离子液体控制合成纳米材料形貌机理的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体作为一种新型的绿色环保溶剂在无机纳米材料的合成领域得到了广泛的关注。本论文将离子液体的分子特征与材料表面结构特点相结合,采用密度泛函理论(DFT)方法辅助计算,分析得出离子液体在纳米材料合成中可与晶体表面形成氢键及静电作用。离子液体与晶面的这种相互作用改变了正在生长中的纳米晶的表面化学,从而实现了对形貌和微观结构的调控。本论文以离子液体控制TiO2形貌为研究主体,采用第一性原理DFT计算,系统地考察了离子液体与TiO2表面之间相互作用的本质。基于DFT计算的表面能和Wulff定律,得出了离子液体生长环境对纳米材料的形貌影响的因素及其形貌演化规律。在此基础上,研究几何匹配与离子液体选择性吸附的微观联系和规律,提出了几何匹配原则。本文具体的研究内容包括:
     (1)结合周期平板模型,通过密度泛函计算模拟离子液体[Emim]Br在Ti02低指数晶面上的吸附情况,以此来研究离子液体环境对TiO2纳米晶形貌的影响。发现离子液体[Emim]Br优先选择吸附在金红石的(110)面和锐钛矿的(101)面。吸附的离子液体能有效的改变TiO2纳米晶的表面能,使得晶面间的表面能差距明显增大,特别是锐钛矿(101)和(001)之间,以及金红石(110)和(001)之间。这一变化增加了锐钛矿(100)晶面的暴露比例,增加了金红石纳米晶的长径比。这一计算结果已经得到了我们的实验验证。
     (2)利用DFT计算和实验相结合的方法分析了离子液体与晶面的匹配程度对离子液体吸附选择性的影响。首先对一种典型的离子液体[Emim]Br在Ti02表面的吸附做了详细的计算,得到离子液体的最稳定吸附状态。通过吸附热与结构参数比较发现,离子液体[Emim]Br的吸附强度与几何匹配程度存在着一致性。通过该匹配关系选择氨基离子液体辅助成功合成了一维ZnO纳米线。由此得到了一个具有普适的规律:离子液体的几何结构与晶面参数的匹配将有助于我们判断其吸附的选择性。这一几何匹配原则为导向合成纳米材料提供了一个新方法。
     (3)利用离子液体辅助水热方法合成形貌可控的ZnO纳米环并对其荧光性质进行了初步研究。采用简单的水热反应体系,通过选用离子液体[C3mim]Br作为结构导向剂,在适当的pH值、反应温度等条件配合下,成功合成了ZnO纳米环,并且实现了ZnO纳米环产物的长径比可控。结合第一性原理DFT辅助计算,对纳米环的形成机理和[C3mim] Br所发挥的重要作用给出了详细的阐述。纳米环的形成主要源于离子液体[C3mim]Br对ZnO侧面(10-10)的保护作用以及(000-1)晶面上较高的缺陷密度导致该面腐蚀较快而消失,从而形成环状结构。
Ionic liquids as functional solvents have been attracted great attention to prepare inorganic nanomaterials. Recently, ILs have become a kind of fascinating reaction medium component for the synthesis of inorganic materials, because they offer the potential for morphology control that is not possible from other synthetic methods. ILs can form highly ordered structures on the growing crystal facets through their wealth non-covalent interactions, and this modification of surface chemistry and energetics of primary nanocrystals are both important factors for affecting the shape of nanocrystals. On the basis of DFT calculations and experiment, we proposed a new concept, geometric matching principle, in which is meaningful for prediction of the adsorption selectivity of ILs on crystal facets and clarification of the mechanism for shape-controlled chemistry. We think this geometric matching principle opens a new perspective for creating new nanosructures and is a significant step toward the ultimate goal of controlling synthesis of inorganic nanomaterials. The main content is as follows:
     (1) We obtain a profound understanding of ionic liquids affect the morphologies of TiO2nanocrystals. DFT calculations have been performed to study [Emim]Br adsorption of the TiO2surfaces, and the equilibrium crystal shape of TiO2has been predicted using the Wulff construction. The gap of surface energy is shown an obvious increase after [Emim]Br adsorption, especially, between (101) and (001) for anatase, and also between (110) and (001) for rutile. This gap variation results in increasing the (100) facet exposure of anatase, and an increase in the aspect ratio of rutile nanocrystals, which is verified by our experiments.
     (2) We proposed a new concept, geometric matching principle, in which the adsorption site of substrate should not only meet the space requirement for interionic stacking of imidazole cations, but also maximize the interaction of the adsorbed imidazole cations within ILs. In this case, the interaction between adsorbed ILs and substrate is thus maximized. This geometric matching principle is a significant step toward the ultimate goal of controlling synthesis of inorganic nanomaterials.
     (3) Morphology-controllable ZnO nanorings with high crystallinity were synthesized by a simple hydrothermal approach, using ionic liquid as a stabilizing agent or template. The growth mechanism of these ring-like ZnO nanocrystals was explored based on first-principles calculations and a series of controlled experiments where the concentration of [C3mim]Br was tuned. The photoluminescence spectra reveal that the as-prepared ZnO nanorings exhibit blue emission.
引文
[1]Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem. Rev.,2005,105:1025-1102
    [2]张立德.纳米材料.北京:化学工业出版社,2000
    [3]薛宽宏,包建春.纳米化学—纳米体系的化学构筑及应用.北京:化学工业出版社,2006
    [4]Halperin W. Quantum size effects in metal particles. Rev. of Moden Phys.,1986,58(3): 533-606
    [5]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    '[6] Schmid G. Large clusters and colloids, metals in the embryonic state. Chem. Rev.,1992,92(8): 1709-1727
    [7]Tabagi H, Ogawa H, Nakagiri T. Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett.,1990,56(24):2379-2380
    [8]Schmid G Large clusters and colloids, metals in the embryonic state. Chem. Rev.,1992,92(8): 1709-1727
    [9]Ball P, Garwin L. Science at the Atomic Scale. Nature,1992,355(6363):761-766
    [10]Klabunde K J, Stark J, Koper O, et al. Nanocrystals as stoichiometric reagents with unique surface chemistry. J. Phys. Chem.,1996,100(30):12142-12153
    [11]Henglein A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev.,1989,89(8):1861-1873
    [12]张立德,牟季美.物理学与新型(功能)材料专题系列介绍(Ⅲ)开拓原子和物质的中间领域—纳米微粒与纳米固体.1992,3:167-173
    [13]Feldhein S L, Keating C D. Self-assembly of single electron transistors and related devices. Chem. Soc. Rev.,1998,27(1):1-13
    [14]Gates B D, Xu Q, Stewart-M, et al. New approaches to nanofabrication:molding, printing, and other techniques. Chem. Rev.,2005,105:1171-1196
    [15]Xia Y N, Yang P D. One-dimensional nanostructures:synthesis, characterization, and applications. Adv. Mater.,2003,15(5):353-389
    [16]Miller J B, Ko E. Control of mixed oxide textural and acidic properties by the sol-gel method. Catal. Today,1997,35(3):269-292
    [17]Lafond V, Mutin P H, Vioux A. Control of the texture of titania-silica mixed oxides prepared by nonhydrolytic sol-gel. Chem. Mater.,2004,16(25):5380-5386
    [18]Hwang B J, Santhanam R, Liu D G. Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method. J. Power Sources,2001,97-98:443-446
    [19]Lee Y S, Sun Y K, Nahm K S. Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries. Solid State Ionics,1998, 109(3-4):285-294
    [20]贾明君,刘钢,张敏,等.溶胶—凝胶法合成介孔材料的研究进展.黑龙江大学自然科学学报,2008,25:659-764
    [21]张邦维.纳米材料物理基础.北京:化学工业出版社,2009
    [22]蒋绪川.软模板法硫化物纳米材料的合成研究:[博士学位论文].合肥:中国科学技术大学,2001
    [23]Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282(5391):1111-1114
    [24]Cheng F Y, Tao Z L, Liang J. et al. Template-directed materials for rechargeable lithium-ion batteries. Chem Mater.,2008,20(3):667-681
    [25]金俊阳,陆春华,许仲梓.纳米材料模板合成技术研究.材料导报,2007,11:143-147
    [26]Jirage K B, Hulteen J C, Martin C R. Nanotubule-based molecular-filtration membranes. Science,1997,278(5338):655-658
    [27]Brumlik C J, Martin C R. Template synthesis of metal microtubules. J. Am. Chem. Soc., 1991,113(8):3174-3175
    [28]Wirtz M, Martin C R. Template-fabricated gold nanowires and nanotubes. Adv. Mater.,2003, 15(5):455-458
    [29]Menon V P, Martin C R. Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem.,1995,67(13):1920-1928
    [30]Miller S A, Young V Y, Martin C R. Electroosmotic flow in template-prepared carbon nanotube membranes. J. Am. Chem. Soc.,2001,123(49):12335-12342
    [31]Che G, Lakshmi B B, Martin C R, et al. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem. Mater.,1998,10(1):260-267
