EPS轻集料混凝土组成结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用抗压强度试验、等应变静力加载试验、导热系数试验、干缩试验、抗渗性试验实验、扫描电镜等方法和有限元分析、数据拟合等手段,研究了发泡聚苯乙烯(EPS)轻集料混凝土的组成结构对性能的影响。得出如下结论:
     根据基质是否能密实填充EPS颗粒间隙,分别建立了中高密度EPS轻集料混凝土该强度公式有如下优点:考虑了基质强度和孔隙率这两个影响EPS轻集料混凝土抗压强度的关键因素;公式内涵清晰,可用于EPS轻集料混凝土配合比设计与强度预测;EPS粒径与类型、基质等对混凝土抗压强度与相对密度关系的影响可通过公式中的参数β1进行调整。
     随着EPS含量增加,混凝土应力—应变曲线反弯点逐渐变得不明显、下降段趋于平缓、残余应力相对值提高。反映EPS含量提高,混凝土受压达到极限应力后,能量释放与裂缝扩展并形成较大贯通裂纹的速率下降,韧性改善。当混凝土体积密度低于900kg/m3后,混凝土开始出现脆性孔坍塌破坏,应力—应变曲线反弯点消失。
     通过试验研究和对所建立的EPS轻集料混凝土数值模型分析显示,除有效承压面积减少外,中高密度EPS轻集料混凝土抗压强度随EPS掺量增加而快速下降的重要因素还包括孔壁变薄两端约束作用下降、横杆与竖杆破坏同时存在等因素使体系承载能力大幅下降。
     研究结果显示,采用外掺法配制无石型EPS轻集料混凝土,由于水泥用量随着EPS掺量增加而减少,相应减少了基质干缩量,抵消部分因EPS含量增加而增加的干缩。EPS与基质界面存在缺陷、EPS颗粒不均匀分布形成局部缺陷区和基质不密实等因素使EPS轻集料混凝土抗水渗透和抗氯离子渗透能力随EPS掺量增加而下降。
     通过对EPS轻集料混凝土组成结构与性能关系的研究,总结出EPS轻集料混凝土导热系数—相对密度、抗压强度—相对密度关系,提出了基于这两个关系的EPS轻集料混凝土配合比设计方法。该配合比设计方法可用于设计同时满足导热系数、密度等级和强度等级要求的EPS轻集料混凝土。
With the experiments of compressive strength, equal strain static loading, thermalconductivity, dry shrinkage, impermeability, scanning electron microscopy, and the method offinite element analysis, data fitting, the composition and structure impact on performance ofexpanded polystyrene (EPS) lightweight aggregate concrete (PAC) is studied. The results areas follow:high density PAC and low density PAC individually. The formula has following advantages.The key factors, matrix strength and porosity, which affect PAC compressive strength areconsidered in the two formulas. With clear meaning, the formula is applied to strengthprediction or to mix design of PAC. EPS particle size, EPS type, matrix, and other factorswhich could affect the relationship of the concrete compressive strength and the relativedensity can be adjusted by the parameter β1of the formula.
     With the increase of EPS content, the inflection point of stress–strain curve graduallybecome unclear. Descent stage of the curve goes flattened, and the residual relative stress isimproved. This indicates that the rate of energy release and crack propagation slows downwhen the concrete is after the ultimate stress, and the toughness of PAC is improved with theincrease of EPS content. When the concrete bulk density is less than900kg/m3, pore brittlecollapsed destruction of PAC appears, and the inflection point of stress–strain curvedisappears.
     Digital model analysis and experimental study show that the important factors that PACcompressive strength decreases rapidly with the increase of EPS dosage are due to thethinning of the pore wall, both ends constraints reduced, and horizontal and vertical bardamaged at the same time besides real pressure area reduction. particle size of1.5~5.0mm is proposed. The formula is applied to EPS dosage determinationaccording to the thermal conductivity of PAC, or to estimate the thermal conductivity of PACaccording to EPS dosage.
     The results show that the increase of shrinkage of PAC without gravel in pace with theincrease of EPS dosage is partially offset, because the cement dosage decreases with theincrease dosage of EPS, and matrix shrinkage reduces accordingly. The resistance of PAC towater penetration and to chloride penetration decrease with the increase of EPS dosage. Thisis due to interface defects between the EPS and matrix, EPS particles uneven distribution andloose matrix.
