导向锥快点火基础物理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惯性约束聚变是获得干净的聚变能源的一种理想途径。中心点火方式需要的激光驱动能量非常大,目前的技术条件难以满足要求。因此为了减少所需的驱动能量,利用超短激光脉冲的“快点火”是目前极具吸引力的聚变点火方式。它的中心思想是将压缩与点火分开,热核燃料的高密度压缩由通常的内爆过程完成,而满足点火条件的热斑则是由相对论强度激光从外部入射形成。这一构想的大幅度节省了驱动内爆的激光能量,同时放宽了控制流体力学界面不稳定性的要求。
     快点火中的一个关键问题是激光能量转换为超热电子并传输到靶心。靶丸周围存在几百微米长的冕区等离子体,会使得入射激光分裂成丝或是激发各种参量不稳定性,且激光在传输过程中有很大一部分能量被冕区吸收,仅有一小部分转换为超热电子的能量。近十年来,研究人员提出了各种点火的设想,其中导向锥快点火方案具有如下优点:使点火脉冲直接传入高密度区;降低激光与冕区等离子体相互作用产生的各种不稳定性影响;导向聚焦点火激光,使更多的激光能量沉积在热斑区。然而激光与引导锥内等离子体相互作用的细节尚不清晰,需要通过相应的基础研究,深入了解锥的导向聚焦作用以及如何提高对点火有益的超热电子数目。
     本论文首先简单介绍了惯性约束聚变的概念,中心点火及快点火的基本原理。
     第二章简要介绍了各种的快点火方案,第二节着重介绍了国际上对导向锥点火方案的研究成果和进展。
     超热电子的产生和输运是快点火物理中所关注的重点之一,其产生机制对超热电子的特性具有重要的影响,因此第三章着重介绍了各种超热电子的产生机制。
     第四章主要介绍自己的工作—“金锥对靶背向产生超热电子的影响”的实验研究。采用功率密度为10~(18)Wcm~(-2)的皮秒激光辐照金锥靶,测量了前向(靶背向)超热电子的全空间分布及能谱。与相同实验条件下的平面金薄膜靶进行对比,实验结果发现,锥形靶条件下靶背向产生的超热电子在2~2.5MeV附近有大幅度增加,表明了锥形靶对超热电子的产生具有重要的影响:30~o金锥靶显著提高了靶后的超热电子产额,间接证实了锥形靶对短脉冲激光有导向聚焦作用;在实验中还发现,锥形靶条件下靶背向超热电子的空间发散角大于平面靶。经初步分析,这可能是由于啁啾脉冲放大激光所固有的较高脉冲前沿产生的预等离子体造成的影响;15~o锥形靶情况下,测量得到的电子剂量远低于平面靶。经分析原因可能有两点:一是脉冲前沿噪声产生的预等离子体向外膨胀,使得相互作用区域处于离焦位置。二是向靶内输运的超热电子传输的距离很长,通过碰撞和电场阻滞的方式损失了大量的能量。
     第五章简单对全文作总结并展望后续实验。
The fast ignition concept using ultra-intense laser pulses is now being explored. FI scheme separates the laser into two systems: one for implosion and the other for heating the imploded fuel core. Since the laser energy required just for implosion is much smaller than that for the central ignition scheme.
    The realization of this concept is challenging since the core is hidden under a plasma corona with a long scale length, which is opaque to the laser pulse. To overcome this problem, an alternative to laser pre pulse techniques is the use of a reentrant cone to block the formation of a plasma atmosphere in front of he core. This allows the ignition laser a clear path and close approach to the assembled core and well-defined surface at which to create electrons. The details of the interaction between the laser and reentrant cone is presently unclear.
    This work is organized in five sections. At first we introduce briefly the concepts of ICF and principles of Fast ignition. In section II ,we introduce the setup of the method for fast ignition and latest research about the hollow cone shell target.
    In section III, we introduce the absorption mechanisms in plasma. These mechanisms accelerate electrons into high-density plasmas. In section IV, we introduce the experiment "The impact of Au cone on forward hot electrons". The characteristics of the forward hot electrons produced by 20 TW p-polarized Pico second laser-plasma interactions are studied with Au cone-targets and Au foil targets. We measure the electron energy spectra and angular distribution of Au cone target, compares it to the result about foil target. The result shows that, the hot electron numerate of 30° cone-target is larger than foil target condition in the range of 2~2.5MeV. From the divergence angle of the hot electrons, the energy flux of the electrons in 30° cone-target can be significantly higher than that in a foil target. It shows that the cone target could guide and focus the ignition impulse. The hot electron dose of 15° cone-target was less than foil target. Mostly cause is impact of pre plasmas. Prep-plasmas are formed by yawp front pulse. It reduced the laser power density and absorbed the hot electrons.
    In Section V, it made a summary of article and depicts subsequent study.
引文
[1] Nuckolls J H, Wood L, Thiessen A, et al. Laser compression matter to super-high densities:t hermonuclear(CTR)application[J]. Nature, 1972, 239:129
    [2] Brueckner K A and Jorna S. Laser-driven fusion[J].Rev.Mod.Phys, 1974, 46(2):325
    [3] Storm E, Lindle J D, et al. Progress in High Gain ICF: Prospects for the Future. UCRL-preprint, 1988, Aug: 20~23
    [4] Murray J R. A tour of proposed national ignition facility. Energy and Technology Review,1994.7~23
    [5] Lindl. J , Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 1995, 2(11): 3933~4023
    [6] J. Meyer-ter-Vehn, Nucl. Fusion, 22, 561(1982)
    [7] 张家泰.激光等离子体相互作用物理和模拟,河南科学技术出版社,1999.
    [8] M. Tabak et al., Phys. Plasmas, 1, 1626(1994)
    [9] E. M. Campbell, W.J. Hogan and D. H. Crandall. LLNL UCRL-JC-135589
    [10] T. Ditmire and M. D. Perry. LLNL 98-RED-084
    [11] T. Y. Brian Yang et al , Phys. Plasma 2(8), (1995)3146.
    [12] 张家泰,总体与靶物理专题《1996年度工作报告》p300
    [13] H. M. Milchberg et al , Phys Rev. Lett. 61, (1998)2264.
    [14] J. C. Kieffer et al , Phys. Rev. Lett.62, (1989)760
    [15] R. Fedosejevs et al., Appl.Phys.B 50, (1990)79
    [16] R. B. Stephens et al., The Case for Fast Ignition as an IFE Concept Exploration Program.UCRL-JC-135800.
    [17] J. Fuchs et al., Phys. Rev. Lett.80(8), (1998)1658
    [18] P. Young et al., Phys. Rev. Lett.75, (1995)1082
    [19] W. Mori et al., Phys. Rev. Lett.80, (1998)1298
    [20] Zhang Jiatai et al., Chinese Phys.Lett.16, (1999)
    [21] K.Mima et al, Fast ignition experimental and theoretical researches toward fast ignition realization experiment, 19 fusion energy conference 14-19 October 2002 Lyon, France
    [22] M. zepf et al, Phys. Plasmas 3(9), (1996)3242
    [23] U. Teubner et al., Phys. Rev. E 54(4), (1996) 4167
    [24] J. C. Adam et al., Phys. Rev. Lett.78, (1997)4765
    [25] G. Malka et al., Phys. Rev. Lett.77, (1996)75
    [26] Zhu Shaoping. Zheng Chunyang and He Xiantu, Slow-time-scale magnetic field in under dense plasma, Progress of Theoretical Physics, 2000
    