    [32]Lakshmi B B, Patrissi C J, Martin C R. Sol-gel template synthesis of semiconductor oxide micro-and nanostructures. Chem. Mater.,1997,9(11):2544-2550
    [33]Lakshmi B B, Dorhout P K, Martin C R. Sol-gel template synthesis of semiconductor nanostructures. Chem. Mater.,1997,9(3):857-862
    [34]Martin C R. Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res.,1995,28(2):61-68
    [35]Che G L, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature,1998,393(6683):346-350
    [36]Lin Z, Zhang H, Huang C, et al. Hydrothermal synthesis and crystal structure of [Ni(en)2]6H2[(VO)12O6B18O42]·15H2O. Chinese J. Struct. Chem.,2004,23(1):83-86
    [37]Dias A, Buono V T L, Vilela J M C. Particle size and morphology of hydrothermally processed MnZn ferrites observed by atomic force microscope. J. Mater. Sci.,1997,32: 4715-4718
    [38]Peng Q, Dong Y, Deng Z, et al. Low-temperature elemental-direct-reaction route to Ⅱ-Ⅵ semiconductor nancrystalline ZnSe and CdSe. Inorg. Chem.,2001,40(16):3840-3841
    [39]Riwotzki K, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles:YVO4:Ln (Ln= Eu, Sm, Dy). J. Phys. Chem. B,1998,102(50):10129-10135
    [40]Liu Y, Zhang Y G, Hu Y H, et al. Hydrothermal synthesis of single-crystal β-AgVO3 nanowires and ribbon-like nanowires. Chem. Lett.,2005,34(2):146-147
    [41]Antonietti M, Kuang D B, Smarsly B, et al. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angew. Chem. Int. Ed.2004, 43(38):4988-^992
    [42]Jacob D S, Joseph A, Mallenahalli S P, et al. Rapid Synthesis in Ionic Liquids of Room-Temperature-Conducting Solid Microsilica Spheres. Angew. Chem. Int. Ed.2005, 44(40):6560-6563
    [43]Murakami N, Kurihara Y, Tsubota T, et al. Shape-Controlled Anatase Titanium(IV) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol. J. Phys. Chem. C 2009,113(8):3062-3039
    [44]Valencia H, Kohyama M, Tanaka S, et al. Ab initio study of EMIM-BF4 crystal interaction with a Li (100) surface as a model for ionic liquid/Li interfaces in Li-ion batteries. J. Chem. Phys.2009,131(24):244705-1-11
    [45]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社,2002
    [46]Meng S, Wang E G, Gao S. Water adsorption on metal surfaces:A general picture from density functional theory studies. Phys. Rev. B,2004,69(19):195404
    [47]Michaelides A, Ranea V A, de Andres P L, et al. General Model for Water Monomer Adsorption on Close-Packed Transition and Noble Metal Surfaces. Phys. Rev. Lett,2003, 90(21):216102
    [48]Mavrikakis M, Barteau M A. Oxygenate reaction pathways on transition metal surfaces J. Mol. Catal, A:Chem,1998,131(1-3):135
    [49]Kohn W. Nobel Lecture:Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys.1999,71(5):001253
    [50]Greeley J, N(?)rskov J K, Mavrikakis M. Electronic structure catalysis on metal surfaces. Annu. R ev. Phys. Chem.2002,53:319
    [51]Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B 1999,59(11):7413-7421
    [52]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B.1992,45 (23):13244-13249
    [53]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple, Phys. Rev. Lett.1996,77(18):3865; ibid.1997,78,1396
    [54]Perdew J P, Burke K, Erzenhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996,77(18):3865
    [55]Zhang Y, Yang W. Comment on "Generalized Gradient Approximation Made Simple". Phys. Rev. Lett,1998,80(4):890
    [56]Kittel C. Introduction to Solid State Physics (7th edition), John Willey & Sons Inc
    [57]谢希德,陆栋.固体能带理论.复旦大学出版社
    [58]黄昆,韩汝琦.固体能带理论.复旦大学出版社
    [59]李正中.固体理论.高等教育出版社
    [60]刘恩科,朱秉生,罗晋生.半导体物理学.国防工业出版社
    [61]Vanderbilt D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B,1990,43(11):7892-7895
    [62]Monhorst H J, Pack J D. Special points for Brillouin-zone integrations, Phys. Rev. B,1976, 13(12):5188-5192
    [1]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev.,1995,95(1):69-96
    [2](a) Han X, Kuang Q, Jin M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc.,2009,131(9): 3152-3153; (b) Li J, Wang L W. Shape effects on electronic states of nanocrystals. Nano Lett., 2003,3(10):1357-1363
    [3]Joo J, Kwon S G, Yu T, et al. Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic Sol-Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli. J. Phys. Chem. B,2005,109(32):15297-15302
    [4]Murakami N, Kurihara Y, Tsubota T, et al. Shape-controlled anatase titanium (IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J. Phys. Chem. C,2009,113(8):3062-3039
    [5]Wu B H, Guo G Y, Zheng N F, et al. Nonaqueous production of nanostructured anatase with high-energy facets. J. Am. Chem. Soc.,2008,130(51):17563-17567
    [6]Ma Z, Yu J H, Dai S. Preparation of inorganic materials using ionic liquids. Adv. Mater.,2010, 22(2):261-285
    [7]Jacob D S, Joseph A, Mallenahalli S P, et al. Rapid Synthesis in Ionic Liquids of Room-Temperature-Conducting Solid Microsilica Spheres. Angew. Chem. Int. Ed.,2005, 44(40):6560-6563
    [8]Zheng W J, Liu X D, Yan Z Y, et al. Ionic Liquid-Assisted Synthesis of Large-Scale TiO2 Nanoparticles with Controllable Phase by Hydrolysis of TiCl4. ACS Nano,2009,3(1): 115-122
    [9](a) Nakashima T, Kimizuka N. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids. J. Am. Chem. Soc.,2003,125(21):6386-6387; (b) Zhou Y, Antonietti M. Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J. Am. Chem. Soc.,2003,125(49):14960-14961
    [10]Zhao X W, Jin W Z, Cai J G, et al. Shape-and Size-Controlled Synthesis of Uniform Anatase TiO2 Nanocuboids Enclosed by Active{100} and{001} Facets. Adv. Funct. Mater.,2011, 21(18):3554-3563
    [11]Ding K L, Miao Z J, Liu Z M, et al. Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J. Am. Chem. Soc.,2007,129(20):6362-6363
    [12]Wender H, Feil A F, Diaz L B, et al. Self-organized TiO2 nanotube arrays:synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl. Mater. Interfaces,2011,3(4):1359-1365
    [13](a) Valencia H, Kohyama M, Tanaka S, et al. First-Principles Study of EMIM-FAFSA Molecule Adsorption on a Li (100) Surface as a Model for Li-Ion Battery Electrodes. J. Phys. Chem. C,2012,116(15):8493-8509; (b) Katsyuba S A, Zvereva E E, Yan N, et al. Rationalization of Solvation and Stabilization of Palladium Nanoparticles in Imidazolium-Based Ionic Liquids by DFT and Vibrational Spectroscopy. J. Chem. Phys. Chem.,2012,13(7):1781-1790; (c) Han J W, Li L W, Sholl D S. Density Functional Theory Study of H and CO Adsorption on Alkali-Promoted Mo2C Surfaces. J. Phys. Chem. C,2011, 115(14):6870-6876; (d) Xu H, Reunchan P, Ouyang S X, et al. Anatase TiO2 Single Crystals Exposed with High-Reactive{111} Facets Toward Efficient H2 Evolution. Chem. Mater., 2013,25(3):405-411
    [14]Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature,2008,453(7195):638-641
    [15]Barnard A S, Zapol P, Curtiss L A. Modeling the morphology and phase stability of TiO2 nanocrystals in water. J. Chem. Theory Comput.,2005,1(1):107-116
    [16]Kresse G, Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994,49(20): 14251-14269
    [17]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B,1992,46(11):6671-6687
