ANXA2在胃癌中表达及其对胃癌细胞耐药影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球范围内,胃癌是癌症相关的死亡率第二位的癌症。它在亚洲的发病率高于其他地区。在我国,胃癌在恶性肿瘤中死亡率第二,发病率占第三。由于胃癌通常在癌症晚期或因转移性胃癌被发现,所以预后一般较差,5年生存率小于30%。外科手术是目前最有效的治疗策略,但大约50-70%进展期胃癌病人术后出现复发。因此,化疗已被广泛应用于手术后的患者及晚期胃癌姑息性治疗,以提高患者的生活质量和延长生存期。尽管胃癌被认为是对化疗不敏感的癌症之一,但铂类及氟尿嘧啶类药物仍为胃癌化疗一线方案,其中几种重要的化疗药物如顺铂(cisplatin, DDP)和5-氟尿嘧啶(cisplatin,5-FU)的治疗胃癌还是作为一线药物有一定效果,但是生存时间一直不理想。多种证据表明,由于多药耐药(multidrug resistance, MDR)的发生导致了长期化疗不能消除所有癌细胞,进而造成癌症复发。
     膜联蛋白家族属于Ca(2+)调节的磷脂和膜结合蛋白,家族成员膜联蛋白A2(ANXA2)参与了细胞骨架重排。在肿瘤的形成、增殖、凋亡和信号转导形成过程中都扮演重要角色。然而,ANXA2在不同肿瘤中的表达模式不同,提示ANXA2在不同肿瘤发生发展中可能起不同作用。如在肝脏和乳腺组织中表达上调,而在前列腺和食管癌组织中表达下调。ANXA2可以作为肿瘤治疗的靶标以及肿瘤的形成、增殖、凋亡和信号转导及判断患者预后的生物标志。然而,ANXA2在胃癌中的表达和功能仍不十分清楚。
     目的:本研究以临床切除的胃癌组织及胃癌细胞系为研究对象,观察ANXA2在胃癌中的表达及其在胃癌耐药细胞中的作用机制。以阐明ANXA2在胃癌发生发展过程中的重要作用,为胃癌的靶向治疗提供理论依据。
     方法:通过实时定量RT-PCR、免疫印迹等方法观察ANXA2在胃癌和癌旁组织及不同分化程度的胃癌及胃癌细胞耐药株中的表达,通过RNA干扰封闭ANXA2表达,观察ANXA2对胃癌耐药细胞SGC7901/DDP细胞药物敏感性、耐药基因表达及信号通路激活的影响,
     结果:本课题五部分的具体结果内容如下:
     第一部分胃癌组织中ANXA2的表达研究
     第一部分实验主要利用荧光定量RT-PCR和Western blot方法观察ANXA2在临床切除的胃癌标本和癌旁组织中的表达情况。结果如下:
     1ANXA2在胃癌组织和癌旁组织中转录水平的差异
     应用荧光定量RT-PCR方法检测了所有临床切除的胃癌样本及癌旁对照组织中ANXA2的mRNA表达。结果显示,与癌旁组织相比,胃癌组织中ANXA2的mRNA表达水平明显升高。结果表明,ANXA2在胃癌发生过程中转录水平发生改变,ANXA2在胃癌发生过程中可能发挥重要作用。
     2ANXA2在胃癌组织和癌旁组织中翻译水平的差异
     为了明确ANXA2与胃癌发生的关系,我们进一步通过Western blot观察了胃癌组织和癌旁组织中ANXA2蛋白水平,结果显示,与癌旁组织相比,胃癌组织中ANXA2的蛋白表达水平明显升高。结果表明,ANXA2在胃癌发生过程中翻译水平发生改变,ANXA2在胃癌发生过程中可能发挥重要作用。
     第二部分不同分化程度胃癌的ANXA2表达的研究
     第二部分实验主要利用荧光定量RT-PCR和Western blot方法观察ANXA2在临床切除的不同分化程度胃癌标本和不同分化的胃癌细胞株中的表达情况,以初步探讨ANXA2胃癌癌分化中的意义。结果如下:
     1ANXA2基因在不同分化胃癌组织中的表达
     为了明确ANXA2与胃癌发生的关系,我们进一步观察了ANXA2基因表达与胃癌分化程度的相关性。我们通过荧光定量PCR和western blot对高、中和低分化胃癌组织中ANXA2进行检测,结果显示,胃癌组织分化程度越高ANXA2的mRNA和蛋白表达越低。结果表明,Annexin A3基因表达与胃癌细胞株分化程度呈负相关。
     2ANXA2基因在不同分化胃癌细胞株中的表达
     为了进行体外机制研究,我们接着检测了不同分化程度的胃癌细胞株中ANXA2的表达。我们通过荧光定量PCR和western blot对不同程度胃癌细胞株中ANXA2的表达进行检测,结果显示,ANXA2的表达由低到高为:高分化腺癌细胞株MKN-28、中分化腺癌细胞株SGC-7901、低分化腺癌细胞株BGC-823。结果表明,Annexin A3基因表达与胃癌细胞株分化程度呈负相关。
     第三部分ANXA2-siRNA转染对胃癌细胞株耐药性的影响
     第三部分实验主要利用荧光定量RT-PCR和Western blot方法观察ANXA2在胃癌细胞及胃癌耐药细胞中的表达情况,及封闭ANXA2(小干扰RNA技术)表达后胃癌细胞耐药性的改变,以阐ANXA2在胃癌细胞耐药中的作用机制。结果如下:
     1胃癌耐药细胞中ANXA2mRNA和蛋白的表达情况
     我们首先检测了DDP耐药细胞SGC7901/DDP及其对照细胞SGC790的IC50值,MTT结果显示,SGC7901/DDP细胞对DDP的IC50值为5.36±0.73μg/ml,而对照细胞SGC7901为0.26±0.03μg/ml。我们进一步检测了ANXA2mRNA在胃癌耐药细胞中的表达,荧光定量RT-PCR分析结果显示:DDP耐药细胞SGC7901/DDP中ANXA2的mRNA表达水平明显高于对照细胞SGC7901中ANXA2的表达。我们同样检测了ANXA2蛋白在胃癌耐药SGC7901/DDP细胞中的表达,Western blot分析结果显示:DDP耐药细胞SGC7901/DDP中ANXA2的蛋白表达水平明显高于对照细胞SGC7901中ANXA2的表达。
     2ANXA2-siRNAs对SGC7901/DDP细胞ANXA2表达的影响
     为了进一步阐明ANXA2表达对胃癌细胞耐药的影响,我们采用ANXA2-siRNAs转染高表达ANXA2因子的SGC7901/DDP胃癌耐药细胞,同时以转染control-siRNA细胞作为阴性对照,观察ANXA2-siRNA对SGC7901/DDP细胞ANXA2表达的影响。荧光定量RT-PCR和Western blot结果显示,不同浓度(20、40和80nM)的ANXA2-siRNAs转染SGC7901/DDP细胞48h后,ANXA2的mRNA和蛋白表达均有不同程度下降,其中80nM浓度ANXA2-siRNAs对ANXA2的敲低作用达到了90%以上。而细胞转染control-siRNA后ANXA2表达没有明显改变。