    [27] Zheng Chunyang, Zhu Shaoping, He Xiantu, Quasisatic magnetic field generation by intense ultrashort laser pulse in underdense plasma, Chin. Phys.Lett.2000
    
    [28] K. Takahashi et al., Phys. Rev. Lett. 84, 2405(2000)
    
    [29] R.Kodama, K.Mima, K.A. Tanaka et al., Phys. Plasmas 8(5), (2001)2268
    
    [30] P.A. Norreys, R Allot, R. J. Clarke et al., Phys. Plasmas 7(9), (2000)3721
    
    [31] R.A. Snavely et al., Phys. Rev. Lett. , 2000;85(14):2945~2948]
    
    [32] M. Roth, T. E.Cowan , M .H. Key et al., Phys. Rev. Lett. 2001;86;436
    
    [33] R.Kodama and P.Norreys, K.Mima et al., Nature(London)412, 7989(2001)
    
    [34] R. Kodama et al, Fast heating scalable to laser fusion ignition. Nature VOL 418 (2002)
    
    [35] R. Kodama et al, Fast plasma heating in a cone-attached geometry-towards fusion ignition.Nucl, Fusion, 44(2004)
    
    [36] Z. L. Chen et al, Enhancement of energetic electrons and protons by guiding of laser light.Physical Review E 71, 036403(2005)
    
    [37] R. Kdama et al., Plasma devices to guide and collimate a high density of MeV electrons.Nature VoL432
    
    [38] Z. L. Chen et al, Transient electrostatic fields and related energetic proton generation with a Plasma fiber, Phys. Rev. Lett. 96.084802
    