    [18]Blochl P E. Projector augmented-wave method. Phys. Rev. B,1994,50(24):17953-17979
    [19]Muscat J, Swamy V, Harrison N M. First-principles calculations of the phase stability of TiO2. Phys. Rev. B,2002,65(22):224112-224126
    [20]Levchenko A A, Li G, Boerio-Goates J, et al. TiO2 stability landscape:Polymorphism, surface energy, and bound water energetics. Chem. Mater.2006,18(26):6324-6332
    [21]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys. Rev. B,1976, 13(12):5188-5192
    [22]Wulff, G Z. Kristallogr. Zur frage der geschwindigkeit des wachstums und der auflosung der kristallflachen. Mineral,1901,34,449-530
    [23]Andrade J D, Boles E S, Stassen H. Computational Study of Room Temperature Molten Salts Composed by 1-Alkyl-3-methylimidazolium Cations Force-Field Proposal and Validation. J. Phys. Chem. B,2002,106(51):13344-13351
    [24]Ghatee M H, Moosavi F. Physisorption of Hydrophobic and Hydrophilic 1-Alkyl-3-methylimidazolium Ionic Liquids on the Graphenes. J. Phys. Chem. C,2011, 115(13):5626-5636
    [25]Liu Z P, Huang S P, Wang W C. A refined force field for molecular simulation of imidazolium-based ionic liquids. J. Phys. Chem. B,2004,108(34):12978-12989
    [26]Allen C, Sambasivarao S V, Acevedo O. An Ionic Liquid Dependent Mechanism for Base Catalyzed β-Elimination Reactions from QM/MM Simulations. J. Am. Chem. Soc.2013, 135(3):1065-1072
    [27]Tsuzuki S, Tokuda H, Hayamizu K, et al. Magnitude and directionality of interaction in ion pairs of ionic liquids:Relationship with ionic conductivity. J. Phys. Chem. B,2005,109(34): 16474-16481
    [28]Valencia H, Kohyama M, Tanaka S, et al. Ab initio study of EMIM-BF4 molecule adsorption on Li surfaces as a model for ionic liquid/Li interfaces in Li-ion batteries. Phys. Rev. B,2008, 78(20):205402-1-13
    [29]Barnard A S, Xu H F. An environmentally sensitive phase map of titania nanocrystals. ACS Nano,2008,2(11):2237-2242
    [30]Zanella R, Giorgio S, Henry C R, et al. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B,2002,106(31):7634-7642
    [31]Pensado A S, Padua A A H. Solvation and Stabilization of Metallic Nanoparticles in Ionic Liquids. Angew. Chem. Int. Ed.,2011,50(37):8683-8687
    [32]Yamasaki K, Kigawa T, Inoue M, et al. Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. J. Mol. Biol.,2005,348(2):253-264
    [33]Martins J F M, Ferreira A R, Konstantinova E, et al. Interactions between 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and γ-Al2O3 (100) surface calculated by density functional theory. J. Quantum Chem.,2012,112(19):3234-3239
    [34]Ninham B W. On progress in forces since the DLVO theory. Adv. Colloid Interface Sci.,1999, 83(1-3):1-17
    [35]Li Y F, Liu Z P, Liu L L, et al. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. J. Am. Chem. Soc.,2010,132(37):13008-13015
    [36]Barnard A S, Zapol P, Curtiss L A. Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions, Surf. Science,2005,582(1-3):173-188
    [37]Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep.,2003,48(5-8):53-229
    [38]Lazzeri M, Vittadini A, Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B,2001,63(15):155409-155418
    [39]Penn R L, Banfield J F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases:Insights from nanocrystalline TiO2. Am. Mineral.1998, 83(9-10):1077-1082
    [40]Barnard A S, Curtiss L A. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano lett.,2005,5(7):1261-1266
    [41]Dai Y Q, Cobley C M, Zeng J, et al. Synthesis of anatase TiO2 nanocrystals with exposed {001} facets. Nano Lett.,2009,9(6):2455-2459
    [42]Xu J H, Freeman A. Phase stability and electronic structure of ScAl3 and ZrAl3 and of Sc-stabilized cubic ZrAl3 precipitates. Phys. Rev. B,1990,41(18):12553-12561
    [43]Andrews L, Wang X F. The infrared spectrum of A12H6 in solid hydrogen. Science,2003, 299(5615):2049-2052
    [1]Antonietti M, Kuang D B, Smarsly B, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed.,2004, 43(38):4988-4992
    [2]Jacob D S, Joseph A, Mallenahalli S P, et al. Rapid Synthesis in Ionic Liquids of Room-Temperature-Conducting Solid Microsilica Spheres. Angew. Chem. Int. Ed.2005,44(40): 6560-6563
    [3]Ma Z, Yu J H, Dai S. Preparation of inorganic materials using ionic liquids. Adv. Mater.,2010, 22(2):261-285
    [4]Martins M J F, Ferreira A R, Konstantinova E, et al. Interactions between 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and γ-Al2O3 (100) surface calculated by density functional theory. Int. J. Quantum Chem.,2012,112(19):3234-3239
    [5]Zheng W J, Liu X D, Yan Z Y, et al. Ionic Liquid-Assisted Synthesis of Large-Scale TiO2 Nanoparticles with Controllable Phase by Hydrolysis of TiCl4.ACS Nano,2009,3(1): 115-122
    [6]Murakami N, Kurihara Y, Tsubota T, et al. Shape-Controlled Anatase Titanium(IV) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol. J. Phys. Chem. C,2009,113(8):3062-3039
    [7]Zanella R, Giorgio S, Henry C R, et al. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B,2002,106(31):7634-7642
    [8]Ninham B W. On progress in forces since the DLVO theory. Adv. Colloid Interface Sci.,1999, 83(1-3):1-17
    [9]Zhao Z Y, Li Z S, Zou Z G. Structure and Properties of Water on the Anatase TiO2 (101) Surface:From Single-Molecule Adsorption to Interface Formation. J. Phys. Chem. C,2012, 116(20):7430-7441
    [10]Pensado A S, Padua A A H. Solvation and Stabilization of Metallic Nanoparticles in Ionic Liquids. Angew. Chem. Int. Ed.,2011,50(37):8683-8687
    [11]Schrekker H S, Gelesky M A, Stracke M P, et al. Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold (0) nanoparticles. J. Colloid Interface Sci.,2007,316(1):189-195
    [12]Barnard A S, Zapol P, Curtiss L A. Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions. Surface Science,2005,582(1-3):173-188
    [13]Wulff G, Kristallogr Z. Zur Frage des Geschwindigkeit des Wachstums und der Auflo sung der Krystallflachen. Mineral.1901,34,449-531
    [14]Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework. Nature,1995,378,703-706
    [15]Valencia H, Kohyama M, Tanaka S, et al. Ab initio study of EMIM-BF crystal interaction with a Li (100) surface as a model for ionic liquid/Li interfaces in Li-ion batteries. J. Chem. Phys.,2009,131(24):244705-1-11
    [16]Yan T Y, Li S, Jiang W, et al. Structure of the Liquid-Vacuum Interface of Room-Temperature Ionic Liquids:A Molecular Dynamics Study. J. Phys. Chem. B,2006,110(4):1800-1806
    [17]Kaper H, Endres F, Djerdj I, et al. Direct Low-Temperature Synthesis of Rutile Nanostructures in Ionic Liquids. Small,2007,3(10):1753-1763
    [18]Zhao X W, Jin W Z, Qi L M. Shape-and Size-Controlled Synthesis of Uniform Anatase TiO2 Nanocuboids Enclosed by Active {100} and {001} Facets. Adv. Funct. Mater.,2011,21(18): 3554-3563
    [19]Wang X D, Zhou J, Song J H, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett.,2006,6(12):2768-2772
    [20]Kilin D S, Prezhdo O V, Xia Y N. Shape-controlled synthesis of silver nanoparticles:Ab initio study of preferential surface coordination with citric acid. Chem. Phys. Lett.,2008, 458(1-3):113-116