     我们进一步检测了不同时间(24,48或72h)ANXA2-siRNAs转染SGC7901/DDP细胞对ANXA2mRNA和蛋白表达的影响。荧光定量RT-PCR结果和Western blot结果显示,80nM的ANXA2-siRNAs转染SGC7901/DDP细胞24,48或72h后,ANXA2的mRNA和蛋白表达逐渐降低,相比于转染control-siRNA对照,其中48h及72h时ANXA2mRNA和蛋白表达均下降了90%以上。以上结果表明,实验所用ANXA2-siRNAs的能高效、特异、持久抑制内源性ANXA2表达。3ANXA2-siRNAs转染对SGC7901/DDP细胞耐药的影响
     我们进一步研究了ANXA2-siRNAs转染对SGC7901/DDP细胞耐药的影响。MTT实验结果显示,与转染control-siRNA对照相比,80nM浓度ANXA2-siRNAs转染48h后,SGC7901/DDP细胞对doxorubicin,5-fluorouracil及cisplatin IC50值明显降低,结果表明,ANXA2-siRNAs可提高SGC7901/DDP细胞对化疗药物的敏感性。
     第四部分ANXA2-siRNA转染对胃癌细胞耐药相关基因表达的影响
     第四部分实验主要利用小干扰RNA技术,通过荧光定量RT-PCR和Western blot方法观察抑制内源性ANXA2后,观察胃癌耐药SGC7901/DDP细胞多药耐药因子表达的影响。结果如下:
     1ANXA2-siRNAs转染对耐药相关基因mRNA表达的影响
     为进一步阐明ANXA2在胃癌多药耐药中的作用,我们采用荧光定量RT-PCR的方法检测了耐药相关基因mRNA的表达情况,结果显示:与对照组相比,80nM的ANXA2-siRNAs转染48h后,SGC7901/DDP细胞中经典耐药途径中耐药相关基因P-gp、MRP1和Bcl-2的mRNA表达水平均明显降低,而Bax则显著升高。但是其他的几个非经典耐药途径中耐药相关因子GST-π、TOPO-I和TOPO-II的mRNA表达并没有明显的变化。
     2ANXA2-siRNAs转染对耐药相关基因蛋白表达的影响
     我们同时检测了ANXA2-siRNAs转染后耐药相关基因蛋白的表达变化。Western-blot检测结果显示:与对照组相比,80nM的ANXA2-siRNAs转染48h后,SGC7901/DDP细胞中经典耐药途径中耐药相关基因P-gp、MRP1和Bcl-2的蛋白表达水平均明显降低,而Bax则显著升高。但非经典耐药途径中耐药相关因子GST-π、TOPO-I和TOPO-II的蛋白表达并没有明显的变化。这与mRNA的检测结果一致。
     第五部分ANXA2-siRNA转染对胃癌耐药细胞MAPK及PI3K/Akt信号通路蛋白表达的影响
     第五部分实验进一步应用RNA干扰技术特异性抑制内源性ANXA2表达,应用Western blot观察SGC7901/DDP细胞中MAPK信号转导通路和PI3K/AKT通路活化情况,以阐明ANXA2在胃癌细胞耐药形成中的作用机制。
     结果显示,80nM的ANXA2-siRNAs转染SGC7901/DDP细胞48h后,MAPK信号通路分子AKT、P38和JNK蛋白表达均无明显变化,但AKT和P38的磷酸化水平明显下降。
     结论:综合上述五部分内容,本研究得出如下结论:
     1ANXA2在胃癌组织中高表达,且与肿瘤分化程度关系密切,提示ANXA2在胃癌形成过程中可能发挥了重要作用。
     2ANXA2的表达与胃癌细胞耐药有关,抑制内源性ANXA2表达后胃癌耐药细胞株的药敏性增强,这与ANXA2调节P-gp、MRP1和Bcl-2等多药耐药相关基因有关,
     3抑制内源性ANXA2表达后胃癌耐药细胞株AKT和p38的磷酸化水平明显下降,表明AKT和p38的磷酸化过程可能参与ANXA2对胃癌细胞耐药的形成。
Globally, gastric cancer (GC) is the second mostly frequent cause of cancer-related mortality and the incidence is much higher at Asia than other geographic areas. In china, gastric cancer is the second leading cause of cancer-related mortality and has the third highest incidence. Because gastric cancer is usually diagnosed in the advanced or metastatic stage, the prognosis of gastric cancer is generally rather poor, with a5-year survival rate of less than30%. Surgical operation remains the standard therapy strategy at present, but recurrence appears in approximately50-70%of patients with advanced disease. Therefore, chemotherapy has been widely accepted as palliative treatment for both resectable and advanced gastric cancer, leading to improvements in quality of life for patients and prolonged survival. Although gastric cancer is considered as relatively insensitive to chemotherapeutics and several important chemotherapeutic agents such as cisplatin (DDP) and5-fluorouracil (5-FU) are effective to date, the survival time has been unsatisfactory so far. Multiple lines of evidence suggest that long-term chemotherapy often fails to eliminate all cancer cells due to the development of multidrug resistance (MDR), which can further caused the cancer recurrence.
