高温作用后混凝土结构力学性能及耐久性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以经历不同受热温度和受热时间的混凝土试块和梁为研究对象,采用理论分析和实验研究相结合的方法,对混凝土试块和梁的力学性能以及耐久性能进行了分析与探讨,主要内容包括:
     (1)完成了33组高温后混凝土试块的剩余抗压强度试验,并测定了不同受热温度和受热时间后混凝土的烧失率,系统研究了高温后混凝土剩余抗压强度与受热温度、受热时间的耦合关系以及高温后混凝土的质量变化规律,分别提出了基于受热温度、受热时间和基于烧失率的混凝土剩余抗压强度计算公式;修正了现有检测混凝土强度的超声法、回弹法和超声回弹综合法,得到了能应用于火灾后混凝土强度检测的强度回归公式。
     (2)完成了高温后混凝土耐久性能试验,主要包括碳化试验和氯离子侵蚀试验两部分。
     碳化试验完成了33组高温后混凝土烧损层深度的测定和快速碳化试验,研究了烧损层深度与受热温度和受热时间之间的关系,提出了混凝土剩余抗压强度与烧损深度之间函数关系,对比常温下混凝土试块碳化深度,得到了高温后混凝土碳化高温影响系数k'ca与受热温度和受热时间的计算公式。
     氯离子侵蚀试验完成了33组高温后混凝土RCM试验,测定了混凝土在规定电压和通电时间后氯离子渗透深度,并推导出高温后混凝土氯离子扩散系数,对比常温下混凝土试块氯离子扩散系数,提出了高温后混凝土氯离子扩散高温影响系数kd'与受热温度和受热时间的计算公式。
     (3)完成了10根经历不同受热温度、受热时间的钢筋混凝土梁的抗弯承载力试验,探讨了高温后钢筋混凝土梁的受弯破坏机理和裂缝扩展形态等试验规律。在热传导理论基础上,简化了钢筋混凝土梁内部温度场的计算过程,提出了一种高温后钢筋混凝土梁剩余抗弯承载力的简化计算方法。基于混凝土梁抗弯承载力试验结果,提出了小火、中火和大火三级火灾分类标准,分析了不同大小火灾对混凝土抗压强度、碳化高温影响系数kca'和氯离子扩散高温影响系数kcl'的影响,并给出了不同大小火灾后混凝土结构加固的维修建议。
     (4)完成了11根高温后钢筋混凝土梁通电快速锈蚀后的抗弯承载力试验,分析了抗弯试验过程中梁的荷载与挠度的关系和梁截面应力沿截面高度方向的分布等变形规律。根据试验结果,提出了高温后锈蚀钢筋屈服强度降低系数ky,建立了高温后锈蚀钢筋混凝土梁剩余抗弯承载力计算模型,并与试验值进行了对比分析。
     (5)引入了可靠度理论,在已有混凝土碳化深度模型和氯离子扩散模型的基础上,分别以碳化深度达到钢筋表面和钢筋表面氯离子浓度达到临界浓度而开始锈蚀作为混凝土结构耐久性失效极限,得到了基于可靠度理论的高温后混凝土碳化耐久性剩余寿命和氯离子侵蚀耐久性剩余寿命的预测模型,并分析了不同大小火灾对混凝土耐久性寿命的影响。
This paper presents theoretical analyses and experimental research deeply on the mechanical properties and durability of the concrete specimens and beams, which were subjected to different heating temperature and time. The main contents are listed as follows:
     (1)33groups of post-fire concrete residual compressive strength test were completed, and the burn-off ratio of concrete was measured. The concrete quality change regulation and coupled relationship between concrete residual compressive strength and heating temperature and time had been studied systematically. The formulae had been proposed based on heating temperature, time and concrete burn-off ratio respectively. Ultrasonic Method, Rebound Method and Ultrasonic-rebound Combined Method had been amended which could be used in the concrete strength detection after fire, and its precision was enough for the practical engineering requirement.
     (2) The durability experiment of concrete after high temperature had been completed, which included carbonation test and chloride penetration test.
     In the carbonation test, the measurement on concrete burning depth and33groups of concrete rapid carbonation test had been completed. The relationship between burning depth and heating temperature and time had been researched, and the calculation formula of concrete residual compressive strength and burning depth was obtained. In comparison with the carbonation depth of natural state concrete, the formula of high temperature coefficient of carbonation k'ca had been obtained.
     In the chloride penetration test,33groups of RCM test on post-fire concrete had been finished. The chloride diffusion coefficient was deduced by the measurement of chloride penetration depth after RCM test. Compared with the chloride diffusion coefficient of natural state concrete, the computational formula of high temperature coefficient of chloride diffusion k'cl had been proposed.
     (3) Bearing capacity experiment of10reinforced concrete simple support beams after fire damage had been finished. The test law such as failure mechanism and fracture development had been discussed. Based on the theory of heat conduction, the temperature field in concrete member had been simplified for calculation and the simple method had been put forward to calculate the flexural capacity of reinforced concrete beam after fire. The fire classification standard had been established based on the experiment results. According to the influence of concrete compressive strength, k'ca and k'cl by different fire, the suggestion for concrete structure repair and reinforcement had been presented.