    [21]Al-Saidi W A, Feng H J, Fichthorn K A. Adsorption of Polyvinylpyrrolidone on Ag Surfaces: Insight into a Structure-Directing Agent. Nano Lett.,2012,12(2):997-1001
    [22]Andeen D, Kim J H, Lange F F, et al. Lateral epitaxial overgrowth of ZnO in water at 90℃. Adv. Funct. Mater.,2006,16(6):799-804
    [23]Torbrugge S, Ostendorf F, Reichling M. Stabilization of Zinc-terminated ZnO (0001) by a modified surface stoichiometry. J. Phys. Chem. C,2009,113(12):4909-4914
    [24]Zuo A, Hu P, Bai L Y, et al. Synthesis of tunable 3D ZnO architectures assemblied with nanoplates. Cryst. Res. Technol.2009,44(6):613-618
    [25]Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature,2008,453(7195):638-641
    [26]Sun Y, Li C S, Zheng W J. Ionic Liquid-Assisted Hydrothermal Synthesis of Monoclinic Structured LaVO4 Nanowires through Topotactic Transformation from Hexagonal La(OH)3 Nanowires. Crystal. Growth & Des.,2010,10(1):262-267
    [27]Liu X D, Duan X C, Peng P, et al. Hydrothermal synthesis of copper selenides with controllable phases and morphologies from an ionic liquid precursor. Nanoscale,2011,3(12): 5090-5095
    [28]Zhou X, Xie Z X, Jiang Z Y, et al. Formation of ZnO hexagonal micro-pyramids:a successful control of the exposed polar surfaces with the assistance of an ionic liquid. Chem. Commun., 2005, (44),5572-5574
    [1]Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys.,2005,98(4):041301-1-103
    [2]Choi K S, Lichtenegger H C, Stucky G D, et al. Electrochemical Synthesis of Nanostructured ZnO Films Utilizing Self-Assembly of Surfactant Molecules at Solid-Liquid Interfaces. J. Am. Chem. Soc.,2002,124(42):12402-12403
    [3]Zhang J, Sun L, Yin J, et al. Control of ZnO Morphology via a Simple Solution Route. Chem. Mater.,2002,14(10):4172-4177
    [4]Gao P X, Wang Z L, Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals. J. Am. Chem. Soc.2003,125(37):11299-11305
    [5]Wang X D, Summers C J, Wang Z L. Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Lett.,2004,4(3): 423-426
    [6]Hu J Q, Bando Y, Zhan J H, et al. Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets. Appl. Phys. Lett.,2003,83(21):4414-4416
    [7]Lao J Y, Wen J G, Ren Z F. Hierarchical ZnO Nanostructures. Nano Lett.,2002,2(11): 1287-1291
    [8]Kurtz M, Strunk J, Hinrichsen O, et al. Active Sites on Oxide Surfaces:ZnO-Catalyzed Synthesis of Methanol from CO and H2 Angew. Chem. Int. Ed.,2005,44(18):2790-2794
    [9]Wang X, Hu P, Yuan F L,et al. Preparation and Characterization of ZnO Hollow Spheres and ZnO-Carbon Composite Materials Using Colloidal Carbon Spheres as Templates. J. Phys. Chem. C,2007,111(18):6706-6712
    [10]Tripathy N, Ahmad R, Jeong H S, et al. Time-Dependent Control of Hole-Opening Degree of Porous ZnO Hollow Microspheres. Inorg. Chem.,2012,51 (2):1104-1110; (b) Wang X, Liao M Y, Zhong Y T, et al. ZnO Hollow Spheres with Double-Yolk Egg Structure for High-Performance Photocatalysts and Photodetectors. Adv. Mater.,2012,24(25):3421-3425
    [11]Deng S Z, Fan H M, Wang M, et al. Thiol-Capped ZnO Nanowire/Nanotube Arrays with Tunable Magnetic Properties at Room Temperature. Acs Nano.,2010,4(1):495-505
    [12]Kim S W, Kim M, Lee W Y, et al. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. J. Am. Chem. Soc.,2002,124(26):7642-7643; (b) Lian J B, Ding Z M, Kwong F L, et al. Template-free hydrothermal synthesis of hexagonal ZnO micro-cups and micro-rings assembled by nanoparticles. CrystEngComm,2011,13:4820-4822
    [13]Caruso F, Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science 1998,282(5391):1111-1114
    [14]Guan H, Wang X, Li H, et al. CoO octahedral nanocages for high-performance lithium ion batteries. Chem. Commun.2012,48:4878-4880
    [15]Y. G. Sun, Y. N. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002,298,2176-2179
    [16]Wang X, Zhong Y, Zhai T, et al. Multishelled Co3O4-Fe3O4 hollow spheres with even magnetic phase distribution:Synthesis, magnetic properties and their application in water treatment. J. Mater. Chem.,2011,21(44):17680-17687
    [17]Zhu K, Vinzant T B, Neale N R, et al. Removing Structural Disorder from Oriented TiO2 Nanotube Arrays:Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells. Nano Lett.,2007,7(12):3739-3746
    [18]Zhai T Y, Li L, Ma Y, et al. One-dimensional inorganic nanostructures:synthesis, field-emission and photodetection. Chem. Soc. Rev.,2011,40:2986-3004
    [19]Peng Y, Xu A W, Deng B, et al. Polymer-Controlled Crystallization of Zinc Oxide Hexagonal Nanorings and Disks. J. Phys. Chem. B,2006,110(7),2988-2993
    [20]Boal A K, Ilhan F, DeRouchey J E, et al. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature,2000,404,746-748
    [21]Li F, Ding Y, Gao P X, et al. Single-Crystal Hexagonal Disks and Rings of ZnO: Low-Temperature, Large-Scale Synthesis and Growth Mechanism. Angew. Chem. Int. Ed., 2004,43(39):5238-5242
    [22]S. Jung, W. Cho, H. J. Lee, M. Oh, Self-Template-Directed Formation of Coordination-Polymer Hexagonal Tubes and Rings, and their Calcination to ZnO Rings. Angew. Chem. Int. Ed.,2009,48(8):1459-1462
    [23]Antonietti M, Kuang D B, Smarsly B, et al. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angew. Chem. Int. Ed.,2004, 43(38):4988-4992
    [24]Jacob D S, Joseph A, Mallenahalli S P, et al. Rapid Synthesis in Ionic Liquids of Room-Temperature-Conducting Solid Microsilica Spheres. Angew. Chem. Int. Ed.,2005, 44(40):6560-6563
    [25]Nakashima T, Kimizuka N. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids. J. Am. Chem. Soc.,2003,125(21):6386-6387
    [26]X. D. Liu, J. M. Ma, P. Peng, W. J. Zheng, One-Pot Hydrothermal Synthesis of ZnSe Hollow Nanospheres from an Ionic Liquid Precursor. Langmuir,2010,26(12):9968-9973
    [27]Taubert A. (Sub)Micron CaF2 Cubes and Hollow Rods From Ionic Liquid Emulsions. Acta Chim. Slov.,2005,52:168-170
    [28]Du J M, Liu Z M, Li Z H, et al. Mesoporous TiO2 with wormlike structure synthesized via interfacial surfactant assisted route. Micropor. Mesopor. Mat.,2005,83(1-3):145-149
    [29]Vitz J, Erdmenger T, Haensch C, et al. Extended dissolution studies of cellulose in imiduazolim based ionic liquids. Green Chem.,2009,11,417-424
    [30]Washington A L, Strouse G F. Microwave Synthetic Route for Highly Emissive TOP/TOP-S Passivated CdS Quantum Dots. Chem. Mater.,2009,21(15):3586-3592
    [31]Puzder A, Williamson A J, Zaitseva N, et al. The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations. Nano Lett.,2004,4(12): 2361-2365
    [32]Andeen D, Kim J H, Lange F F, et al. Lateral Epitaxial Overgrowth of ZnO in Water at 90℃. Adv. Funct. Mater.,2006,16(6):799-804
    [33]Ninham B W. On progress in forces since the DLVO theory. Adv. Colloid Interface Sci., 1999,83(1-3):1-17
    [34]Pensado A S, Padua A A H. Solvation and Stabilization of Metallic Nanoparticles in Ionic Liquids. Angew. Chem. Int. Ed.,2011,50(37):8683-8687
    [35]Valencia H, Kohyama M, Tanaka S, et al. Ab initio study of EMIM-BF4 molecule adsorption on Li surfaces as a model for ionic liquid/Li interfaces in Li-ion batteries. Phys. Rev. B,2008, 78(20):205402-1-13
    [36]RFW. Bader, Atoms in Molecules:A Quantum Theory 1990 (New York:Oxford University Press)