     AnxA2(ANXA2), a calcium dependent phospholipid binding protein, is involved in maintaining the plasticity and rearrangement of the actin cytoskeleton. There is overwhelming evidence that ANXA2is a multifunctional protein which is involved in tumor progression, proliferation, apoptosis, and signaling transduction. ANXA2may act as tumor suppressors or tumor promoters depending on the types of tumor cells and tissues. For example, increased ANXA2tissue levels have been observed in malignancies of the liver and breast, however, decreased ANXA2tissue levels have been observed in malignancies of the esophageal and prostate. Therefore, ANXA2may serve as an ideal target for cancer therapy and a biomarker for studying tumor progression, proliferation, apoptosis, and tumor patients' prognosis. However, the role of ANXA2in gastric cancer is not clear.
     Objectives To investigate the ANXA2expression in gastric cancer as well as its impact and mechanisms on drug resistance. To clarify the role of ANXA2in the development of gastric cancer occur, as to provide theoretical basis for targeted therapy of gastric cancer.
     Methods ANXA2expression in both gastric cancer tissues and cell lines were detected by quantitative real-time PCR (RT-qPCR) and Western blotting. The cell proliferation was measured by SRB assay. The pool of siRNA against ANXA2were designed and synthesized and then transfected into resistant gastric cancer SGC7901/DDP cells. ANXA2expression was detected by RT-qPCR and Western blotting. Drug sensitivity of SGC7901/DDP cells to one P-gp-related drug (doxorubicin) and on P-gp-non-related drugs (5-FU and cisplatin) were measured by the SRB assay. In addition, the effect of ANXA2siRNA on the expression of MDR-related genes and activation of some molecular in signaling pathway were also observed.
     Results are as follows:
     Part one: The study of ANXA2expression in gastric cancer tissues
     In the first part, we investigated the expression of ANXA2in gastric cancer tissue by quantitative real-time RT-PCR and Western blot. The results are as follows:
     1Expression differences of ANXA2mRNA between gastric cancer tissue and adjacent normal tissues
     The mRNA level of ANXA2in the clinical samples of gastric cancer and adjacent normal tissues were detected by RT-PCR. The results showed that ANXA2mRNA expression was significantly higher in cancer tissues compared to that in adjacent normal tissues, suggesting that Annexin A3plays an important role in gastric carcinogenesis.
     2Expression differences of ANXA2protein between gastric cancer tissue and adjacent normal tissues
     The protein level of ANXA2in the clinical samples of gastric cancer and adjacent normal tissues were detected by western blot. The results showed that ANXA2protein expression was significantly higher in cancer tissues compared to that in adjacent normal tissues, suggesting that Annexin A3plays an important role in gastric carcinogenesis.
