手性氨基酸衍生物的合成及其在不对称碳—碳键形成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要集中于以氨基酸为原料的手性化合物的合成及在形成碳—碳键的不对称反应中的应用进行了研究。
     手性氨基醇衍生物,虽然已经成功地用于多种不对称催化反应中,但是以氨基酸为原料的手性多齿配体的合成和应用研究文献报道较少。尤其是手性相转移催化剂目前大部分还限于金鸡纳生物碱衍生物的范围。另外,某些新的醇醛缩合反应底物的研究还存在有很大的空间,因此我们对某些新的手性配体和手性催化剂以及新的醇醛缩合反应体系进行了研究。
     1.我们以天然氨基酸为原料合成了一系列三齿手性氨基醇配体1a~1f,并且对这些化合物的结构进行了比较详细的分析和测定。特别是对以二分子脯氨酸为原料合成的叔胺基醇1d的结构进行了较为深入的研究,在核磁共振谱中作了氢-氢相关和碳—氢相关以及碳—氢远程耦合等图谱,确定了各个氢原子的归属。并且对1d的晶体结构进行了X-衍射的测定,从而确定两个环的相对位置和手性碳原子的绝对构型。这些氨基醇配体可以用于醛对二乙基锌的不对称加成反应中,得到相应的手性仲醇产物,有比较高的产率和中等的对映选择性。某些配体也可以用于某些底物的醇醛缩合反应,也能得到相应的缩合产物和一定的对映选择性的β—羟基酮。
     2.我们还合成了一系列2,2,2—三氟芳乙酮衍生物,并对它们与某些甲基酮在以脯氨酸为催化剂的条件下发生醇醛缩合反应进行了研究。研究发现,在手性有机小分子催化剂L-脯氨酸存在下,苯环上有吸电子基团的三氟苯乙酮能顺利地与脂肪族甲基
This thesis is focused on the study of the synthesis of chiral ligands based on natural amino-acids and their application to the catalytic asymmetric carbon-carbon bond formation.Although chiral amino-alcohol ligands have been successfully applied to various kinds of catalytic asymmetric reactions, few examples of the synthesis of chiral multi-dentate ligands, such as tri- or tetra-dentate from amino acids, and their application to asymmetric reactions have been reported. In particular, the chiral phase transfer catalysts (PTC) have been almost limited to Cinchona alkaloid, such as Cinchonine (CN), Quinine (QN) and related compounds. Besides, it is significant to explore new types of small organo-molecule catalyzed intermolecula asymmetric aldol reactions, and there are certain rooms for developing new donor-acceptor system of this kind of reactions. In this dissertation, we reported the syntheses of some new chiral ligands and their application to enantioselective carbon-carbon bonds' forming reactions.Firstly, tridentate chiral ligands (1a~1f) were synthesized from natural amino-acids and the structures were confirmed by means of spectural and elemental analyses. Particularly, the structure of amino-alcohol ligand 1d, which possesses two pyrrolyl rings in the molecule, was given in details by investigation through ~1H NMR, ~(13)C NMR, ~1H-~1H cosy, ~(13)C-~1H Cosy and X-Ray diffraction on single crystal. From these results, configurations of the chiral centres were confirmed, the geometry of the molecule was elucidated. These amino-alcohols ligands could be applied to enantioselective addition of
    diethylzinc to aldehydes, high yields and moderate ee values were achieved. Two of them (le~lf) were shown to be effective catalysts for some direct aldol reactions.Secondly, a series of 2,2,2-trifluoro-l-arylethanone were synthesized. The direct asymmetric aldol addition of aliphatic methyl ketones to these activated 2,2,2-trifluoro-l-arylethanones was then investigated using Z,-proline as the organocatalyst. It was shown that 2,2,2-trifluoro-l-phenylethanone and its analogures substituted with electron-withdrawing group (F, Cl) can smoothly react with aliphatic methyl-ketones affording optically active /?-trifiuoromethyl-/?-hydroxy ketones in excellent yields (almost quantitative) with moderate enantioselectivities (up to 64 % ee), without formation of any dehydrated product.Some chiral organic molecules structurally related to proline were also tested as catalysts for the aldol reaction of this donor-aceptor system. It was found that proline is still the best chiral organocatalyst at present for the reaction mentioned above. In order to find the absolute configuration of the adducts, an attempt to transform the aldol adduct 2-hydroxy-4-oxo-2-phenyl-pentanenitrile into the Mosher's acid, was made. Unfortunately, it was unsuccessful. Further continuous research on this subject is necessary. Thorough studies of these reactions manifested that there were several factors which affected the results of the reactions and gave us some new ideals for designing new aldol addition reaction systems.Thirdly, an efficient, convenient, and universally applicable method of preparing C2-symmetric 1,4-Diazabicyclo[2.2.2]octane (DABCO) derivatives from amino acid esters, was successfully developed. This method has the advantages of short synthetic route, high yield and easy-to-operate. The structural feature of this kind of compounds is that they all have a rigid core of bicyclo[2.2.2]octane ring system, similar to that of cinchona alkaloid such as cinchonine, cinchonidine, quinine, and quinidine. and they distinguish themselve from cinchona alkaloids by the fact that the bicyclic ring core in the molecule is a diaza system, and substituted symmetrically, and hence the molecule is C2-symmetric. Bearing this structural feature, this kind of compounds might be useful precursor of efficient phase
    transfer catalysts, which were previously not reported in the literature. In order to discriminate the two stereoisomers 20a and 20a', one of them (20a) was analyzed by single crystal X-ray diffraction. In the attempt to prepare chiral quaternary ammonium salts from the DABCO derivatives mentioned above, no pure product was isolated and identified.