     Through the investigation of the relationship of composition, structure and performanceof PAC, the formulae of thermal conductivity-relative density, and compressive strength-relative density are summarized. PAC mix design method based on the two formulas isproposed. The method can be used to design PAC mixture meeting the requirements ofthermal conductivity, bulk density and compressive strength at the same time.
引文
[1] COOK D. J, SWAMY R. N. Expanded polystyrene concrete, concrete technology anddesign [M]. London: Surrey University Press,1983:41-69.
    [2] COOK D. J. Expanded polystyrene beads as lightweight aggregate for concrete [J].Precast Concr,1973,4(4):691-693.
    [3]甘伟,张传镁,徐诚坤等.中密度级轻珠商品混凝土在填充工程中的应用[J].新型建筑材料,2006,(9):1-3.
    [4] W.C. Tang, Y. Lo, A. Nadeem. Mechanical and drying shrinkage properties ofstructural-graded polystyrene aggregate concrete[J]. Cement&Concrete Composites,2008,30:403–409.
    [5]陈兵,涂思炎,翁友法. EPS轻质混凝土性能研究[J].建筑材料学报,2007,10(1):26-31.
    [6]陈兵,陈龙球. EPS轻质混凝土力学性能研究[J].混凝土与水泥制品,2004,(3):41-45.
    [7] Daneti Saradhi Babu, K. Ganesh Babu, Wee Tiong-Huan. Effect of polystyrene aggregatesize on strength and moisture migration characteristics of lightweight concrete [J].Cement&Concrete Composites,28(2006)520–527
    [8] Robert Le Roy, Edouard Parant, Claude Boulay. Taking into account the inclusions’ size inlightweight concrete compressive strength prediction Cement and Concrete Research35(2005)770–775.
    [9]过镇海.混凝土的强度和变形[M].北京:清华大学出版社,1997:13-62.
    [10]周可可. EPS轻质混凝土的实验研究与数值模拟[D].上海:上海交通大学,2010.
    [11] Neville, A. M. Properties of Concrete[M]. Third Edition. London: Pitman PublishingLimited,1981.
    [12]唐春安,朱万成.混凝土损伤与断裂[M].北京:科学出版社,2003:24-69.
    [13]蔡四维,蔡敏.混凝土的损伤断裂[M],北京:人民交通出版社,1999:73.
    [14]傅宇方.岩石脆性破坏过程的数值模拟试验研究[D].沈阳:东北大学,2000.
    [15] Berhelot J. M. Robert J. L. Damage evaluation of concrete test specimens related tofailure analysiss[J]. Journal of Engineering Mechanics,1990,116(3):587~604.
    [16] GB50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [17]中国建筑材料联合会信息部.2011年水泥产量和产能统计分析报告[J].中国水泥,2012,(3):10-12.
    [18]吴中伟.混凝土科学技术近期发展方向的探讨,中国硅酸盐学报,1979,87(3):3~7.
    [19] GB/T17431-2010,轻集料及其试验方法[S].北京:中国建筑工业出版社,2010.
    [20] JGJ51-2002,轻骨料混凝土技术规程[S].北京:中国建筑工业出版社,2002.
    [21]王武祥.300级再生EPS超轻混凝土及其应用[J].新型建筑材料,2003,(7):33-35.
    [22]胡曙光,王发洲.轻集料混凝土[M].北京:化学工业出版社,2006:7-12.
    [23]龚洛书,柳春圃.轻集料混凝土[M].北京:中国铁道出版社,1996:132-142.
    [24]胡曙光,田耀刚,丁庆军.轻集料对高强次轻混凝土物理力学性能的影响[J].混凝土与水泥制品,2007,(6):1-4.
    [25]丁庆军,黄修林,马平等.高强次轻混凝土的设计及其在钢桥面铺装中的应用[J].施工技术,2007,36(12):64-67.
    [26] Hohwi. F(著),王武祥(译).再生EPS轻集料混凝土[J].国外建材译丛,1994,(4):32~37.
    [27] DBJ15-62-2008,轻珠混凝土技术规程[S].北京:中国建筑工业出版社,2008.