     (4) Bearing capacity experiment of11post-fire concrete beams after accelerated corrosion had been completed, and the failure characteristics, fracture shapes and the stress distribution in section had been analyzed. According to the experiment results, the yield strength reduction coefficient ky of post-fire concrete after corrosion had been introduced, and the bearing capacity calculation model for corroded reinforced concrete beam after fire had been established in comparison with the experiment results.
     (5) The reliability theory was introduced, and the concrete durability failure limit was determined respectively, which were that the carbonation depth reached on the surface of steel in concrete and chloride concentration on steel surface had arrived to the critical concentration. Based on the reliability theory and existing model of concrete carbonation and chloride diffusion, the carbonation and chloride penetration residual durability life forecasting model of post-fire concrete had been established respectively. The influence of concrete durability life after different fire had been analyzed.
引文
[1]范维登,王清安,姜冯辉,等.火灾学简明教程[M].合肥:中国科学技术大学出版社,1995.
    [2]董毓利.混凝土结构的火安全设计[M].北京:科学出版社,2001.
    [3]路春森等.建筑结构耐火设计[M].北京:中国建材工业出版社,1995.
    [4]王学谦.建筑防火[M].北京:中国建筑工业出版社,2000.
    [5]公安部消防局.中国火灾统计年鉴[M].北京:中国人事出版社,2000-2010各期.
    [6]Commision of the European Communities. Design of concrete structures, Eurocode 2, Part10:Structural fire design[S].1990,965-973.
    [7]阎继红.高温作用下混凝土材料性能试验研究及框架结构性能分析[D].天津:天津大学,2000.
    [8]陆洲导.钢筋混凝土梁对火灾反应的研究[D].北京:清华大学,1989.
    [9]Lie T. T.. Procedure to calculate the fire resistance of structural members[J]. Fire and Materials.1984,8(1):40-48.
    [10]Harada T.. Strength, elasticity and thermal properties of concrete subjected to elevated temperature[J]. Concrete for Nuclear Reactions, ACI SP-34, Detroit,1972, (1):377-406.
    [11]Marechal J. C. Thermal conductivity and thermal expansion coefficients of concrete as a function of temperature and humidity[J]. Concrete for Nuclear Reactions, ACI SP-34, Detroit,1972, (1):1047-1057.
    [12]石贵平.钢筋混凝土结构中温度场和热应力的非线性有限元分析[D].北京:清华大学,1990.
    [13]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析[D].北京:清华大学,1992.
    [14]Lie T. T.. Fire and Buildings[M]. London:Applied Science Publishers Ltd,1972.
    [15]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [16]南建林,过镇海,时旭东.混凝土的温度—应力耦合本构关系[J].清华大学学报,1997,37(6):87-90.
    [17]Khoury G A., Grainger B.N., Sullivan P. J. E.. Transient thermal strain of concrete: literal review, conditions within specimen and behavior of individual constituents [J]. Magazine of Concrete Research.1985,37(133):131-144.
    [18]王传志.高温下混凝土性能的试验研究概况[D].北京:清华大学,1989.
    [19]Castillo C., Durrani A. J.. Effect of transient high temperature on high-strength concrete[J]. ACI Materials Journal,1990,87(1):47-53.
    [20]李卫.混凝土耐热力学性能的试验研究总结[D],北京:清华大学,1991.
    [21]Concrete Society. Assessment and repair of fire-damaged concrete structures[R]. London,1990.
    [22]Crispino E.. Studies on the technology of concrete under thermal condition[J]. Concrete for Nuclear Reactions, ACI SP-34, Detroit,1972:443-479.
    [23]Mareehal J. C. Variations in the modulus of elasticity and poisson's ratio with temperature[J]. Concrete for Nuclear Reactions, ACI SP-34, Detroit,1972,(1):405-503.
    [24]吕彤光.钢筋高温性能的试验研究[D].北京:清华大学,1996.
    [25]钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究[J].同济大学学报,1990,18(3):287-297:
    [26]闵明保,李延和,高本立,等.建筑物火灾后诊断与处理[M].南京:江苏科学技术出版社,1994.
    [27]CECS 252:2009,火灾后建筑结构鉴定标准[S].北京:中国计划出版社,2009.
    [28]DBJ08-219-96,火灾后混凝土构件评定标准[S].上海:上海市建筑科学研究院,1996.
    [29]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [30]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1991,17(1):37-43.
    [31]陆洲导.钢筋混凝土梁对火灾反应的分析[D].上海:同济大学,1989.
    [32]陆洲导,朱伯龙,胡克旭.工程结构抗火性能研究报告[R].上海:同济大学工程结构研究所,1990.
    [33]朱伯龙,陆洲导,胡克旭.钢筋混凝土框架在火作用下的决策支持系统研究报告[R].上海:同济大学土木工程防灾国家实验室,1991.
    [34]李固华、凤凌云、郑盛娥.高温后混凝土及其组成材料性能研究[J].四川建筑科学研究,1991,17(2):1-4.