     Part two: The study of ANXA2expression in gastric cancer differentiation
     In the second part, to investigate the significance of ANXA2in gastric carcinoma differentiation, we detected the expression of Annexin A3in gastric cancer tissue and gastric cancer cell lines with the various differentiat ion by quantitative real-time RT-PCR, and Western blot.
     1Correlation of Annexin A3expression with gastric cancer tissues with various differentiation grades
     Generally, the poorer GC differentiation, the worse the prognosis was. To assess whether ANXA2were related with GC differentiation, the expression of ANXA2in GC tissues from stage I-Ⅲ GC patients was further detected by RT-QPCR, and western blotting analysis. And the results showed that the higher differentiation stage, the lower expression level of ANXA2was, indicating that the expression level of ANXA2was negative correlated with the differentiation stage of gastric tumor.
     2Correlation of Annexin A3expression with cultured gastric cancer cell lines with various differentiation grades
     To further verify the correlation of ANXA2expression with GC differentiation and the feasibility of following study for mechanism, ANXA2expression in GC cell lines (MKN28, SGC7901and BGC823) with various differentiation stage was also detected. quantitative real-time RT-QPCR, western blotting analysis, and immunocytochemistry staining. The results of RT-QPCR and western blotting analysis showed that ANXA2expression were MKN-28, SGC-7901and BGC-823in increasing order, which is consistent with ANXA2expression in differentiation stage of gastric cancer tissues.
     Part three: Effect of ANXA2-siRNA transfection to chemosensitivity of gastric cancer
     In the third part, to investigate the significance ANXA2expression of in a gastric cancer cell line SGC7901and a DDP resistant gastric cancer cell line, and gastric cancer cell resistance change after ANXA2-siRNA transfection, to make clear ANXA2mechanism of drug resistance in gastric cancer cell by quantitative real-time RT-PCR and Western blot.
     1Expression of ANXA2in MDR gastric cancer cells
     To address the role of ANXA2in the multidrug resistance of GC, the IC50values of DDP in the SGC7901/DDP and parent SGC7901cells were determined to establish the multidrug resistance cell line firstly. The results of SRB showed that the IC50values of DDP is (6.08±1.52) μg/ml and (0.26±0.02) μg/ml in the SGC7901/DDP and SGC7901cells, respectively, which indicated that the SGC7901/DDP cells were23.4times more resistant to DDP than SGC7901cells.
     Further, we compared the expression of ANXA2in DDP-resistant SGC7901/DDP cells and parent SGC7901cells. quantitative real-time RT-QPCR and western blotting analysis results revealed that the expression of ANXA2was higher in SGC7901/DDP cells than that in parent SGC7901cells at both mRNA and protein levels. These data suggest that ANXA2is associated with the development of MDR in gastric cancer cells.
     2Effect of siRNA on ANXA2expression in SGC7901/DDP cells
     To further investigate the effects of ANXA2in the multidrug resistance of GC, siRNA techniques was employed in this study. We first investigated the ability of an ANXA2siRNA to inhibit the expression of ANXA2in SGC7901/DDP cells. The results of quantitative real-time RT-QPCR and western blotting showed that20,40, and80nM ANXA2siRNA downregulated the endogenous ANXA2mRNA and protein expression efficiently, and that its optimal concentration is80nM, with an inhibition of approximately90%compared to controls, suggesting that ANXA2siRNAs efficiently inhibited the transcription and translation of ANXA2in SGC7901/DDP cells.
     We also detected ANXA2expression in SGC7901/DDP cells after80nM ANXA2siRNA transfection for24,48, and72h, the results of quantitative real-time RT-QPCR and western blotting showed that endogenous ANXA2mRNA and protein expression were decreased in a time-dependent manner. After80nM ANXA2siRNA transfection for24,48, and72h, more than90%of the ANXA2expression in SGC7901/DDP cells was inhibited compared to controls, suggesting that ANXA2siRNAs efficiently inhibited the transcription and translation of ANXA2in SGC7901/DDP cells.3Effect of ANXA2-siRNA on MDR of SGC7901/DDP cells
     Although SGC7901/DDP cells were selected with the chemotherapeutic drug cisplatin, they also displayed multiple resistances to other chemotherapeutic drugs. Therefore, we futher investigate the effects of ANXA2siRNA on the drug sensitivity of SGC7901/DDP to one P-gp-related drug (doxorubicin) and on P-gp-non-related drugs (5-FU and cisplatin). The IC50values for doxorubicin,5-fluorouracil, and cisplatin were all higher in SGC7901/DDP cells than that in parent SGC7901cells. The results showed that drug resistant drug resistant SGC7901cells displayed cross resistance to these chemotherapeutic drugs. In addition, after transfection of80nM ANXA2siRNA, the IC50values for doxorubicin,5-fluorouracil, and cisplatin was decreased significantly compared with non-targeted siRNA and Lipofectamine2000TM group, indicating that ANXA2siRNA could partially reverse resistance to DDP in multi-drug resistant SGC7901cells.