    [39] Price D F et al. Phys.Rev.Lett, 1995, 75:252
    
    [40] Wilks S C et al.IEEE, 1997, 33:1594
    
    [41] D W Forslund, J M Kindel and K Lee .Phys.Rev.Lett., 1977, 39:284
    
    [42] Forslund D W et al. Phys. Rev. Lett ., 1977, 39:284
    
    [43] Wilks S C. Phys.Fluids B , 1993, 5:2603
    
    [44] W.L.Kruer and K Estabrook, J X B heating by very intense laser light, Phys. Plasma 28,(1985)430
    
    [45] Brunel F. Phys. Rev. Lett., 1987, 59:52
    
    [46] Gibbon P. Phys. Rev. Lett ., 1994, 73:664
    
    [47] Gibbon P et al. Phys. Rev. Lett . , 1992 , 68:1535
    
    [48] Weibel E S. Phys. Fluids , 1967 , 10 :741
    
    [49] Rozmus W et al. Phys. Rev.A , 1990, 42:7401
    
    [50] Umstadter D .et , 1 , 1996 Science 273 472
    
    [51] Tajima T and Dawson J M Phys . Rev. Lett . 1979, 43 267
    
    [52] 徐涵 常文蔚,et al.,三角激光脉冲尾波加速粒子模拟,物理学报,2004, Vol 53(03); 0818-06
    [53] Tanaka K A, Kodama R, Mima K, et al., Basic and integrated studies for fast ignition. Phys. Plasmas , 2003, 10(5): 1925
    [54] Z. L. chen, Kodama R, Makatsutsumi M, et al, , Enhancement of energetic electrons and protons by cone guiding of laser light. Phys Rev E , 2005, 71, 036403
    [55] 吴治华 赵国庆 et al., 原子核物理实验方法
    [56] Mckeever S W S著,蔡干钢,吴方,王所亭译。固体热释光[M].北京原子能出版社,1993,1,44~66,236
    [57] A. Maksimchuk, Gu S, Flippo K, et al, Forward ion acceleration in thin films driven by a high-intensity laser. Phys Rev Lett, 2000, 84;4108
    [58] Li Y T, Zhang J, Sheng Z M, et al. High-energy electrons produced in subpicosecond laser-plasma interactions from sub relativistic laser intensities to relativistic intensities. Phys Rev E, 2004, 69, 036405
    [59] 蔡达锋,谷渝秋,郑志坚 et al.,超强超短激光与固体靶相互作用中超热电子的角分布,强激光与粒子束,2004,16(5):587-592
    [60] Kodama R, Azechi H, Fujita H, et al, Fast plasma heating in a cone-attached geometry-towards fusion ignition. Nucl. Fusion 2004, 44, S76-S283
    [61] Sentoku Y, Mima K, Ruhl H, et al, laser light and hot electron micro focusing using a conical target. Phys. Plasmas 2004, 11(6): 3083
    [62] 王光昶,郑志坚等超热电子的产生与输运背向辐射的测量,原子核物理评论,Vol22,No2, (2005,6)
    [63] Santos J J. AmiranoffF, Baton S D, et al., Phys. Rev. Lett.2002, 89(2): 025001
    [64] 郑志远,李玉同,远晓辉et al., 近相对论强度激光与薄膜靶相互作用中靶厚度对超热电子发生方向的影响,物理学报.2006;Vol.55(4):1894-06
    [65] Toshiya Sanami, Mamoru Baba, Keilichiro Saito, et. al. , Fast neutron profiling with an imaging plate, Nucl. Instr. and Meth2001, A458: 720~728
    [66] M. Matsubayashi , T. Hibiki , K.Mishima, et. al., Preliminary examination of the applicability of imaging plates to fast neutron radiography, Nucl. Instr. and Meth: 2001, A463: 324~330
    [67] Y.Sentoku et al., Phys. Plasmas, 2000:7:689
    [68] Y.Sentoku et al., Phys. Rev.E, 2002:65:046408-1
    [69] M. Honda, J. Meyer-ter-Vehn and A. Pukhov, Phys.Rev.Lett., 2000: 85: 2128
    [70] Pukhov A and Meyer-ter-Vehn J, Phys. Rev. Latt., 1997, 79(14), 2686-2689
    [71] Honda M, Meyer-ter-Vehn J and Pukhov A., in Inertial Fusion sciences and application 99, edited by LabauneC, Hogan W J, and Tanaka K A, Elsevier 2000, 45
    [72] Santos J J, A miranoffF, Baton S D el al 2002 Phys. Rev. Lett. 89 02500121
    [73] Baton S D , Saantos J J, Am iranoff F el al 2003 Phys. Rev. Lett. 91 10500121
    [74] 王光昶,郑忠坚,杨向尔et al., 超短脉冲激光与固体靶相互作用中背表面光发射的实验研究,物理学报.Vol.54(10)4803-05
    [75] A Stamper et al., Phys. Rev. Lett., 1971:26:1021

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700