    [35]王春华,李小红,潘家鼎,等.高温(火灾)后混凝土结构强度损伤程度评估方法的探讨[J].工程力学(增刊),1994,(1):711-714.
    [36]王孔藩,许清风,刘挺林.高温自然冷却后钢筋与混凝土之间粘结强度的试验研究[J].施工技术,2005,34(8):6,11.
    [37]王孔藩,许清风,刘挺林.高温下及高温冷却后钢筋力学性能的试验研究[J].施工技术,2005,34(8):3-5.
    [38]王孔藩,许清风,刘挺林.高温下及高温冷却后混凝土力学性能的试验研究[J].施工技术,2005,34(8):1-3.
    [39]王孔藩,许清风,刘挺林.混凝土结构火灾损伤及可靠性分析方法的研究报告[R].上海:上海建筑科学研究院,2003.
    [40]吕天启,赵国藩,林志伸.高温后静置混凝土力学性能试验研究[J].建筑结构学报,2004,25(1):63-70.
    [41]吕天启,赵国藩,林志伸,岳清瑞.高温后静置混凝土的微观分析[J].建筑材料学报,2003,6(2):135-141.
    [42]阎继红,林志伸,胡云昌.高温作用后混凝土抗压强度的试验研究[J].土木工程学报,2002,35(5):17-18.
    [43]Poon Chi-Sun, Azhar Salman, Anson Mike, etc. Strength and durability recovery of fire-damaged concrete after post-fire-curing [J]. Cement and Concrete Research,2001, 31(9):1307-1318.
    [44]吴波,马忠诚,欧进萍.高温后混凝土变形特性及本构关系的试验研究[J].建筑结构学报,1999,20(5):42-49.
    [45]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社,2003.
    [46]马忠诚.火灾后钢筋混凝土结构损伤评估与抗震修复[D].黑龙江:哈尔滨建筑大学,1997.
    [47]吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究[J].土木工程学报,2000,33(2):8-12.
    [48]张彦春,胡晓波,白成彬.钢纤维混凝土高温后力学性能研究[J].混凝土,2001,(9):50-53.
    [49]袁杰,吴波.PP纤维高强混凝土的和易性及高温后抗压强度的试验研究[J].混凝土,2001,(3):30-33.
    [50]肖建庄,王平,朱伯龙.我国钢筋混凝土材料抗火性能研究回顾与分析[J].建筑材料学报,2003,6(2):182-189.
    [51]肖建庄,李杰,孙振平.高性能混凝土结构抗火研究最新进展[J].工业建筑,2001,31(6):53-56.
    [52]肖建庄,黄运标.高温后再生混凝土残余抗压强度[J].建筑材料学报,2006,9(3):255-259.
    [53]资伟,余志武,匡业川等.受热温度和时间对混凝土抗压强度的影响[J].消防科学与技术,2012,31(2):111-114.
    [54]肖建庄,王平,谢猛等.矿渣高性能混凝土高温后受压本构关系[J].同济大学学报,2003,31(2):186-190.
    [55]肖建庄,黄运栋.高温后再生混凝土残余抗压强度[J].建筑材料学报,2006,9(3):255-259.
    [56]谢狄敏,钱在兹.高温(明火)作用后混凝土强度与变形试验研究[J].工程力学(增 刊),1996,(2):54-58.
    [57]谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究[J].浙江大学学报,1998,32(5):597-602.
    [58]徐或,徐志胜.高温作用后混凝土强度试验研究[J].混凝土,2000,(2):44-45.
    [59]徐或,徐志胜,朱玛.高温作用后混凝土强度与变形试验研究[J].长沙铁道学院学报,2000,18(2):14-21.
    [60]覃丽坤,宋玉普,王玉杰等.高温对混凝土力学性能影响的试验研究[J]混凝土,2003,(5):9-11.
    [61]胡倍雷,宋玉普,赵国藩.高温后混凝土在复杂应力状态下的变形和强度特征的试验研究[J].四川建筑科学研究,1994,20(1):47-50.
    [62]周新刚.高温后混凝土轴压疲劳初探[J].工业建筑,1996,26(5):33-36.
    [63]刘宏奎.火灾后混凝土建筑物的损伤评估与修复理论研究[D].大连:大连理工大学,2001.
    [64]金贤玉,钱在兹.混凝土受高温作用的破坏机理[J].工程力学(增刊),1994,(2):580-583.
    [65]胡海涛.高温时高强混凝土压弯构件的试验研究及理论分析[D].西安:西安建筑科技大学,2002.
    [66]陈舜田主编.建筑物火害及灾后安全评估法[M].台北:科技图书股份有限公司,2000.
    [67]朋改非,李斌,马强等.火灾高温中高性能混凝土的裂纹扩展与爆裂关系[J].混凝土,2001,(7):15-17.
    [68]朋改非,陈延年,安礼信等.高性能混凝土的火灾损伤特征[J].材料科学与工程,2000,18(9):947-950.
    [69]Chan Y. N., Peng G. F. and Anson M.. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperature[J]. Cement & Concrete Compostion,1999,21(1):23-27.