引文
1.林国强,陈耀全,陈新滋,李月明《手性合成—不对称反应及其应用》科学出版社,2000.
    2.殷元琪,蒋耀忠《不对称催化反应进展》科学出版社,2000.
    3. Evans, D. A.; Gage, J. R. Org. Synth. 1989, 68, 83.
    4. Gastaldi, G; Cavicchioli, S.; Giordano, C. J Org. Chem. 1987, 52, 3018.
    5. Srebnick, M.; Ramachandran, P. V. Aldrichimica Acta. 1987, 20, 9.
    6. Kagan, H. B.; Dang, T. P. J. Am. Chem. Soc. 1972, 94, 6429.
    7. Nugent, W. A.; Rajan Babu, T. V.; Burk, M. J. Science, 1993, 259, 479.
    8. (a)Cordova, A.; Nots, W.; Barbas, C. F. Chem. Commun. 2002, 24, 3024. (b) Dickerson, T. J.; Janda, K. D. J. Am. Chem. Soc. 2002, 124, 3220.
    9. (a)Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833. (b)Soai, K.; Yokoyama, S.; Hayasaka, T. J. Org. Chem. 1991, 56, 4264.
    10. Cordova, A.; Barbas, C. F. Tetrahedron Lett. 2003, 44, 1923.
    11. Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125,1192.
    12. Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172.
    13. Frankland, E. Justus Liebigs Ann. Chem. 1849, 71,171.
    14. a) Sato, T.; Soai, K.; Suzuki, K.; Mukaiyama, T. Chem. Lett. 1978, 601. b) Mukaiyama, T.; Soai, K.; Shimizu, H.; Suzuki, K. J. Am. Chem. Soc. 1979, 101, 1455.
    15. Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823.
    16. Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. J. Am. Chem. Soc. 1987, 109, 7111.
    17. Chelucci, G.; Falorni, M.; Giacomelli, G. Tetrahedron: Asymmetry 1990, 1, 843.
    18. Asami, M.; Inoue, S. Chem. Lett. 1991, 685.
    19. Yang, X.; Shen, J.; Da, C; Wang, R.; Choi, M. C. K.; Yang, L.; Wong, K. Tetrahedron: Asymmetry 1999, 10, 133.
    20. Sibi, M. P.; Chen, J.; Cook, G. R. Tetrahedron Lett. 1999, 40, 3301.
    21.(a) Wu, Y.; Yun, H.; Wu, Y; Ding, K.; Zhou, Y. Tetrahedron: Asymmetry. 2000, 11.3543.
    (b) Wu, Y; Yun, H.; Wu, Y; Ding, K.; Zhou, Y. Tetrahedron Lett. 2000,41, 10263.
    22. Kitamura, M; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986,108,6071.
    23. Tanaka, K.; Ushio, H.; Suzuki, H. J. Chem. Soc, Chem. Commun. 1989, 1700.
    24. Nevalainen, M.; Nevalainen, V. Tetrahedron: Asymmetry, 2001, 12, 1771.
    25. Paner, S.; Linden, A.; Dimitrov, V. Tetrahedron: Asymmetry, 2001,12,1313.
    26. Chaloner, P. A.; Perers, S. A. R. Tetrahedron Lett. 1987,21, 3013.
    27. (a) Corey, E. J.; Hannon, F. J. Tetrahedron Lett. 1987,28,5233.
    (b) Corey, E. J.; Hannon, F. J. Tetrahedron Lett. 1987,28, 5237.