    [28]张传镁,甘伟,刘起华.轻珠混凝土及其在屋面保温隔热工程中的应用[J].新型建筑材料,2005,(8):61-63.
    [29]程从密,张传镁,焦楚杰. EPS轻集料混凝土研究进展[J].广东建材,2009,(1):12-16.
    [30]吴秋生,余其俊,韦江雄等. EPS轻骨料混凝土工作性能改善与评价方法研究[J].新型建筑材料,2007,(11):63-67.
    [31]潘武略,邓德华,原通鹏. EPS颗粒混凝土组成对其和易性与强度的影响[J].粉煤灰综合利用,2006,(1):9-11.
    [32]潘武略,邓德华,原通鹏等.EPS轻混凝土配合比对其流动性与力学性能的影响[J].混凝土,2006,(6):63-66.
    [33]李俊峰. EPS轻混凝土的生产与应用[J].施工技术,1998,(2):42-43.
    [34]黄端阳.膨胀聚乙烯轻骨料混凝土研究[J].建材技术与应用,2010,(11):3-5.
    [35] K. G. Babu, D. S. Babu. Behaviour of lightweight expanded polystyrene concretecontaining silica fume[J]. Cement and Concrete Research,2003,33:755–762.
    [36]眭小龙,何明胜,付小建.基于正交试验的EPS混合土抗压强度的研究[J].石河子大学学报(自然科学版),2011,29(2):253-256.
    [37] K. Miled, K. Sab, R. Le Roy. Particle size effect on EPS lightweight concretecompressive strength: Experimental investigation and modeling[J]. Mechanics ofMaterials,2007,(39):222–240.
    [38] Dima S. O, Sarbu A, Dobre T,et al. Rheological behavior of lightweight concrete withembedded EPS beads[J]. Materiale Plastice,2009,46(3):224-229.
    [39]付殿武,李凤起,王祥. EPS轻集料混凝土强度破坏理论的研究[J].沈阳建筑大学学报(自然科学版),2010,26(3):469-473.
    [40] D. S. Babu, K. G. Babu, Wee Tiong-Huan. Effect of polystyrene aggregate size onstrength and moisture migration characteristics of lightweight concrete[J]. Cement&Concrete Composites,2006,28:520-527.
    [41] D. Bouvard, J. M. Chaix, R. Dendievel et al. Characterization and simulation ofmicrostructure and properties of EPS lightweight concrete[J]. Cement and ConcreteResearch,2007,37:1666–1673.
    [42]彭家惠,陈明凤,张建新.废聚苯乙烯泡沫塑料作保温砂浆轻骨料的研究[J].建筑材料学报,2002,5(2):166-170.
    [43] K. Miled, R. Le Roy, K. Sab etc. Compressive behavior of an idealized EPS lightweightconcete[J]. Mechanics of Materials,2004,36:1031-1046.
    [44]胡曙光,王发洲,丁庆军.轻集料与水泥的界面结构[J].硅酸盐学报,2005,33(6):713-717.
    [45]张铁蓉,张雪松,李海涛.提高聚苯乙烯轻集料混凝土多相复合材料界面粘结性能的研究[J].河北建筑工程学院学报,2005,23(1):54-57.
    [46] Robert Le Roy, Edouard Parant, Claude Boulay. Taking into account the inclusions’ sizein lightweight concrete compressive strength prediction[J]. Cement and ConcreteResearch,2005,35:770–775.
    [47]金南国,金贤玉,郭剑飞.混凝土孔结构与强度关系模型研究[J].浙江大学学报(工学版),2005,39(11):1680-1684.
    [48]郑木莲,陈拴发,王崇涛.多孔混凝土的强度特性[J].长安大学学报(自然科学版),2006,26(4):20-25.
    [49]吴月月,倪修全,王德明.泡沫_EPS轻集料混凝土配合比及性能试验研究[J].混凝土,2012,270(4):131-133.
    [50]杨小芳,赵芊,兰长贵.泡沫混凝土的应用与质量控制[J].四川建材,2012,38(4):25-27.
    [51]唐百晓.泡沫剂在EPS轻集料混凝土中应用研究[J].低温建筑技术,2012,171(9):9-10.