    [70]Peng Gai-Fei. Evaluation of fire damage to high performance concrete[D]. Hongkong: Hongkong Polytechnic University,2000.
    [71]朋改非,王金羽,Sammy CHAN Y. N.,等.火灾高温下硬化水泥浆的化学分解特征[J].南京信息工程大学学报(自然科学版),2009,1(1):76-81.
    [72]杨彦克,郑盛娥.混凝土结构火灾损伤评估[J].四川建筑科学研究,1991,19(4):22-26.
    [73]杨彦克,郑盛娥.超声法用于高温(火灾)后混凝土的损伤评估[J].铁道建筑,1992,(3):12-14.
    [74]涂耀贤.以烧失量试验法推测混凝土受火害程度之研究[D].台北市,国立台湾工 业技术学院,1991.
    [75]杜红秀,张雄,韩继红.混凝土火灾损伤的红外热像检测与评估[J].同济大学学报,2002,30(9):1078-1082.
    [76]杜红秀,张雄,韩继红.混凝土构筑物的火灾危害与损伤检测评估[J].建筑材料学报,1998,31(2):175-181.
    [77]杜红秀,张雄,韩继红.混凝土火烧损伤的红外热像检测与分析[J].建筑材料学报,1998,1(3):223-226.
    [78]阎继红,胡云昌,林志伸.回弹法和超声回弹综合法判定高温后混凝土抗压强度的试验研究[.J].工业建筑,2001,31(12):81-82.
    [79]吕天启,赵国藩,林志伸,岳清瑞.应用回弹超声方法评定火灾高温静置混凝土抗压强度的试验研究[J].混凝土,2002,(8):21-23.
    [80]陈治平.超声-回弹综合法在受火灾硅结构检测中的应用[J].华侨大学学报(自然科学版),1996,17(1):35-59.
    [81]贾锋,丛永全,朱伯龙.回弹仪检测高温后普通砼抗压强度的试验研究[J].四川建筑科学研究,1996,(2):37-41.
    [82]张克纯,陆洲导,俞江滔.逐层回弹法评定火灾后混凝土抗压强度的试验研究[J].沈阳建筑大学学报(自然科学版),2006,22(6):899-902.
    [83]贾锋,肖建庄.恒压恒速冲击钻测强仪检测高温后的混凝土强度[J].工业建筑,1996,26(6):51-55.
    [84]贾锋.直径45mm和70mm小芯样横劈法检测高温后混凝土抗压强度的试验研究[J].西北建筑工程学院学报(自然科学版),1997,(1):8-11.
    [85]朱伯龙,谭玮,陆洲导.工程结构抗火性能研究报告[R].上海:同济大学,1990.
    [86]胡克旭.高温下钢筋混凝土粘结滑移性能及钢筋混凝土门式框架抗火性能研究[D].上海:同济大学,1989.
    [87]钮宏,马云凤,姚亚雄.轻骨料混凝土构件抗火性能的研究[J].建筑结构,1996,26(7):29-33.
    [88]姚亚雄.钢筋混凝土框架火灾反应分析及火灾温度鉴定的研究[D].上海:同济大学,1991.
    [89]华毅杰.预应力混凝土结构火灾反应及抗火性能研究[D].上海:同济大学,2000.
    [90]谭玮.钢筋混凝土梁在火灾后的修复加固与有关专家系统的研究[D].上海:同济大学,1990.
    [91]丁伟.受火灾钢筋混凝土框架修复及决策支持系统研究[D].上海:同济大学,1991.
    [92]沈鲁明.碳化混凝土及钢筋混凝土柱抗火性能分析[D].上海:同济大学,1997.
    [93]林建宏,陈舜田,蔡秋雄.钢筋混凝土柱受火害后之行为[J].NSC77-0410 -E011-09,台北,国科会专题研究计划报告,1989.
    [94]林建宏,陈舜田,黄东开.受轴力钢筋混凝土柱火害后之力学行为[J].NSC77-0410-E011-13,台北,国科会专题研究计划报告,1990.
    [95]陈舜田,林建宏.火害后钢筋混凝土柱构件之力学行为[J].NSC77-0410-E011-21,台北,国科会专题研究计划报告,1997.
    [96]高金盛,陈舜田.火害后钢筋混凝土梁强度与劲度之衰减[J].中国土木水利工程学刊,1996,8(3):371-386.
    [97]林英俊,陈舜田,林庆荣.火害后钢筋混凝土梁之剪力强度[J].NSC77-0410-E011-13,台北,国科会专题研究计划报告,1990.
    [98]陈舜田,何象镛.钢筋混凝土梁火害后力学行为研究[J].NSC77-0410-E011-09,台北,国科会专题研究计划报告,1989.
    [99]林英俊,陈舜田.高强钢筋混凝土梁火害后挠曲行为之研究[J].NSC77-0410-E011-09,台北,国科会专题研究计划报告,1992.
    [100]陈舜田,谢沧海.有限元素分析钢筋混凝土构件受火害后之力学行为[J].NSC77-0410-E011-13,台北,国科会专题研究计划报告,1989.