     Part four: Effect of ANXA2on the MDR-related genes expression in SGC7901/DDP cells after ANXA2-siRNA transfection
     In the fourth part, the expression of MDR-related genes including P-gp, MRP1, Bcl-2, and Bax were detected in SGC7901/DDP cells after ANXA2-siRNA transfection by quantitative real-time RT-QPCR and western blotting.
     1Effect of ANXA2on the mRNA levels of MDR-related genes in SGC7901/DDP cells
     To further explore the potential mechanism of ANXA2on development of MDR, the MDR-related genes including P-gp, MRP1, Bcl-2, and Bax were detected by quantitative real-time RT-QPCR. We observed that the expression of P-gp, MRP1, Bcl-2was significantly downregulated, while the expression of Bax was markedly upregulated by80nM ANXA2siRNA in SGC7901/DDP cells. However, the expression of GST-π,TOPO-I, and TOPO-II were not changed.2Effect of ANXA2on the protein levels of MDR-related genes in SGC7901/DDP cells
     The protein level of the MDR-related genes were also detected by western blotting. The results showed that the protein expression of P-gp, MRP1, Bcl-2was significantly downregulated, while the expression of Bax was markedly upregulated by80nM ANXA2siRNA in SGC7901/DDP cells. However, the expression of GST-π,TOPO-I, and TOPO-II were not changed.
     Part five: Effect of ANXA2on the phosphorylation of MAPKs and PI3K/Akt signaling pathway in SGC7901/DDP Cells after ANXA2-siRNA transfection
     In the last part, the phosphorylation of MAPKs and PI3K/Akt signaling molecular were detected in SGC7901/DDP cells after ANXA2-siRNA transfection by western blotting.
     Western blotting analysis of MAP kinases and AKT revealed that phosphorylation of p38-MAPK and AKT, but not ERK1/2and JNKs was specifically decreased in SGC7901/DDP after transfection of80nM ANXA2siRNA.
     Conclusions:
     1Overexpression of ANXA2was found in gastric cancer tissues, and significant relationship between expression of ANXA2and degree of tumor differentiation was also found in present research. All results suggested that ANXA2may play an important role in carcinogenesis and progression of gastric cancer.
     2ANXA2was nvolved in multidrug resistance of gastric cancer. After endogenous ANXA2was inhibited by siRNA, the chemosensitivity in vitro of SGC7901/DDP became more sensitive, which was related to the ability of ANXA2to regulate multidrug resistance genes such as P-gp, MRP1, Bcl-2, etc.
     3Activation of p38-MAPK and AKT signaling pathway was inhibited by the ANXA2siRNA transfection in resistant gastric cancer cells. Our results suggested that drug resistance in SGC7901/DDP cells is attributed at least partially to the activation of p38-MAPK and AKT signal pathway and inhibition of these pathways could increase the sensitivity of SGC7901/DDP to P-gp-unrelated drugs as well as P-gp-related drug.
引文
1Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002. CACancer J Clin.2005,55(2):74~108
    2Roukos DH. Genome-wide association studies and aggressive surgerytoward individualized prevention, and improved local control and overallsurvival for gastric cancer. Ann Surg Oncol,2009,16(4):795~798
    3Wu K, Nie Y, Guo C, et al. Molecular basis of therapeutic approaches togastric cancer. J Gastroenterol Hepatol,2009,24(1):37~41
    4Leung WK, Wu MS, Kakugawa Y, et al. Asia Pacific Working Group onGastric Cancer.Screening for gastric cancer in Asia: current evidence andpractice. Lancet Oncol,2008,9(3):279~287
    5Chen ZY. Research progress of the pathogenesis and therapy of gastriccancer. Journal of Community Medicine,2012,10(4):56~58
    6Ling Y. Incidence and mortality of gastric cancer in China. World JGastroenterol,2006,12(1):17~20
    7Rescher U, Gerke V. Annexins-unique membrane binding proteins withdiverse functions. J Cell Sci,2004,117(Pt13):2631~2639
    8Wu N, Liu S, Guo C, et al. The role of annexin A3playing in cancers.Clin Transl Oncol,2013,15(2):106~110
    9Konopka-Postupolska D, Clark G, Hofmann A. Structure, function andmembrane interactions of plant annexins: An update. Plant Sci,2011,181(3):230~241
    10Moss SE, Morgan RO, The annexins, Genome Biol,2004,5(4):219.1~8
    11Anji A, Kumari M. A cis-acting region in the N-methyl-d-aspartate R13’-untranslated region interacts with the novel RNA-bindingproteins betasubunit of alpha glucosidase Ⅱ and annexinA2-effect of chronic ethanolexposure in vivo. Eur J Neurosci,2011,34(8):1200~1211