    [52]周可可,陈兵,陈龙珠. EPS颗粒级配对EPS混凝土力学性能的影响[J].哈尔滨工程大学学报,2010,31(2):195-201.
    [53] Kaplan F, M. Crack propagation and the fracture of concrete [J]. Concrete inst.1961,58:591~610
    [54]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社.1993:119-132.
    [55]陈惠发,萨里普A. F.混凝土和土的本构方程[M].北京:中国建筑工业出版社,2004:6-9.
    [56]宋启根.钢筋混凝土计算力学[M].东南大学出版社,1996.
    [57]萫哲仁.混凝土有限元非线性分析原理与应用[M].北京:中国水利水电出版社,2002.
    [58]冯乃谦,江见鲸.混凝土力学[M].北京:中国铁道出版社,1991.
    [59]高路彬.混凝土变形与损伤的分析[J].力学进展.1993(4):510-519.
    [60]丁发兴,余志武,欧进萍.混凝土单轴受力损伤本构模型[J].长安大学学报(自然科学版).2008(4):70-73.
    [61]吴科如,姚武.混凝土单轴应力状态的损伤力学分析及应变软化模型研究[J].大连理工大学学报.1997(S1).
    [62]李杰,杨卫忠.混凝土弹塑性随机损伤本构关系研究[J].土木工程学报.2009(02).
    [63]宋玉普,赵国藩.混凝土内时损伤本构模型[J].大连理工大学学报.1990(05).
    [64] Lorrain M, Loland K E. Damage theory applied to concrete[M]. Fracture Mechanics ofConcrete, Edited by Wittmann.1983
    [65]张大英,王录民,梁醒培.泡沫混凝土型块填充板的试验与有限元分析[J].同济大学学报(自然科学版),2011,39(1):42-47.
    [66]刘启华,张传镁,何建罡.轻珠混凝土及其在房屋加建工程中的应用[J].施工技术,2006,35(8):29-31.
    [67]王甲春,黄海燕,许金鼓. EPS混凝土的体积变化和抗干湿循环能力分析[J].新型建筑材料,2010,(3):8-11.
    [68] D. S. Babu,K. G. Babu, T. H. Wee. Properties of lightweight expanded polystyreneaggregate concretes containing fly ash[J]. Cement and Concrete Research,2005,35:1218–1223.
    [69]林国海,庄子粒,翟洪远.一种保温模块混凝土剪力墙抗震节能房屋工作性能研究[J].世界地震工程,2012,28(2):103-109.
    [70]管洪涛,刘顺华,段玉平等. EPS水泥复合材料的吸波性能与抗压性能研究[J].材料科学与工程学报,2006,24(4):524-528.
    [71]白二雷,许金余,高志刚等. EPS颗粒对混凝土的增韧效应[J].建筑材料学报,2012,(15(1):53-59.
    [72]白二雷,许金余,高志刚等.冲击荷载作用下EPS混凝土动态性能研究[J].振动与冲击,2012,31(13):53-57.
    [73]白二雷,许金余,高志刚等. EPS混凝土冲击压缩韧性研究[J].混凝土,2011,265(11):73-76.
    [74]王志亮,诸斌.径向不耦合爆破中聚苯乙烯泡沫吸能数值研究[J].同济大学学报(自然科学版),2012,40(7):1020-1026.
    [75]胡泽斌,许金余,席峰等. EPS混凝土的冲击力学行为及本构模型[J].振动与冲击,2011,30(2):65-69.
    [76]胡俊,巫绪涛,胡时胜等. EPS混凝土动态力学性能研究[J].振动与冲击,2011,30(7):205-209.
    [77]胡泽斌,许金余,彭高丰.冲击荷载作用下聚苯乙烯混凝土的吸能特性[J].硅酸盐学报,2010,38(7):1173-1178.
    [78]胡泽斌,许金余,曹珊等.聚苯乙烯混凝土的冲击压缩性能实验研究[J].兵工学报,2011,32(5):619-624.
    [79]丁国博,许金余.早强EPS混凝土动态压缩力学行为的SHPB试验研究[J].混凝土,2011,255(1):28-33.