    [37]Wulff G, Kristallogr Z. Zur frage der geschwindigkeit des wachsthums und der auflosung der krystallflachen. Mineral.,1901,34:449-530
    [38]Oliver P M, Watson G W, Kelsey E T, et al. Atomistic simulation of the surface structure of the TiO2 polymorphs rutileand anatase. J. Mater. Chem.,1997,7,563-568
    [39]Jun Y W, Casula M F, Sim J H, et al. Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2 Nanocrystals. J. Am. Chem. Soc.,2003, 125(51):15981-15985
    [40]Li H X, Xia M X, Dai G Z, et al. Growth of Oriented Zinc Oxide Nanowire Array into Novel Hierarchical Structures in Aqueous Solutions. J. Phys. Chem. C,2008,112(45): 17546-17553
    [41]Wagner M, Stanga O, Schroer, W. The liquid-liquid coexistence of binary mixtures of the room temperature ionic liquid 1-methyl-3-hexylimidazolium tetrafluoroborate with alcohols Phys. Chem. Chem. Phys.,2004,6:4421-4431
    [42]Kozhummal R, Yang Y, Guder F, et al. Homoepitaxial Branching:An Unusual Polymorph of Zinc Oxide Derived from Seeded Solution Growth. Nano Lett.,2012,8,7133-7141
    [43]Morin S. A, Bierman M J, Tong J, et al. Mechanism and Kinetics of Spontaneous Nanotube Growth Driven by Screw Dislocations. Science,2010,328(5977):476-480
    [44]Bateman T B. Homoepitaxial Branching:An Unusual Polymorph of Zinc Oxide Derived from Seeded Solution Growth. J. Appl. Phys.,1962,33:3309-3312
    [45]Abrahams S C, Bernstein J L. Remeasurement of the structure of Hexagonal ZnO. Acta Cryst. B,1969,25:1233-1236
    [46]Hong H, Shi J, Yang Y N, et al. Cancer-Targeted Optical Imaging with Fluorescent Zinc Oxide Nanowires. Nano Lett.,2011,11(9):3744-3750
    [47]L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, A. Deepthy, B. Krishnan, Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J. Appl. Phys.,2007,102(6): 063524-063530
    [1]Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem. Rev.,2005,105:1025-1102
    [2]张立德。纳米材料.北京:化学工业出版社,2000
    [3]薛宽宏,包建春.纳米化学一纳米体系的化学构筑及应用.北京:化学工业出版社,2006
    [4]Halperin W. Quantum size effects in metal particles. Rev. of Moden Phys.,1986,58(3): 533-606
    [5]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [6]Schmid G. Large clusters and colloids, metals in the embryonic state. Chem. Rev.,1992,92(8): 1709-1727
    [7]Tabagi H, Ogawa H, Nakagiri T. Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett.,1990,56(24):2379-2380
    [8]Schmid G. Large clusters and colloids, metals in the embryonic state. Chem. Rev.,1992,92(8): 1709-1727
    [9]Ball P, Garwin L. Science at the Atomic Scale. Nature,1992,355(6363):761-766
    [10]Klabunde K J, Stark J, Koper O, et al. Nanocrystals as stoichiometric reagents with unique surface chemistry. J. Phys. Chem.,1996,100(30):12142-12153
    [11]Henglein A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev.,1989,89(8):1861-1873
    [12]张立德,牟季美.物理学与新型(功能)材料专题系列介绍(Ⅲ)开拓原子和物质的中间领域—纳米微粒与纳米固体.1992,3:167-173
    [13]Feldhein S L, Keating C D. Self-assembly of single electron transistors and related devices. Chem. Soc. Rev.,1998,27(1):1-13
    [14]Gates B D, Xu Q, Stewart M, et al. New approaches to nanofabrication:molding, printing, and other techniques. Chem. Rev.,2005,105:1171-1196
    [15]Xia Y N, Yang P D. One-dimensional nanostructures:synthesis, characterization, and applications. Adv. Mater.,2003,15(5):353-389
    [16]Miller J B, Ko E. Control of mixed oxide textural and acidic properties by the sol-gel method. Catal. Today,1997,35(3):269-292
    [17]Lafond V, Mutin P H, Vioux A. Control of the texture of titania-silica mixed oxides prepared by npnhydrolytic sol-gel. Chem. Mater.,2004,16(25):5380-5386
    [18]Hwang B J, Santhanam R, Liu D G. Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method. J. Power Sources,2001,97-98:443-446
    [19]Lee Y S, Sun Y K, Nahm K S. Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries. Solid State Ionics,1998, 109(3-4):285-294
    [20]贾明君,刘钢,张敏,等.溶胶—凝胶法合成介孔材料的研究进展.黑龙江大学自然科学学报,2008,25:659-764
    [21]张邦维.纳米材料物理基础.北京:化学工业出版社,2009
    [22]蒋绪川.软模板法硫化物纳米材料的合成研究:[博士学位论文].合肥:中国科学技术大学,2001
    [23]Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282(5391):1111-1114
    [24]Cheng F Y, Tao Z L, Liang J. et al. Template-directed materials for rechargeable lithium-ion batteries. Chem Mater.,2008,20(3):667-681
    [25]金俊阳,陆春华,许仲梓.纳米材料模板合成技术研究.材料导报,2007,11:143-147
    [26]Jirage K. B, Hulteen J C, Martin C R. Nanotubule-based molecular-filtration membranes. Science,1997,278(5338):655-658
    [27]Brumlik C J, Martin C R. Template synthesis of metal microtubules. J. Am. Chem. Soc., 1991,113(8):3174-3175
    [28]Wirtz M, Martin C R. Template-fabricated gold nanowires and nanotubes. Adv. Mater.,2003, 15(5):455-458
    [29]Menon V P, Martin C R. Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem.,1995,67(13):1920-1928
    [30]Miller S A, Young V Y, Martin C R. Electroosmotic flow in template-prepared carbon nanotube membranes. J. Am. Chem. Soc.,2001,123(49):12335-12342
    [31]Che G, Lakshmi B B, Martin C R, et al. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem. Mater.,1998,10(1):260-267
    [32]Lakshmi B B, Patrissi C J, Martin C R. Sol-gel template synthesis of semiconductor oxide micro-and nanostructures. Chem. Mater.,1997,9(11):2544-2550
    [33]Lakshmi B B, Dorhout P K, Martin C R. Sol-gel template synthesis of semiconductor nanostructures. Chem. Mater.,1997,9(3):857-862
    [34]Martin C R. Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res.,1995,28(2):61-68
    [35]Che G L, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature,1998,393(6683):346-350
    [36]Lin Z, Zhang H, Huang C, et al. Hydrothermal synthesis and crystal structure of [Ni(en)2]6H2[(VO)12O6B18O42]·15H2O. Chinese J. Struct. Chem.,2004,23(1):83-86
    [37]Dias A, Buono V T L, Vilela J M C. Particle size and morphology of hydrothermally processed MnZn ferrites observed by atomic force microscope. J. Mater. Sci.,1997,32: 4715-4718
    [38]Peng Q, Dong Y, Deng Z, et al. Low-temperature elemental-direct-reaction route to II-VI semiconductor nancrystalline ZnSe and CdSe. Inorg. Chem.,2001,40(16):3840-3841
    [39]Riwotzki K, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles:YVO4:Ln (Ln= Eu, Sm, Dy). J. Phys. Chem. B,1998,102(50):10129-10135
    [40]Liu Y, Zhang Y G, Hu Y H, et al. Hydrothermal synthesis of single-crystal β-AgVO3 nanowires and ribbon-like nanowires. Chem. Lett.,2005,34(2):146-147
    [41]Antonietti M, Kuang D B, Smarsly B, et al. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angew. Chem. Int. Ed.2004, 43(38):4988-4992
    [42]Jacob D S, Joseph A, Mallenahalli S P, et al. Rapid Synthesis in Ionic Liquids of Room-Temperature-Conducting Solid Microsilica Spheres. Angew. Chem. Int. Ed.2005, 44(40):6560-6563
    [43]Murakami N, Kurihara Y, Tsubota T, et al. Shape-Controlled Anatase Titanium(IV) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol. J. Phys. Chem. C 2009,113(8):3062-3039
    [44]Valencia H, Kohyama M, Tanaka S, et al. Ab initio study of EMIM-BF4 crystal interaction with a Li (100) surface as a model for ionic liquid/Li interfaces in Li-ion batteries. J. Chem. Phys.2009,131(24):244705-1-11