    [101]陈鸣,金贤玉,胡文清.钢筋混凝土梁火烧后残余抗剪强度的研究[J].浙江大学学报,1995,29(1):98-107.
    [102]孙劲峰,时旭东,过镇海.三面受热钢筋混凝土梁在高温时和降温后受力性能的试验研究[J].建筑结构,2002,32(1):34-36.
    [103]许清风,王孔藩,刘挺林.三面受火受弯构件自然冷却后承载能力的试验研究[J].施工技术,2005,34(8):7-8.
    [104]向延念,李守雷,徐志胜.钢筋混凝土简支梁高温力学性能的试验研究[J].华北科技学院学报,2006,3(1):57-61.
    [105]李守雷,徐志胜,常玉锋等.火灾后RC简支梁的动力性能试验研究[J].武汉化工学院学报,2005,27(4):27-29.
    [106]王春华,程超.高温冷却后钢筋混凝土简支梁强度损伤的研究[J].西南交通大学学报,1992,29(2):25-28.
    [107]董毓利,范维澄,王清安等.火灾温度下钢筋混凝土板的非线性分析[J].火灾科学,1997,6(2):34-38.
    [108]董毓利,王清安,范维澄.火灾中均布荷载作用下钢筋混凝土方板的极限分析[J].自然灾害学报,1997,6(4):18-22.
    [109]董毓利,王清安,范维澄.火灾后钢筋混凝土异形板的极限荷载[J].力学与实践,1997,20(2):53-55.
    [110]Lea F. C. The effect of temperature on some of the properties of materials[J]. Engineering,1920,293-298.
    [111]Mohamedbhai, G. T. G. Residual strength of reinforced concrete members subjected to elevated temperatures[J]. Proceedings of the Institution of Civil Engineers (London), 1982,73(2):407-420.
    [112]Mohamedbhai, G. T. G. Residual strength of concrete subjected to elevated temperatures[J]. Concrete (London),1983,17(12):22-23,25-27.
    [113]Mohamedbhai, G. T. G.. Effect of exposure time and rates of heating and cooling on residual strength of heated concrete[J]. Magazine of Concrete Research,1986,38(136): 151-158.
    [114]Sullivan P. J. E, Khoury, G. A. and Grainger B. N. Apparatus for measuring the transient themal strain behavior of unsealed concrete under constant load for temperatures up to 700℃[J]. Magazine of concrete Research,1983,35(125):229-236.
    [115]Khoury G. A., Grainger, B. N. and Sullivan, P. J. E. Strain of concrete during first heating to 600℃ under load[J]. Magazine of concrete Research,1985,37(133):195-215.
    [116]Khoury G. A. Strain of heated concrete during two thermal cycles. Part 1:Strain over two cycles, during first heating and at subsequent constant temperature [J]. Magazine of Concrete Research,2006,58(6):367-385.
    [117]Khoury G. A., Majorana C. E., Pesavento F., etc. Modeling of heated concrete[J]. Magazine of Concrete Research,2002,54(2):77-101.
    [118]Papayianni J., Valiasis T.. Residual mechanical properties of heated concrete incorporation different pozzolanic materials[J]. Materials and Structures,1991,24(140): 115-121.
    [119]Mehmet Sait Culfik, Turan Ozturan. Effect of elevated temperatures on the residual mechanical Properties of high-performance mortar[J]. Cement and Concrete Research, 2002,32(5):809-816.
    [120]Chih-Huang Chiang, Cho-Liang Tsai. Time-temperature analysis of bond strength of a rebar after fire exposure[J]. Cement and concrete research,2003,33(10):1651-1654.
    [121]Lin W. M., Lin T. D., Powers-Couche L. J.. Microstructures of fire-damaged concrete[J]. ACI Materials Journal,1996,93(3):199-205.
    [122]Georgali B., Tsakiridis P. E.. Microstructure of fire-damaged concrete. A case study [J]. Cement and Concrete Composites.2005,27(2):255-259.
    [123]Andrea Benedetti. On the ultrasonic pulse propagation into fire damaged concrete[J]. ACI Structural Journal,1998,95(3):259-271.
    [124]Dos Santos J. R., Branco F. A. and De Brito J.. Assessment of concrete structures subjected to fire-The FBTest[J], Magazine of Concrete Research,2002,54(3):203-208.
    [125]Riley M. A.. Assessing fire-damaged concrete[J]. Concrete International.1991.13(6): 60-63.
    [126]Fattuhi Nijad. Assessment of fire-damaged Kuwaiti structures[J]. Journal of Materials in Civil Engineering,1999,11(2):176-177.
    [127]AI-Mutairi Naji M., AI-Shaleh Moneera S.. Assessment of fire-damaged Kuwaiti Structures[J]. Journal of Material in Civil Engineering.1997,9(1):7-14.
    [128]Folic R., Radonjanin V., Malesev M.. The assessment of the structure of Novi Sad Open University damaged in a fire[J]. Construction and Building Materials,2002,16(7): 427-440.