    [80]丁国博,许金余,白二雷等.早强EPS混凝土静态力学性能试验研究[J].四川建筑科学研究,2011,37(3):184-187.
    [81]丁国博,许金余,胡泽斌等.冲击荷载作用下早强EPS混凝土的力学性能[J].振动与冲击,2011,30(3):269-273.
    [82]范建设,丁国博,许金余等.早强聚苯乙烯混凝土动静力学性能试验研究[J].施工技术,2011,40(3):98-102.
    [83]胡俊,巫绪涛.聚苯乙烯混凝土动态劈裂实验[J].爆炸与冲击,2011,31(4):402-406.
    [84]甘伟,徐诚坤,刘启华.轻珠商品混凝土性能研究[J].新型建筑材料,2008,330(9):68-70.
    [85]陈卫东,张国侠,李兵. EPS新型节能墙体结构的力学性能分析[J].工业建筑,2007,37:170-173.
    [86] Abdulkadir Kan, Ramazan Demirboga. A novel material for light weight concreteproduction[J]. Cement and Concrete Composites,2009,31(7):489-495.
    [87]赵晓艳,田稳苓,姜忻良. EVA改性EPS混凝土微观结构及性能研究[J].建筑材料学报,2010,13(2):243-246.
    [88]任伟,丁锐. EPS与玻化微珠超轻混凝土性能研究[J].吉林建筑工程学院学报,2011,28(2):65-68.
    [89]巫绪涛,谢思发,胡俊.改性EPS混凝土的动态力学行为[J].混凝土,2011,256(2):25-28.
    [90]张大英,王录民,王树明. EPS型块填充板的施工工艺[J].建筑技术,2011,42(2):155-158.
    [91] Amianti, M, Botaro, V. R. Recycling of EPS: A new methodology for production ofconcrete impregnated with polystyrene[J]. Cem&Concr Comp,2008,30(1):23-28.
    [92] Perry S. H, Bischoff P. H, Yamura K. Mix details and material behavior of polystyreneaggregate concrete[J]. Magazine of Concrete Research,1991,43(1):71-76.
    [93] Bagon C, Frondistou Y. S. Marine floating concrete made with polystyrene beads[J].Magazine of Concrete Research,1976,28(3):225-229.
    [94] RAVINDRARAI A, TUCK A J. Properties of hardened concrete containing treatedexpanded polystyrene beads[J]. Cement and Concrete Composites,1994,16(3):273-277.
    [95] Sussinan V. Lightweight plastics-aggregate concrete[J]. Am Concr Inst,1975,72(3):321-323.
    [96] Bischoff P. H. Polystyrene aggregate concrete subjected to hard impact[J]. Proc InstnCiv Engrs,1990,6(2):225-239.
    [97]陈秀峰,严捍东.轻骨料混凝土与EPS板复合生产屋面隔热砖的试验研究[J].贵州大学学报(自然科学版),2011,28(5):120-125.
    [98]秦现军.水泥聚苯隔热保温复合板在屋面施工中的应用[J].山西建筑,2004,30(19):96–97.
    [99]俞卫忠,蒋定辉.轻质混凝土自保温砌块的研制[J].建筑砌块与砌块建筑,2011(1):17-20.
    [100]金辉,代超鸿.作为台后填料的EPS混凝土性能研究[J].道路工程,2011,80(8):114-118.
    [101]王洪镇.彩色混凝土_EPS复合外墙自保温装饰砌块的研制与应用[J].建筑节能,2010,38(9):51-54.
    [102]陈基鑫.新型外墙EPS轻质装饰构件施工技术[J].广东建材,2010,(10):56-57.
    [103]彭家惠,陈明凤,张建新. EPS表面改性及其保温砂浆的耐候性与抗裂性[J].重庆大学学报(自然科学版),2002(1):2-4.
    [104]陈明凤,瞿金东,彭家惠,张建新. EPS保温砂浆的耐候性、抗裂性及其机理[J].建筑技术开发,2002(3):3-4.
    [105]曾珍,张雄.泡沫—聚苯乙烯保温砂浆工艺及性能研究[J].粉煤灰综合利用,2006,(1):50-53.
    [106]丑洋. EPS大模内置在外墙中的应用[J].价值工程,2012,(7):115-116.