    [45]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社,2002
    [46]Meng S, Wang E G, Gao S. Water adsorption on metal surfaces:A general picture from density functional theory studies. Phys. Rev. B,2004,69(19):195404
    [47]Michaelides A, Ranea V A, de Andres P L, et al. General Model for Water Monomer Adsorption on Close-Packed Transition and Noble Metal Surfaces. Phys. Rev. Lett,2003, 90(21):216102
    [48]Mavrikakis M, Barteau M A. Oxygenate reaction pathways on transition metal surfaces J. Mol. Catal, A:Chem,1998,131(1-3):135
    [49]Kohn W. Nobel Lecture:Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys.1999,71(5):001253
    [50]Greeley J, N(?)rskov J K, Mavrikakis M. Electronic structure catalysis on metal surfaces. Annu. R ev. Phys. Chem.2002,53:319
    [51]Hammer B, Hansen L B, N(?)rskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B 1999,59(11):7413-7421
    [52]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B.1992,45 (23):13244-13249
    [53]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple, Phys. Rev. Lett.1996,77(18):3865; ibid.1997,78,1396
    [54]Perdew J P, Burke K, Erzenhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996,77(18):3865
    [55]Zhang Y, Yang W. Comment on "Generalized Gradient Approximation Made Simple". Phys. Rev. Lett,1998,80(4):890
    [56]Kittel C. Introduction to Solid State Physics (7th edition), John Willey & Sons Inc
    [57]谢希德,陆栋.固体能带理论.复旦大学出版社
    [58]黄昆,韩汝琦.固体能带理论.复旦大学出版社
    [59]李正中.固体理论.高等教育出版社
    [60]刘恩科,朱秉生,罗晋生.半导体物理学.国防工业出版社
    [61]Vanderbilt D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B,1990,43(11):7892-7895
    [62]Monhorst H J, Pack J D. Special points for Brillouin-zone integrations, Phys. Rev. B,1976, 13(12):5188-5192
    [63]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev.,1995,95(1):69-96
    [64](a) Han X, Kuang Q, Jin M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc.,2009,131(9): 3152-3153; (b) Li J, Wang L W. Shape effects on electronic states of nanocrystals. Nano Lett., 2003,3(10):1357-1363
    [65]Joo J, Kwon S G, Yu T, et al. Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic Sol-Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli. J. Phys. Chem. B,2005,109(32):15297-15302
    [66]Murakami N, Kurihara Y, Tsubota T, et al. Shape-controlled anatase titanium (IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J. Phys. Chem. C,2009,113(8):3062-3039
    [67]Wu B H, Guo G Y, Zheng N F, et al. Nonaqueous production of nanostructured anatase with high-energy facets. J. Am. Chem. Soc.,2008,130(51):17563-17567
    [68]Ma Z, Yu J H, Dai S. Preparation of inorganic materials using ionic liquids. Adv. Mater., 2010,22(2):261-285
    [69]Jacob D S, Joseph A, Mallenahalli S P, et al. Rapid Synthesis in Ionic Liquids of Room-Temperature-Conducting Solid Microsilica Spheres. Angew. Chem. Int. Ed.,2005, 44(40):6560-6563
    [70]Zheng W J, Liu X D, Yan Z Y, et al. Ionic Liquid-Assisted Synthesis of Large-Scale TiO2 Nanoparticles with Controllable Phase by Hydrolysis of TiCl4. ACS Nano,2009,3(1): 115-122
    [71](a) Nakashima T, Kimizuka N. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids. J. Am. Chem. Soc.,2003,125(21):6386-6387; (b) Zhou Y, Antonietti M. Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J. Am. Chem. Soc.,2003,125(49):14960-14961
    [72]Zhao X W, Jin W Z, Cai J G, et al. Shape-and Size-Controlled Synthesis of Uniform Anatase TiO2 Nanocuboids Enclosed by Active{100} and{001} Facets. Adv. Funct. Mater.,2011, 21(18):3554-3563
    [73]Ding K. L, Miao Z J, Liu Z M, et al. Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J. Am. Chem. Soc.,2007,129(20):6362-6363
    [74]Wender H, Feil A F, Diaz L B, et al. Self-organized TiO2 nanotube arrays:synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl. Mater. Interfaces,2011,3(4):1359-1365
    [75](a) Valencia H, Kohyama M, Tanaka S, et al. First-Principles Study of EMIM-FAFSA Molecule Adsorption on a Li (100) Surface as a Model for Li-Ion Battery Electrodes. J. Phys. Chem. C,2012,116(15):8493-8509; (b) Katsyuba S A, Zvereva E E, Yan N, et al. Rationalization of Solvation and Stabilization of Palladium Nanoparticles in Imidazolium-Based Ionic Liquids by DFT and Vibrational Spectroscopy. J. Chem. Phys. Chem.,2012,13(7):1781-1790; (c) Han J W, Li L W, Sholl D S. Density Functional Theory Study of H and CO Adsorption on Alkali-Promoted Mo2C Surfaces. J. Phys. Chem. C,2011, 115(14):6870-6876; (d) Xu H, Reunchan P, Ouyang S X, et al. Anatase TiO2 Single Crystals Exposed with High-Reactive{111} Facets Toward Efficient H2 Evolution. Chem. Mater., 2013,25(3):405-411
    [76]Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature,2008,453(7195):638-641
    [77]Barnard A S, Zapol P, Curtiss L A. Modeling the morphology and phase stability of TiO2 nanocrystals in water. J. Chem. Theory Comput.,2005,1(1):107-116
    [78]Kresse G, Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994,49(20): 14251-14269
    [79]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B,1992,46(11):6671-6687
    [80]Blochl P E. Projector augmented-wave method. Phys. Rev. B,1994,50(24):17953-17979
    [81]Muscat J, Swamy V, Harrison N M. First-principles calculations of the phase stability of TiO2. Phys. Rev. B,2002,65(22):224112-224126
    [82]Levchenko A A, Li G, Boerio-Goates J, et al. TiO2 stability landscape:Polymorphism, surface energy, and bound water energetics. Chem. Mater.2006,18(26):6324-6332
    [83]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys. Rev. B,1976, 13(12):5188-5192
    [84]Wulff, G Z. Kristallogr. Zur frage der geschwindigkeit des wachstums und der auflosung der kristallflachen. Mineral,1901,34,449-530
    [85]Andrade J D, Boles E S, Stassen H. Computational Study of Room Temperature Molten Salts Composed by 1-Alkyl-3-methylimidazolium Cations Force-Field Proposal and Validation. J. Phys. Chem. B,2002,106(51):13344-13351
    [86]Ghatee M H, Moosavi F. Physisorption of Hydrophobic and Hydrophilic 1-Alkyl-3-methylimidazolium Ionic Liquids on the Graphenes. J. Phys. Chem. C,2011, 115(13):5626-5636
    [87]Liu Z P, Huang S P, Wang W C. A refined force field for molecular simulation of imidazolium-based ionic liquids. J. Phys. Chem. B,2004,108(34):12978-12989
    [88]Allen C, Sambasivarao S V, Acevedo O. An Ionic Liquid Dependent Mechanism for Base Catalyzed (3-Elimination Reactions from QM/MM Simulations. J. Am. Chem. Soc.2013, 135(3):1065-1072
    [89]Tsuzuki S, Tokuda H, Hayamizu K, et al. Magnitude and directionality of interaction in ion pairs of ionic liquids:Relationship with ionic conductivity. J. Phys. Chem. B,2005,109(34): 16474-16481
    [90]Valencia H, Kohyama M, Tanaka S, et al. Ab initio study of EMIM-BF4 molecule adsorption on Li surfaces as a model for ionic liquid/Li interfaces in Li-ion batteries. Phys. Rev. B,2008, 78(20):205402-1-13
    [91]Barnard A S, Xu H F. An environmentally sensitive phase map of titania nanocrystals. ACS Nano,2008,2(11):2237-2242
    [92]Zanella R, Giorgio S, Henry C R, et al. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B,2002,106(31):7634-7642