    [129]EI-Hawary Moetaz M., Ragab Ahmed M., Abd EI-Azim Ahmed, etc. Effect of fire on flexural behaviour of RC beams[J]. Construction and Building Materials.1996,10(2): 147-150.
    [130]EI-Hawary Moetaz M., Ragab Ahmed M., EI-Azim Ahmed Adb, etc. Combined shear flexure behavior of R.C. beams exposed to fire[J]. Journal of Applied Fire Science,1994, 4(4):273-288.
    [131]Cooke Gordon M. E.. Behaviour of precast concrete floor slabs exposed to standardised fires[J]. Fire Safety Journal,2001,36(5):459-475.
    [132]Lin Chien-Hung, Chen Shun-Tyan, and Yang Chen-An. Repair of fire-damaged reinforcement concrete columns[J]. ACI Materials Journal,1995,92(4):406-411.
    [133]Han Lin-Hai, Yang You-Fu, Yang Hua, etc. Residual strength of concrete-filled RHS columns after exposure to the ISO-834 standard fire[J]. Thin-Walled Structures.2002, 40(12):991-1012.
    [134]傅祝满.建筑火灾模拟方法及进展[J].大自然探索,1996,15(5):28-33.
    [135]姚建达,范维澄.建筑物火灾中场区网数值模型的应用[J].中国科学技术大学学报,1997,27(3):304-308.
    [136]汪箭,范维澄.建筑物多室火灾过程的计算机模拟[J].中国科学技术大学学报,1996,26(2):204-209.
    [137]朱伯龙,陆洲导,吴虎南.房屋结构灾害检测与加固[M].上海:同济大学出版社,1995.
    [138]Ng Ah Book, Mizra M. Saeed, Lie T. T.. Response of direct models of reinforced concrete columns subject to fire[J]. ACI Structural Journal,1990,87(3):313-325.
    [139]Chang W. T., Wang C. T., Huang C. W., etc. Concrete at temperature above 1000℃[J]. Fire Safety Journal,1994,23 (3):223-243.
    [140]张大长,吕志涛.火灾对RC、PC构件材料性能影响[J].南京建筑工程学院学报,1998,45(2):18-20.
    [141]董毓利.土木火灾研究概览[A].香山科学会议—“火灾科学的新理论及洁净、 智能防治技术”[C].北京:国家科技部,1997,1-8.
    [142]李卫,过镇海.高温下混凝土的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16.
    [143]李固华,郑盛娥,杨彦克.高温后砾石混凝土性能试验研究[J].混凝土与水制品,1991,(6):16-17.
    [144]杨彦克,李固华.火灾混凝土结构损伤评估现状与发展[J].四川建筑科学研究,1993,(3):6-11.
    [145]潘家鼎,王春华,李小红等.高温冷却后预应力混凝土受弯构件强度损伤的试验研究[J].工程力学(增刊),1994,(1):815-821.
    [146]余志武,丁发兴,罗建平.高温后不同类型混凝土力学性能试验研究[J].安全与环境学报,2005,5(5):1-6.
    [147]朱玛,徐志胜,徐或.高温后混凝土强度试验研究[J].湘潭矿业学院学报,2000,15(2):70-72.
    [148]吕天启.高温后混凝土静置性能的试验研究及已有建筑物的防火安全评估[D].大连:大连理工大学,2002.
    [149]徐泽晶.火灾后钢筋混凝土结构的材料特性、寿命预估和加固研究[D].大连:大连理工大学,2005.
    [150]Byrne Stephen E.. Fire resistance of load-bearing masonry walls[J]. Fire Technology, 1979,15(3):180-188.
    [151]钱在兹,陈荣荣,张自坚.混凝土和钢筋火烧后的物理力学特性[A].混凝土结构基本理论及应用第二届学术讨论会论文集[C].北京:清华大学,1990,134-136.
    [152]王中强.无粘结预应力混凝土扁梁抗火性能的试验研究和理论分析[D].长沙:中南大学,2006.
    [153]沈蓉,凤凌云,戎凯.高温(火灾)后钢筋力学性能的评估[J].四川建筑科学研究,1991,(2):5-9.
    [154]Franssen J. M..真实火灾安全思想[J].建筑钢结构进展,2003,5(2):38-45.
    [155]Schneider U., Haksever A.. Evaluation of the equivalent fire duration of reinforced concrete beams in natural fires[A]. Final Research Report[C]. German:Technical University of Braunschweing,1977,234-246.
    [156]Chew Michael Y. L.. Assessment of fire damaged concrete[J]. Building and Environment,1993,28 (1):97-102.
    [157]Chew Michael Y. L.. Effect of heat exposure duration on the thermoluminescence of concrete[J]. ACI Materials Journal,1993,90(4):319-322.
    [158]Briesemann D.. Corrosion inhibitors for steel in concrete[J]. Zement-Kalk-Gips,1970, 26(2):88-91.
    [159]Zi Wei, Yu Zhiwu. Durability evaluation of post-fire concrete structure based on carbonation[A].2011 International Conference on Consumer Electronics, Communications and Networks, CECNet 2011 [C]. Xianning,2011,1175-1177.