    12李秀娟,刘桂桃,张志强,等.应用蛋白质组学和组织芯片研究Annexin A2在胃癌中的表达.中国病理生理杂志2012,28(4):619~624
    13Zhang HJ, Yao DF, Yao M, et al. Annexin A2silencing inhibits invasion,migration, and tumorigenic potential of hepatoma cells. World JGastroenterol,2013,19(24):3792~801
    14Sonia D, Noriyoshi K, Yusuke S,et al. Annexin Ⅱ interactions with the annexin Ⅱ receptor enhance multiple myeloma cell adhesion and growth in the bone marrow microenvironment. Blood,2012,119(8):1888~1896
    15Yang T, Peng H, Wang J, et al. Prognostic and diagnostic significance ofannexin A2in colorectal cancer. Colorectal Dis,2013,15(7):e373~381
    16Shetty PK, Thamake SI, Biswas S, et al. Reciprocal regulation of annexinA2and EGFR with Her-2in Her-2negative and herceptin-resistantbreast cancer. PLoS One,2012,7(9):e44299
    17Wang CY, Chen CL, Tseng YL, et al. Annexin A2silencing induces G2arrest of non-small cell lung cancer cells through p53-dependent and-independent mechanisms. J Biol Chem,2012,287(39):32512~32524
    18Zheng L, Jaffee EM. Annexin A2is a new antigenic target for pancreaticcancer immunotherapy. Oncoimmunology,2012,1(1):112~114
    19Das S, Shetty P, Valapala M, et al. Signal transducer and activator oftranscription6(STAT6) is a novel interactor of annexin A2in prostatecancer cells. Biochemistry,2010,49(10):2216~2226
    20Lokman NA, Ween MP, Oehler MK, et al. The role of annexin A2intumorigenesis and cancer progression. Cancer Microenviron,2011,4(2):199~208
    21Hayes MJ, Shao DM, Grieve A, et al. Annexin A2at the interfacebetween F-actin and membranes enriched in phosphatidylinositol4,5,-bisphosphate. Biochim Biophys Acta,2009,1793(6):1086-1095
    22Madureira PA, Surette AP, Phipps KD, et al. The role of the annexin A2heterotetramer in vascular fibrinolysis. Blood,2011,118(18):4789~4797
    23Das S, Sierra JC, Soman KV, et al. Differential protein expression profilesof gastric epithelial cells following Helicobacter pylori infection usingProteinChips. J ProteomeRes,2005,4(3):920~930
    24Zhang Q;Ye Z;Yang Q, et all. Upregulated expression of annexin II is a
    prognostic marker for patients with gastric cance. World J Surg
    Oncol.2012V10N:103~113
    1Zhang HJ, Yao DF, Yao M, et al. Annexin A2silencing inhibits invasion,migration, and tumorigenic potential of hepatoma cells.World JGastroenterol,2013,19(24):3792-3801
    2Sonia D, Noriyoshi K, Yusuke S, et al. Annexin II interactions with theannexin Ⅱ receptor enhance multiple myeloma cell adhesion andgrowth in the bone marrow microenvironment. Blood,2012,119(8):1888~1896
    3Yang T, Peng H, Wang J, et al. Prognostic and diagnostic significance ofannexin A2in colorectal cancer. Colorectal Dis,2013,15(7):e373~381
    4Shetty PK, Thamake SI, Biswas S, et al. Reciprocal regulation of annexinA2and EGFR with Her-2in Her-2negative and herceptin-resistantbreast cancer. PLoS One,2012,7(9):e44299
    5Wang CY, Chen CL, Tseng YL, et al. Annexin A2silencing induces G2arrest of non-small cell lung cancer cells through p53-dependent and-independent mechanisms. J Biol Chem,2012,287(39):32512~32524
    6Zheng L, Jaffee EM. Annexin A2is a new antigenic target for pancreaticcancer immunotherapy. Oncoimmunology,2012,1(1):112~114
    7Das S, Shetty P, Valapala M, et al. Signal transducer and activator oftranscription6(STAT6) is a novel interactor of annexin A2in prostatecancer cells. Biochemistry,2010,49(10):2216~2226
    8Lokman NA, Ween MP, Oehler MK, et al. The role of annexin A2intumorigenesis and cancer progression. Cancer Microenviron,2011,4(2):199~208
    9Hayes MJ, Shao DM, Grieve A, et al. Annexin A2at the interfacebetween F-actin and membranes enriched in phosphatidylinositol4,5,-bisphosphate. Biochim Biophys Acta,2009,1793(6):1086~1095
    10Madureira PA, Surette AP, Phipps KD, et al. The role of the annexin A2heterotetramer in vascular fibrinolysis. Blood,2011,118(18):4789~4797
    11Emoto K, Sawada H, Yamada Y, et al. Annexin II overexpression iscorrelated with poor prognosis in human gastric carcinoma. AnticancerRes,2001,21(2B):1339~1345
    12Zhang Q, Ye Z, Yang Q, et al. Upregulated expression of annexin II is aprognostic marker for patients with gastric cancer. World J Surg Oncol,2012,10:103