    28. Soai, K.; Nishi, M.; Ito, Y. Chem. Lett. 1987,2405.
    29. Corey, E. J.; Po-Wai, Y. J. Org. Chem. 1990, 55, 784.
    30. (a) Itsuno, S.; Ito, K., J. Chem. Soc. Perkin Trans. I,1984, 2887.
    (b) Corey, E. J.; Shibata, S.; Bakshi, R. K. J. Org. Chem., 1988, 53,2861.
    31. Corey, E. J.; Naef, R.; Hannon, F. J. J. Am. Chem. Soc, 1986,108, 7114.
    32. Izumi, W; Yuko, T.; Yasuhiro, K., Tetrahedron, 2002, 58, 8095.
    33. (a) Mukaiyama, T.; Narasaka, K.; Banno, K. Chem. Lett. 1973, 1011.
    (b) Saigo, K.; Osaki, M.; Mukaiyama, T. Chem. Lett. 1975, 989.
    34. Zhou tang; Liu-zhu Gong; Ai-Qiao Mi J. Am. Chem. Soc. 2003, 125, 5262.
    35. (a) List, B. Tetrahedron 2002, 58, 5573.
    (b) List, B. Synlett 2001, 1675.
    (c) Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58,2481.
    (d) Movassaghi, M.; Jacobsen, E. N. Science 2002,298, 1904.
    36. Yamasaki, S.; Iida, T.; Shibasaki, M. Tetrahedron Lett. 1999, 40, 307.
    37. Yamaguchi, M.; Shiraishi, T.; Igarashi, Y.; Hirama, M. Tetrahedron Lett. 1994, 35, 8233.
    38. Przezdziecka, A.; Srepanenko, W.; Wicha, J. Tetrahedron Asymmetry 1999, 10, 1598.
    39. List, B. J. Am. Chem. Soc. 2002, 124, 5656.
    40. Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615.
    41. List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573.
    42.张生勇,郭建全 《不对称催化反应》 科学出版社,2002.
    43. Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. Am. Chem. Soc. 1984, 106, 446.
    44. O'Donnell, M. J.; Delgado, F.; Potter, R, S. Tetrahedron, 1999, 55, 6347.
    45. O'Donnell, M. J.; Bennett, W. D.; Wu, S. J. Am. Chem. Soc. 1989, 111, 2353.
    46. Lygo, B; Wainwright, P. G.. Tetrahedron Lett. 1997, 38, 8595.
    47. Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414.
    48. Ooi, T.; Kameda, M.; Maruoka, K., J. Am. Chem. Soc. 1999, 121, 6519.
    49. Ooi, T.; Takenchi, M.; Kameda, M.; et al, J. Am. Chem. Soc. 2000, 122, 5228.
    50. a) Ohshima, T.; Shibuguchi, T.; Fukuta, Y.; Shibasaki, M. Tetrahedron, 2004, 60, 7743. b) Arai, S.; Tokumaru, K.; Aoyama, T. Tetrahedron Lett. 2004, 45, 1845. c) Kowtoniuk, W. E.; Rueffer, M. M.; MacFarland, D. K. Tetrahedron Asymmetry 2004, 15, 151.
    51. Nitecki, D. E.; Halpern, B.; Westley, J. W. J. Org. Chem. 1968, 33, 64.
    52. Ueda, T.; Satto, M.; Kato, T.; Izumiya, N. Bull. Chem. Soc. Jpn. 1983, 56, 568.
    53. Nagel, U.; Menzel, H.; Lendor, P. W.; Guyot, A.; Bartholin, M. Naturforsch 1981, 36b, 578.
    54. Soai, K.; Hayashi, H.; Hasegawa, H. Heterocycles 1986, 24, 1287.
    55. Jung, M. E.; Rohloff, J. C. J. Org. Chem. 1985, 50, 4909.
    56. Soai, K.; Oshio, A.; Yoneyama, H. Tetrahedron: Asymmetry 1992, 3, 359.
    57. Fuji, K.; Tannaka, K.; Takasu, K. Tetrahedron: Asymmetry 1996, 7, 1749.
    58.《有机化学实验技术》,有机化学实验技术编写组,科学出版社,1978.
    59.黄惟德,陈常庆,多肽合成,科学出版社,1985.
    60. Blatt, A. H. Organic Synthesis Coll. Vol. Ⅱ, 1943, 184.
    61. Fuchs, R.; Park, G. J. J. Org. Chem. 1957, 22, 993.
    62. Horning, E. F. Org. Synthesis, Coll. Vol., Ⅲ, 590.
    63. Horning, E. F. Org. Synthesis, Coll. Vol., Ⅲ, 98.
    64. Hunter, W.T.; Buck, J. S.; Gubitz, F. W.; Bolen, C. H. J. Org. Chem. 1956, 21, 1512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700