    [93]Pensado A S, Padua A A H. Solvation and Stabilization of Metallic Nanoparticles in Ionic Liquids. Angew. Chem. Int. Ed.,2011,50(37):8683-8687
    [94]Yamasaki K, Kigawa T, Inoue M, et al. Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. J. Mol. Biol.,2005,348(2):253-264
    [95]Martins J F M, Ferreira A R, Konstantinova E, et al. Interactions between 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and γ-Al2O3 (100) surface calculated by density functional theory. J. Quantum Chem.,2012,112(19):3234-3239
    [96]Ninham B W. On progress in forces since the DLVO theory. Adv. Colloid Interface Sci.,1999, 83(1-3):1-17
    [97]Li Y F, Liu Z P, Liu L L, et al. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. J. Am. Chem. Soc.,2010,132(37):13008-13015
    [98]Barnard A S, Zapol P, Curtiss L A. Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions, Surf. Science,2005,582(1-3):173-188
    [99]Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep.,2003,48(5-8):53-229
    [100]Lazzeri M, Vittadini A, Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B,2001,63(15):155409-155418
    [101]Penn R L, Banfield J F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases:Insights from nanocrystalline TiO2. Am. Mineral.1998, 83(9-10):1077-1082
    [102]Barnard A S, Curtiss L A. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano lett.,2005,5(7):1261-1266
    [103]Dai Y Q, Cobley C M, Zeng J, et al. Synthesis of anatase TiO2 nanocrystals with exposed {001} facets. Nano Lett.,2009,9(6):2455-2459
    [104]Xu J H, Freeman A. Phase stability and electronic structure of ScAl3 and ZrAl3 and of Sc-stabilized cubic ZrAl3 precipitates. Phys. Rev. B,1990,41(18):12553-12561
    [105]Andrews L, Wang X F. The infrared spectrum of A12H6 in solid hydrogen. Science,2003, 299(5615):2049-2052
    [106]Antonietti M, Kuang D B, Smarsly B, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed.,2004, 43(38):4988-4992
    [107]Jacob D S, Joseph A, Mallenahalli S P, et al. Rapid Synthesis in Ionic Liquids of Room-Temperature-Conducting Solid Microsilica Spheres. Angew. Chem. Int. Ed.2005,44(40): 6560-6563
    [108]Ma Z, Yu J H, Dai S. Preparation of inorganic materials using ionic liquids. Adv. Mater., 2010,22(2):261-285
    [109]Martins M J F, Ferreira A R, Konstantinova E, et al. Interactions between l-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and γ-Al2O3 (100) surface calculated by density functional theory. Int. J. Quantum Chem.,2012,112(19):3234-3239
    [110]Zheng W J, Liu X D, Yan Z Y, et al. Ionic Liquid-Assisted Synthesis of Large-Scale TiO2 Nanoparticles with Controllable Phase by Hydrolysis of TiCl4. ACS Nano,2009,3(1): 115-122
    [111]Murakami N, Kurihara Y, Tsubota T, et al. Shape-Controlled Anatase Titanium(IV) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol. J. Phys. Chem. C,2009,113(8):3062-3039
    [112]Zanella R, Giorgio S, Henry C R, et al. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B,2002,106(31):7634-7642
    [113]Ninham B W. On progress in forces since the DLVO theory. Adv. Colloid Interface Sci., 1999,83(1-3):1-17
    [114]Zhao Z Y, Li Z S, Zou Z G Structure and Properties of Water on the Anatase TiO2 (101) Surface:From Single-Molecule Adsorption to Interface Formation. J. Phys. Chem. C,2012, 116(20):7430-7441
    [115]Pensado A S, Padua A A H. Solvation and Stabilization of Metallic Nanoparticles in Ionic Liquids. Angew. Chem. Int. Ed.,2011,50(37):8683-8687
    [116]Schrekker H S, Gelesky M A, Stracke M P, et al. Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold (0) nanoparticles. J. Colloid Interface Sci.,2007,316(1):189-195
    [117]Barnard A S, Zapol P, Curtiss L A. Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions. Surface Science,2005,582(1-3):173-188
    [118]Wulff G, Kristallogr Z. Zur Frage des Geschwindigkeit des Wachstums und der Auflo sung der Krystallflachen. Mineral.1901,34,449-531
    [119]Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework. Nature,1995,378,703-706
    [120]Valencia H, Kohyama M, Tanaka S, et al. Ab initio study of EMIM-BF crystal interaction with a Li (100) surface as a model for ionic liquid/Li interfaces in Li-ion batteries. J. Chem. Phys.,2009,131(24):244705-1-11
    [121]Yan T Y, Li S, Jiang W, et al. Structure of the Liquid-Vacuum Interface of Room-Temperature Ionic Liquids:A Molecular Dynamics Study. J. Phys. Chem. B,2006, 110(4):1800-1806
    [122]Kaper H, Endres F, Djerdj I, et al. Direct Low-Temperature Synthesis of Rutile Nanostructures in Ionic Liquids. Small,2007,3(10):1753-1763
    [123]Zhao X W, Jin W Z, Qi L M. Shape-and Size-Controlled Synthesis of Uniform Anatase TiO2 Nanocuboids Enclosed by Active{100} and{001} Facets. Adv. Funct. Mater.,2011,21(18): 3554-3563
    [124]Wang X D, Zhou J, Song J H, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett.,2006,6(12):2768-2772
    [125]Kilin D S, Prezhdo O V, Xia Y N. Shape-controlled synthesis of silver nanoparticles:Ab initio study of preferential surface coordination with citric acid. Chem. Phys. Lett.,2008, 458(1-3):113-116
    [126]Al-Saidi W A, Feng H J, Fichthorn K A. Adsorption of Polyvinylpyrrolidone on Ag Surfaces: Insight into a Structure-Directing Agent. Nano Lett.,2012,12(2):997-1001
    [127]Andeen D, Kim J H, Lange F F, et al. Lateral epitaxial overgrowth of ZnO in water at 90℃. Adv. Funct. Mater.,2006,16(6):799-804
    [128]Torbrugge S, Ostendorf F, Reichling M. Stabilization of Zinc-terminated ZnO (0001) by a modified surface stoichiometry. J. Phys. Chem. C,2009,113(12):4909-4914
    [129]Zuo A, Hu P, Bai L Y, et al. Synthesis of tunable 3D ZnO architectures assemblied with nanoplates. Cryst. Res. Technol.2009,44(6):613-618
    [130]Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature,2008,453(7195):638-641
    [131]Sun Y, Li C S, Zheng W J. Ionic Liquid-Assisted Hydrothermal Synthesis of Monoclinic Structured LaVO4 Nanowires through Topotactic Transformation from Hexagonal La(OH)3 Nanowires. Crystal. Growth & Des.,2010,10(1):262-267
    [132]Liu X D, Duan X C, Peng P, et al. Hydrothermal synthesis of copper selenides with controllable phases and morphologies from an ionic liquid precursor. Nanoscale,2011,3(12): 5090-5095
    [133]Zhou X, Xie Z X, Jiang Z Y, et al. Formation of ZnO hexagonal micro-pyramids:a successful control of the exposed polar surfaces with the assistance of an ionic liquid. Chem. Commun.,2005, (44),5572-5574
    [134]Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys.,2005,98(4):041301-1-103
    [135]Choi K S, Lichtenegger H C, Stucky G D, et al. Electrochemical Synthesis of Nanostructured ZnO Films Utilizing Self-Assembly of Surfactant Molecules at Solid-Liquid Interfaces. J. Am. Chem. Soc.,2002,124(42):12402-12403
    [136]Zhang J, Sun L, Yin J, et al. Control of ZnO Morphology via a Simple Solution Route. Chem. Mater.,2002,14(10):4172-4177
    [137]Gao P X, Wang Z L, Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals. J. Am. Chem. Soc.2003,125(37):11299-11305
    [138]Wang X D, Summers C J, Wang Z L. Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Lett.,2004,4(3): 423-426
