American Concrete Institute, A. Nanni and C. W. Dolan, eds., American Concrete Institute, Farmington Hills, Mich.,1993:615-631.
    [162]Ehab A. Ahmed; Ehab F. El-Salakawy; and Brahim Benmokrane. "Shear Performance of RC Bridge Girders Reinforced with Carbon FRP Stirrups " [J]. JOURNAL OF BRIDGE ENGINEERING,2010(1):44-54.
    [163]Alkhrdaji, T., Wideman, M., Belarbi, A., and Nanni, A._2001_. "Shear strength of GFRP RC beams and slabs." Proc., Int. Conf.:Composites in Construction—CCC 2001, Balkema, The Netherlands, 409-414.
    [164]Duranovic, N., Pilakoutas, K., and Waldron, P._1997_. "Tests on concrete beams reinforced with glass fibre reinforced plastic bars." Proc.,3rd Int. Symp. on Non-Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3), Vol.2, Japan Concrete Institute, Sapporo, Japan,479-486.
    [165]Evan C. Bentz, Laurent Massam,, Michael P. Collins. " Shear Strength of Large Concrete Members with FRP Reinforcement" [J]. JOURNAL OF COMPOSITES FOR CONSTRUCTION,2011 (6):637-646.
    [166]王作虎,杜修力,詹界东,邓宗才.FRP筋混凝土梁抗剪性能的研究进展[J].玻璃钢/复合材料,2010(1):82-85.
    [167]梁志强.混杂配筋混凝土梁抗剪性能研究[D].同济大学工学硕士学位论文,2007.
    [168]崔强.玻璃纤维筋混凝土构件斜截面抗剪性能及工程设计研究[D].西南交通大学工学硕士学位论文,2007.
    [169]张晓亮,屈文俊.无腹筋GFRP筋混凝土梁抗剪性能试验[J].中国公路学报,2010,23(5):51-57.
    [170]张晓亮,屈文俊.无腹筋混合配筋混凝土梁抗剪性能试验研究[J]同济大学学报,2010,38(10):1421-1427.
    [171]Mitchell, D., Collins, M.P..Diagonal compression field theory—a rational model for structural concrete in pure shear torsinon[J]. ACI Journal, Proceedings,1974,71(8):396-408.
    [172]Collins, M.P.. Towards a rational theory for RC members in shear[J]. ASCE, Proceedings,1978, 104(ST4):649-666.
    [173]Vecchio, F.J., Collins, M.P.. The modified compression field theory for reinforced concrete elements subjected to shear[J].ACI Journal,1986,83(2):219-231.
    [174]Vecchio, F.J., Collins, M.P.. Predicting the response of reinforced concrete beams subjected to shear using modified compression field theory [J].ACI Structural Journal.1988,85(3):258-268.
    [175]Hsu, T.T.C.. Soften truss model theory for shear and torsion[J]. ACI Structural Journal,1988,85(6): 624-635.
    [176]Vecchio, F.J.. Reinforced concrete membrane element for mulations[J]. Journal of Structural Engineering, ASCE,1990,116(3):730-750.
    [177]Hsu.T.T.C..Nonlinear analysis of concrete membrane elements[J]. ACI Structural Journal.1991, 88(5):552-561.
    [178]Collins,M.P., Mitchell, D.. Prestressed concrete structures[M]. Prentice Hall, Englewood Cliffs, New Jersey,1991.
    [179]Tan,K.H., Mulugappan, K.and Pramasivam, P..Shear behavior of steel fiber reinforced concrete beams[J].ACI Structural Journal.1992,89(6):3-11.
    [180]Collins,M.P., Mitchell, D., Adebar, P. and Vecchio, F.J.. A general shear design method[J].ACI Structural Journal,1996,93(1):36-46.
    [181]Noghabai, K.. Beams of fibrous concrete in shear and bending:Experiment and Model [J]. Journal of Structural Engineering,2000,126(2):243-251.
    [182]张宏战.钢纤维高强混凝土构件受剪性能试验研究[D].大连理工大学工学博士学位论文,2005.
    [183]莫小宁.高强钢筋混凝土梁受剪性能研究[D].天津大学工学硕士学位论文,2008.
    [184]尤志国.混杂纤维自密实混凝士构件的弯剪性能[D].大连理工大学工学博士学位论文,2010.
    [185]Sam Toutanji,Yong Deng. Deflection and crack-width prediction of concrete beams Reinforced with GFRP Bars[J],Cement and Concrete Composite 1998(20):1-11.
    [186]高丹盈.钢纤维钢筋混凝土梁曲率延性的简化计算[J].郑州工学院学报,1992,13(2):6-12.
    [187]J.A.O.Barros, V.M.C.F.Cunha, A.F.Ribeiro and J.A.B.Antunes. Post-cracking behavior of steel fibre reinforced concrete[J]. Materials and Structures,2005,38(1):47-56.
    [188]J.Zhang, H.Stang. Applications of stress crack width relationship in predicting the flexural behavior of fibre-reinforced concrete[J]. Cement and Concrete Research,1998,28(3):439-452.
    [189]L.Vandewalle. Cracking behavior of concrete beams reinforced with a combination of ordinary reinforcement and steel fibers[J]. Materials and Structures,2000,33:164-170.
    [190]Sung-woo Shin, Satyendra K.ghosh, and Jaime Moreno. Flexural Ductility of Ultra-High-Strength Concrete Members[J]. ACI Structural Journal,1989,86(4):394-400.
    [191]G.Giaccio, J.M.Tobes, R. Zerbino. Use of small beams to obtain design parameters of fiber reinforced concrete[J].Cement & Concrete Composites,2008,30:297-306.
    [192]American Concrete Institute. Building Code Requirements for Structural Concrete (ACI 318M-05) and Commentary(ACI 318RM-05),2005,141-155.
    [193]李趁趁,高丹盈等.纤维增强塑料筋混凝土梁延性的计算方法[J].郑州大学学报,2004,25(2):44-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700