    [107]杨奉源,卢忠远,何顺爱等.超轻EPS复合泡沫混凝土性能研究[J].混凝土与水泥制品,2012,5(5):9-12.
    [108]颜志平.泡沫聚苯乙烯力学性能的室内试验研究[J].中南公路工程,2005,30(4):42-45.
    [109]余永宁.材料科学基础[M].北京:高等教育出版社,2006:156-164.
    [110]吴中伟.混凝土材料学_各种混凝土的组成与结构[J].混凝土,1980,(4):1-6.
    [111] P. K. Mehta.混凝土微观结构、性能和材料[M].北京:中国电力出版社,2008:33.
    [112]王祖华.混凝土与砌体结构[M].广州:华南理工大学出版社,1992:8.
    [113] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties,2nd edition[M],Cambridge University Press, Cambridge, UK,1997:178-185.
    [114]范钦珊,殷雅俊.材料力学[M].北京:清华大学出版社,2004:89-99.
    [115]曹珊.聚苯乙烯颗粒表面改性混凝土增强机理试验研究[D].郑州:河北工业大学,2007:8.
    [116] Van Mier Etc J G M E. Strain-softening of concrete in uniaxial compression--Report ofthe Round Robin Test carried out by RILEM TC148-ssc[J]. Materials and Structures.1997,30(5):195-209.
    [117] Shah S P, Sankar R. Internal cracking and Strain Softening Response of Concrete underUniaxial Compression[J]. ACI Material Journal.1987,84(3):200-212.
    [118] Bazant Z P. Identification of Strain-Softening Constitutive Relation from Uniaxial Testsby Series Coupling Model for Localization[J]. cement&Concrete Research.1989,19(6):973-977.
    [119] Markeset G, Hillerborg A. Softening of concrete in compression-localization and sizeeffects[J]. Cement and Concrete Research.1995,25(4):702-708.
    [120]肖建庄.再生混凝土单轴受压应力-应变全曲线试验研究[J].同济大学学报:自然科学版,2007,35(11):1445-1449.
    [121] Wantanbe F. Complete Stress-strain Curve for Concrete in Concentrical Compression[C].1971.
    [122]过镇海,张秀琴,张达成等.混凝土应力-应变全曲线的试验研究[J].建筑结构学报.1982(1):1-12.
    [123]焦楚杰,孙伟,秦鸿根等.钢纤维高强混凝土单轴受压本构方程[J].东南大学学报:自然科学版,2004,34(3):366-369.
    [124]张研,张子明.材料细观力学[M].北京:科学出版社,2008:115-145.
    [125]王宗敏,邱志章.混凝土细观随机骨料结构与有限元网格剖分[J].计算力学学报,2005,22(6):728-732。
    [126]高燕,宓永宁,王作涛.蒙特卡罗法在混凝土数值模拟中的应用[J].山西建筑,2007,33(3):14-16.
    [127]余锦化,石北源,杨维权.概率论与数理统计[M].广州:中山大学出版社,2000:202.
    [128] J. Lemaitre.损伤力学教程[M].倪金刚,陶春虎译.北京:科学出版社.1996:16.
    [129]刘蕙兰,贾福根.细集料对砂浆和混凝土弹性模量的影响[J].混凝土,1995,(1):12-18.
    [130]王新敏. Ansys工程结构数值分析[M].北京:人民交通出版社,2007:432-433.
    [131]霍怡. EPS和XPS板的性能分析比较[J].建设科技,2011,(5):68-69.
    [132] Bing Chen, Juanyu Liu. Properties of lightweight expanded polystyrene concretereinforced with steel fiber[J]. Cement and Concrete Research,2004,34:1259–1263.
    [133]W.C. Tang, T.Y. Lo, R.V. Balendran. Bond performance of polystyrene aggregateconcrete (PAC) reinforced with glass-fibre-reinforced polymer (GFRP) bars[J].Building and Environment,2008,43:98–107.
    [134] GB/T50082-2009,普通混凝土长期性能和耐久性能试验方法标准[S].北京:中国建筑工业出版社,2009.
    [135]陈建奎,王栋民.高性能混凝配合比设计新法[J].硅酸盐学报,2000,28(2):194-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700