    13Gilmore WS, Olwill S, McGlynn H, et al. Annexin A2expression duringcellular differentiation in myeloid cell lines. Biochem Soc Trans,2004,32(Pt6):1122~1123
    14Dathe C1, Daigeler AL, Seifert W, et al. Annexin A2mediates apicaltrafficking of renal Na+-K+-2Cl—cotransporter. J Biol Chem,2014Feb13[Epub ahead of print]
    15De Seranno S1, Benaud C, Assard N, et al. Identification of an AHNAKbinding motif specific for the Annexin2/S100A10tetramer. J Biol Chem,2006,281(46):35030~35038
    16Benaud C1, Gentil BJ, Assard N, et al. AHNAK interaction with theannexin2/S100A10complex regulates cell membrane cytoarchitecture. JCell Biol,2004,164(1):133~144
    17Chasserot-Golaz S1, Vitale N, Umbrecht-Jenck E, et al. Annexin2promotes the formation of lipid microdomains required forcalcium-regulated exocytosis of dense-core vesicles. Mol Biol Cell,2005,16(3):1108~1119
    18Li X, Chen L, Liang XJ, et al. Annexin A5protein expression isassociated with the histological differentiation of uterine cervicalsquamous cell carcinoma in patients with an increased serumconcentration. Mol Med Report,2012,6(6):1249~1254
    19Watanabe T, Ito Y, Sato A, et al. Annexin A3as a negative regulator ofadipocyte differentiation. J Biochem,2012,152(4):355~363
    20Zhu DW, Liu Y, Yang X, et al. Annexin A1expression predicts benefitfrom induction chemotherapy in oral cancer patients with moderate orpoor pathologic differentiation grade. BMC Cancer,2013,13:301
    21Zhu DW1, Yang X, Yang CZ, et al. Annexin A1down-regulation in oralsquamous cell carcinoma correlates to pathological differentiation grade.Oral Oncol,2013,49(6):542~550
    22Kang WY, Chen WT, Huang YC, et al. Overexpression of annexin1inthe development and differentiation of urothelial carcinoma. Kaohsiung JMed Sci,2012,28(3):145~150
    23Minashima T, Small W, Moss SE, et al. Intracellular modulation ofsignaling pathways by annexin A6regulates terminal differentiation ofchondrocytes. J Biol Chem,2012,287(18):14803~14815
    24Lokman NA, Ween MP, Oehler MK, et al. The role of annexin A2intumorigenesis and cancer progression. Cancer Microenviron,2011,4(2):199~208
    25Rodrigo tapia JP,Pena Alonso E,Garcia-Pedrero JM, et al.Annexin A2expression in head and neck squamous cell carcinoma.ActaOtorrinolaringol Esp,2007,58(6):257~262
    1Soerjomataram I, Lortet-Tieulent J, Parkin DM, et al. Global burden ofcancer in2008: a systematic analysis of disabilityadjusted life-years in12world regions. Lancet,2012,380(9856):1840~1850
    2Qiu MZ, Wang ZQ, Luo HY, et al. Prognostic analysis in node-negativegastric cancer patients in China. Tumour Biol,2011,32(3):489~492
    3Lage H. An overview of cancer multidrug resistance:a still unsolvedproblem. Cell Mol Life Sci,2008,65(20):3145~3167
    4Türk D, Szakács G. Relevance of multidrug resistancein the age oftargeted therapy. Curr Opin Drug Discov Devel,2009,12:246~252
    5Hall MD, Handley MD, Gottesman MM. Is resistance useless? Multidrugresistance and collateral sensitivity. Trends Pharmacol Sci,2009,30(10):546~556
    6Zhang D, Fan D. New insights into the mechanisms of gastric cancermultidrug resistance and future perspectives. Future Oncol,2010,6:527~537
    7Davidson BL, McCray PB. Current prospects forRNA interference-basedtherapies. Nat Rev Genet,2011,12:329~340
    8Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic:challengesand future directions. Nat Rev Cancer,2011,11:59~67
    9Fujita T, Yanagihara K, Takeshita F, et al. Intraperitoneal delivery of asmall interfering RNA targeting NEDD1prolongs the survival of scirrhousgastric cancer model mice. Cancer Sci,2013,104(2):214~222
    10Lage H. Therapeutic potential of RNA interferencein drug-resistantcancers. Future Oncol,2009,5:169~185
    11Rescher U, Gerke V. Annexins-unique membrane binding proteins withdiverse functions. J Cell Sci,2004,117(Pt13):2631~2639
    12Wu N, Liu S, Guo C, et al. The role of annexin A3playing in cancers. ClinTransl Oncol,2013,15(2):106~110
    13Konopka-Postupolska D, Clark G, Hofmann A. Structure,function andmembrane interactions of plant annexins: An update.Plant Sci,2011,181(3):230~241
    14Moss SE, Morgan RO. The annexins. Genome Biol,2004,5(4):219.1~8
    15Zhu F, Wang Y, Zeng S, et al. Involvement of annexin A1in multidrugresistance of K562/ADR cells identified by the proteomic study. OMICS,2009,13(6):467~476