    [161]苏联建设部混凝土研究院.建筑物火灾后混凝土结构鉴定标准[S],1987.
    [162]白凤.合肥市某商场火灾后主体结构的修复与加固设计[J].工业建筑,2002,32(11):80-82.
    [163]林志明,张雄.钢筋混凝土建筑物修复补强技术[J].建筑材料学报,2003,6(1):61-65.
    [164]陈洪水.混凝土加固技术在火灾后建筑修复中的应用[J].施工技术,2001,30(2):17-19.
    [165]董毓利,徐卓军.火灾后混凝土结构的评估与维修[J].安全与环境学报,2002,2(4):34-37.
    [166]Morsy M. S., Galal A. F., Abo-EI-Enein S. A.. Effect of temperature on phase composition and microstructure of artificial pozzolana-cement pastes containing burnt kaolinite clay[J]. Cement and Concrete Research,1998,28(8):1157-1163.
    [167]Climent M. A., Viqueira E., De Vera G., etc. Analysis of acid-soluble chloride in cement, mortar, and concrete by potentiometric titration without filtration steps[J]. Cement and Concrete Research,1999,29(6):893-898.
    [168]YS12-79,水工混凝土结构抗热设计规程[S].北京:冶金工业出版社,1979.
    [169]胡忠日.火灾模化方程的数值解法[J].消防技术与产品信息,1998,5(6):9-12.
    [170]孔祥谦.有限单元法在热传学中的应用[M].北京:科学出版社,1998.
    [171]张大长,吕志涛.火灾过程中混凝土构件内的温度分布[J].南京建筑工程学院学报,1997,40(1):31-37.
    [172]Capozucca, R., Cerri M. Nilde. Identification of damage in reinforced concrete neams subjected to corrosion[J], ACI Structure Journal,2000,97(6):902-909.
    [173]吴瑾,吴胜兴.锈蚀钢筋混凝土受弯构件承载力计算模型[J].建筑技术开发,2002,(5):20-22.
    [174]Almusallam, A. A., Al-Gahtani, A. S., Aziz A. R., etc. Effect of reinforcement corrosion on flexural behavior of concrete slabs[J]. Journal of Materials in Civil Engineering,1996,8(3):123-127.
    [175]惠云玲,李荣,林志伸,等.混凝土基本构件钢筋锈蚀前后性能试验研究[J].工业建筑,1997,27(6):14-18,57.
    [176]牛荻涛,翟彬,王林科,等.锈蚀钢筋混凝土梁的承载力分析[J].建筑结构,1999,(8):23-25.
    [177]金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].工业建筑,2001,31(5):9-11.
    [178]陶峰,王林科,王庆霖,等.服役钢筋混凝土构件承载力的试验研究[J].工业建筑,1996,26(4):17-20,27.
    [179]全明研.老化和损伤的钢筋混凝土构件的性能[J].工业建筑,1990,(2):15-19.
    [180]任宝双,钱稼茹,聂建国.在用钢筋混凝土简支桥面梁受弯承载力估算[J].工业建筑,2000,30(11):29-33.
    [181]范颖芳,周晶,黄振国.受氯化物腐蚀钢筋混凝土构件承载力研究[J].工业建筑,2001,31(5):3-5.
    [182]黄振国,李健美,郭乐工,等.受腐蚀钢筋混凝土材料基本性能与受弯构件的试验研究[J].建筑结构,1998,(12):18-20.
    [183]Ting Shuenn-Chen, Nowak Andrzej S.. Effect of reinforcing steel area loss on flexural behavior of reinforced concrete beams[J]. ACI Structural Journal,1991,88(3): 309-314.
    [184]惠卓,王庆霖.受损构件承载力的计算机模拟[J].西安建筑科技大学学报,1997,29(4):431-434.
    [185]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报,2001,34(3):47-52,96.
    [186]史庆轩,李小健,牛荻涛,等.锈蚀钢筋混凝土偏心受压构件承载力试验研究[J].工业建筑,2001,31(5):14-17.
    [187]曹双寅.混凝土受硫酸和硫酸盐腐蚀的结构非线性分析和耐久性预测[D].上海:同济大学,1988.
    [188]邓冰,竺存宏,丁乃庆,刘富强.天津港高桩码头锈损面板残余承载力试验及估算方法的研究[J].港工技术,1998,(1):25-31.
    [189]Capozucca Roberto, Cerri M. Nilde. Influence of reinforcement corrosion-in the compressive zone-on the behaviour of RC beams[J]. Engineering Structures,2003,25(13): 1575-1583.
    [190]El Maaddawy T., Soudki K., Topper T. Analytical model to predict nonlinear flexural behavior of corroded reinforced concrete beams [J]. ACI Structural Journal,2005,102(4): 550-559.
    [191]Almusallam Abdullah A.. Effect of degree of corrosion on the properties of reinforcing steel bars[J]. Construction and Building Materials,2001,15(8):361-368.
    [192]赵羽习,金伟良.钢筋与混凝土粘结本构关系的试验研究[J].建筑结构学报,2002,23(1):32-37.