    [139]Hu J Q, Bando Y, Zhan J H, et al. Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets. Appl. Phys. Lett.,2003,83(21):4414-4416
    [140]Lao J Y, Wen J G, Ren Z F. Hierarchical ZnO Nanostructures. Nano Lett.,2002,2(11): 1287-1291
    [141]Kurtz M, Strunk J, Hinrichsen O, et al. Active Sites on Oxide Surfaces:ZnO-Catalyzed Synthesis of Methanol from CO and H2 Angew. Chem. Int. Ed.,2005,44(18):2790-2794
    [142]Wang X, Hu P, Yuan F L,et al. Preparation and Characterization of ZnO Hollow Spheres and ZnO-Carbon Composite Materials Using Colloidal Carbon Spheres as Templates. J. Phys. Chem. C,2007,111(18):6706-6712
    [143]Tripathy N, Ahmad R, Jeong H S, et al. Time-Dependent Control of Hole-Opening Degree of Porous ZnO Hollow Microspheres. Inorg. Chem.,2012,51 (2):1104-1110; (b) Wang X, Liao M Y, Zhong Y T, et al. ZnO Hollow Spheres with Double-Yolk Egg Structure for High-Performance Photocatalysts and Photodetectors. Adv. Mater.,2012,24(25):3421-3425
    [144]Deng S Z, Fan H M, Wang M, et al. Thiol-Capped ZnO Nanowire/Nanotube Arrays with Tunable Magnetic Properties at Room Temperature. Acs Nano.,2010,4(1):495-505
    [145]Kim S W, Kim M, Lee W Y, et al. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. J. Am. Chem. Soc.,2002,124(26):7642-7643; (b) Lian J B, Ding Z M, Kwong F L, et al. Template-free hydrothermal synthesis of hexagonal ZnO micro-cups and micro-rings assembled by nanoparticles. CrystEngComm,2011,13:4820-4822
    [146]Caruso F, Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science 1998,282(5391):1111-1114
    [147]Guan H, Wang X, Li H, et al. CoO octahedral nanocages for high-performance lithium ion batteries. Chem. Commun.2012,48:4878-4880
    [148]Y. G. Sun, Y. N. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002,298,2176-2179
    [149]Wang X, Zhong Y, Zhai T, et al. Multishelled Co3O4-Fe3O4 hollow spheres with even magnetic phase distribution:Synthesis, magnetic properties and their application in water treatment. J. Mater. Chem.,2011,21(44):17680-17687
    [150]Zhu K, Vinzant T B, Neale N R, et al. Removing Structural Disorder from Oriented TiO2 Nanotube Arrays:Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells. Nano Lett.,2007,7(12):3739-3746
    [151]Zhai T Y, Li L, Ma Y, et al. One-dimensional inorganic nanostructures:synthesis, field-emission and photodetection. Chem. Soc. Rev.,2011,40:2986-3004
    [152]Peng Y, Xu A W, Deng B, et al. Polymer-Controlled Crystallization of Zinc Oxide Hexagonal Nanorings and Disks. J. Phys. Chem. B,2006,110(7),2988-2993
    [153]Boal A K, Ilhan F, DeRouchey J E, et al. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature,2000,404,746-748
    [154]Li F, Ding Y, Gao P X, et al. Single-Crystal Hexagonal Disks and Rings of ZnO: Low-Temperature, Large-Scale Synthesis and Growth Mechanism. Angew. Chem. Int. Ed., 2004,43(39):5238-5242
    [155]S. Jung, W. Cho, H. J. Lee, M. Oh, Self-Template-Directed Formation of Coordination-Polymer Hexagonal Tubes and Rings, and their Calcination to ZnO Rings. Angew. Chem. Int. Ed.,2009,48(8):1459-1462
    [156]Antonietti M, Kuang D B, Smarsly B, et al. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angew. Chem. Int. Ed.,2004, 43(38):4988-4992
    [157]Jacob D S, Joseph A, Mallenahalli S P, et al. Rapid Synthesis in Ionic Liquids of Room-Temperature-Conducting Solid Microsilica Spheres. Angew. Chem. Int. Ed.,2005, 44(40):6560-6563
    [158]Nakashima T, Kimizuka N. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids. J. Am. Chem. Soc.,2003,125(21):6386-6387
    [159]X. D. Liu, J. M. Ma, P. Peng, W. J. Zheng, One-Pot Hydrothermal Synthesis of ZnSe Hollow Nanospheres from an Ionic Liquid Precursor. Langmuir,2010,26(12):9968-9973
    [160]Taubert A. (Sub)Micron CaF2 Cubes and Hollow Rods From Ionic Liquid Emulsions. Acta Chim. Slov.,2005,52:168-170
    [161]Du J M, Liu Z M, Li Z H, et al. Mesoporous TiO2 with wormlike structure synthesized via interfacial surfactant assisted route. Micropor. Mesopor. Mat.,2005,83(1-3):145-149
    [162]Vitz J, Erdmenger T, Haensch C, et al. Extended dissolution studies of cellulose in imiduazolim based ionic liquids. Green Chem.,2009,11,417-424
    [163]Washington A L, Strouse G F. Microwave Synthetic Route for Highly Emissive TOP/TOP-S Passivated CdS Quantum Dots. Chem. Mater.,2009,21(15):3586-3592
    [164]Puzder A, Williamson A J, Zaitseva N, et al. The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations. Nano Lett.,2004,4(12): 2361-2365
    [165]Andeen D, Kim J H, Lange F F, et al. Lateral Epitaxial Overgrowth of ZnO in Water at 90 ℃. Adv. Funct. Mater.,2006,16(6):799-804
    [166]Ninham B W. On progress in forces since the DLVO theory. Adv. Colloid Interface Sci., 1999,83(1-3):1-17
    [167]Pensado A S, Padua A A H. Solvation and Stabilization of Metallic Nanoparticles in Ionic Liquids. Angew. Chem. Int. Ed.,2011,50(37):8683-8687
    [168]Valencia H, Kohyama M, Tanaka S, et al. Ab initio study of EMIM-BF4 molecule adsorption on Li surfaces as a model for ionic liquid/Li interfaces in Li-ion batteries. Phys. Rev. B,2008,78(20):205402-1-13
    [169]RFW. Bader, Atoms in Molecules:A Quantum Theory 1990 (New York:Oxford University Press)
    [170]Wulff G, Kristallogr Z. Zur frage der geschwindigkeit des wachsthums und der auflosung der krystallflachen. Mineral.,1901,34:449-530
    [171]Oliver P M, Watson G W, Kelsey E T, et al. Atomistic simulation of the surface structure of the TiO2 polymorphs rutileand anatase. J. Mater. Chem.,1997,7,563-568
    [172]Jun Y W, Casula M F, Sim J H, et al. Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2 Nanocrystals. J. Am. Chem. Soc.,2003, 125(51):15981-15985
    [173]Li H X, Xia M X, Dai G Z, et al. Growth of Oriented Zinc Oxide Nanowire Array into Novel Hierarchical Structures in Aqueous Solutions. J. Phys. Chem. C,2008,112(45): 17546-17553
    [174]Wagner M, Stanga O, Schroer, W. The liquid-liquid coexistence of binary mixtures of the room temperature ionic liquid 1-methyl-3-hexylimidazolium tetrafluoroborate with alcohols Phys. Chem. Chem. Phys.,2004,6:4421-4431
    [175]Kozhummal R, Yang Y, Giider F, et al. Homoepitaxial Branching:An Unusual Polymorph of Zinc Oxide Derived from Seeded Solution Growth. Nano Lett.,2012,8,7133-7141
    [176]Morin S. A, Bierman M J, Tong J, et al. Mechanism and Kinetics of Spontaneous Nanotube Growth Driven by Screw Dislocations. Science,2010,328(5977):476-480
    [177]Bateman T B. Homoepitaxial Branching:An Unusual Polymorph of Zinc Oxide Derived from Seeded Solution Growth. J. Appl. Phys.,1962,33:3309-3312
    [178]Abrahams S C, Bernstein J L. Remeasurement of the structure of Hexagonal ZnO. Acta Cryst. B,1969,25:1233-1236
    [179]Hong H, Shi J, Yang Y N, et al. Cancer-Targeted Optical Imaging with Fluorescent Zinc Oxide Nanowires. Nano Lett.,2011,11(9):3744-3750
    [180]L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, A. Deepthy, B. Krishnan, Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J. Appl. Phys.,2007,102(6): 063524-063530

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700