    [193]Fu X., Chung D.D.L.. Effect of corrosion on the bond between concrete and steel rebar[J]. Cement and Concrete Research,1997,27(12):1811-1815.
    [194]Almusallam Abdullah A., AI-Gahtani Ahmad S., Aziz Abdur Rauf. Effect of reinforcement corrosion on bond strength[J]. Construction and Building Materials,1996, 10(2):123-129.
    [195]张誉.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [196]王庆霖,池永亮,牛荻涛.锈后无粘结钢筋混凝土梁的模拟试验与分析[J].建筑结构,2001,31(4):51-53,63.
    [197]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):10-13.
    [198]马良喆,陈慧娟,白常举.钢筋锈蚀后力学性能的试验研究[J].施工技术,2000,29(12):43-44.
    [199]袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究[J].工业建筑,2000,30(1):43-46.
    [200]张平生,卢梅,李晓燕.锈损钢筋的力学性能[J].工业建筑,1995,25(9):41-44.
    [201]孙维章,梁宋湘,罗建群.锈蚀钢筋剩余承载能力的研究[J].水利水运工程学报,1993,(2):169-179.
    [202]张伟平.混凝土结构的钢筋锈蚀损伤预测及其耐久性评估[D].上海:同济大学,1999.
    [203]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [204]李明顺.坚持科研促使混凝土结构设计规范水平跻身世界先进行列[J].工程建设标准化,1997,(1):13-16.
    [205]Browne R. D..在海洋和其他氧化环境中钢筋混凝土使用寿命的设计预测[A].海工钢筋混凝土耐久译文集[M].上海:交通部第三航务局科研所,1988.
    [206]张明.结构可靠度分析-方法与程序[M].北京:科学出版社,2009.
    [207]Siemes A. J. M., Rostam S.. Durable safety and serviceability-A performance based design format[R]. IABSE Report 74:Proceedings IABSE colloquium'Basis of design and actions on structures-Background and application of Eurocode 1'. Delft,1996:41-50.
    [208]张海燕.混凝土碳化深度试验研究及其数学模型建立[D].陕西:西北农林科技大学,2006.
    [209]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992,(6):18-22.
    [210]牛荻涛,陈亦奇,于澎.混凝土结构的碳化模式与碳化寿命分析[J].西安建筑科技大学学报,1995,27(4):365-369.
    [211]Tuutti Kyoesti. Corrosion of Steel in Concrete[J]. EUROCOR'77, Eur Congr on Met Corros,92nd Event of the Eur Fed of Corros, London,1977,655-661.
    [212]张宝兰,卫淑珊.华南海港钢筋混凝土暴露十年试验[J].水运工程,1999,(3): 6-13.
    [213]Takeshi Oshiro. Corrosive environment and salt induced damage of RC structures[D], Japan:University of the Ryukyus,1999.
    [214]Thomas M., Bentz E.. Life-365 computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides[M]. St.Paul:Cortec Corporation, 2001.
    [215]Stewart Mark G. Optimisation of durability design specifications for RC structures [A]. Structures Congress 2000:Advanced Technology in Structural Engineering[C]. Philadelphia:ASCE,2004:1-8.
    [216]Hoffman P. C., Weyers R. E.. Probabilistic durability analysis of reinforced concrete bridge decks[A]. Probabilistic Mechanics and Structural Reliability, Proceedings of the Specialty Conference[C]. New York:ASCE,1996:290-293.
    [217]Enright M. P., Frangopol D. M. Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion[J]. Engineering Structures,1998,20(11): 960-971.
    [218]Frederikren J. M.. Chloride threshold values for service life design[A].2nd International RILEM Workshop on Testing and Modeling the Cholride Ingress into Concrete[C]. Cachan:RILEM Publications,2000:397-412.
    [219]Li Y. Effect of spatial variability on maintenance and repair decisions for concrete structures[D]. Netherlands:Delft University Press,2004.
    [220]梁萌,李俊毅,卢秀敏,等.混凝土保护层厚度施工允许偏差[J].中国港湾建设,2006,14(3):9-12.
    [221]Maage M., Poulsen E.. Service life model for concrete exposed to marine environment lightcon. Service Life Models:Instructions on methodology and application of medels for the prediction of the residual service life for classified environment loads and types of structures in Europe[R]. Life Cycle Management of Concrete Infrastructures for Improved Sustainability,2003.
    [222]苏卿,万小梅,赵铁军.氯离子侵蚀耐久寿命影响因素的敏感性分析[J].混凝土2010,(5):16-20,24.
    [223]J McGee R. Modelling of durability performance of tasmanian bridges[J]. In: Melchers R. E., Stewart M. G., editors. ICASP8 applications of statistics and probability in civil engineering,1999, (1):297-306.
    [224]Finn F.. Marine chlorides-A probabilistic approach to derive provision for EN 206-1 [R], Service Life Design of Concrete Structures-From Theory to Standardization. Norway:3rd Duranet Workshop.2001.
    [225]余志武.高速铁路桥梁结构耐久性研究课题结题报告[R].长沙:中南大学土木工程学院,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700