    16Zhang F, Zhang L, Zhang B, et al. Anxa2plays a critical role in enhancedinvasiveness of the multidrug resistant human breast cancer cells. JProteome Res,2009,8(11):5041~5047
    1Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002. CACancer J Clin,2005,55(2):74~108
    2Roukos DH. Genome-wide association studies and aggressive surgerytoward individualized prevention, and improved local control and overallsurvival for gastric cancer. Ann Surg Oncol,2009,16(4):795~798
    3Wu K, Nie Y, Guo C, et al. Molecular basis of therapeutic approaches togastric cancer. J Gastroenterol Hepatol,2009,24(1):37~41
    4Leung WK, Wu MS, Kakugawa Y, et al. Asia Pacific Working Group onGastric Cancer.Screening for gastric cancer in Asia: current evidence andpractice. Lancet Oncol,2008,9(3):279~287
    5Chen ZY. Research progress of the pathogenesis and therapy of gastriccancer. Journal of Community Medicine,2012,10(4):56~58
    6Ling Y. Incidence and mortality of gastric cancer in China. World JGastroenterol,2006,12(1):17~20
    7Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATPbinding cassette (ABC) family: an overview. Adv Drug Del Rev,2003,55(1):3~29
    8van Zanden JJ, Geraets L, Wortelboer HM, et al. Structural requirementsfor the flavonoid-mediated modulation of glutathione S-transferase P1-1and GS-X pump activity in MCF7breast cancer cells. Biochem Pharmacol,2004,67(8):1607~1617
    9Oloumi A, MacPhail SH, Johnston PJ, et al. Changes in subcellulardistribution of topoisomerase IIalpha correlate with etoposide resistance inmulticell spheroids and xenograft tumors. Cancer Res,2000,60(20):5747~5753
    10Beck WT. The cell biology of multiple drug resistance. BiochemPharmacol,1987,36(18):2879~2887
    11Lúcio KA, Rocha Gda G, Mon o-Ribeiro LC, et al. Oleanolic acidinitiates apoptosis in non-small cell lung cancer cell lines and reducesmetastasis of a B16F10melanoma model in vivo. PLoS One,2011,6(12):e28596
    12Sharom FJ. ABC multidrug transporters: structure, function and role inchemoresistance. Pharmacogenomics,2008,9(1):105~127
    13Wang Y, Liu L, Liu X, et al. Shugoshin1enhances multidrug resistance ofgastric cancer cells by regulating MRP1, Bcl-2, and Bax genes. TumourBiol,2013,34(4):2205~2214
    14Morse MA. The role of glutathione S-transferase P1-1in colorectal cancer:friend or foe. Gastroenterology,2001,121(4):1010~1013
    15Krishnan P, Bastow KF. Novel mechanism of cellular DNA topoisomeraseII inhibition by the pyranonaphthoquinone derivatives alpha-lapachoneand beta-lapachone. Cancer Chemother Phar macol,2001,47(3):187~198
    1Johnson GL, Lapadat R. Mitogen-activated protein kinase pathwaysmediated by ERK, JNK, and p38protein kinases. Science,2002,298(5600):1911~1912
    2Takeuchi A, Eto M, Shiota M, et al. Sunitinib enhances antitumor effectsagainst chemotherapy-resistant bladder cancer through suppression ofERK1/2phosphorylation. Int J Oncol,2012,40:1691~1696
    3Guo X, Ma N, Wang J, et al. Increased p38-MAPK is responsible forchemotherapy resistance in human gastric cancer cells[J]. BMC Cancer,2008,8:375
    4Zhu MM, Tong JL, Xu Q, et al. Increased JNK1signaling pathway isresponsible for ABCG2-mediated multidrug resistance in human coloncancer. PLoS One,2012,7(8):e41763
    5Westhoff MA, Faham N, Marx D, et al. Sequential dosing inchemosensitization: targeting the PI3K/Akt/mTOR pathway inneuroblastoma. PLoS One,2013,8(12):e83128
    6Ding D, Wei S, Song Y, et al. Osthole exhibits anti-cancer property in ratglioma cells through inhibiting PI3K/Akt and MAPK signalingpathways.Cell Physiol Biochem,2013,32(6):1751~1760
    7Hsieh CH, Cheng LH, Hsu HH, et al. Apicidin-resistant HA22Thepatocellular carcinoma cells strongly activated the Wnt/β-cateninsignaling pathway and MMP-2expression via the IGF-IR/PI3K/Aktsignaling pathway enhancing cell metastatic effect. Biosci BiotechnolBiochem,2013,77(12):2397~2404
    8Xie X, Tang B, Zhou J, et al. Inhibition of the PI3K/Akt pathway increasesthe chemosensitivity of gastric cancer to vincristine. Oncol Rep,2013,30(2):773~782
    9Ruby J, Rehani K, Martin M. Treponema denticola activatesmitogen-activated protein kinase signal pathways through Toll-likereceptor2. Infect I mmun,2007,75(12):5763~5768
    10Zhang W, Liu HT. MAPK signal pathways in the regulation of cellproliferation in mammalian cells. Cell Res,2002,12(1):9~18.
    11Johnson GL, Lapadat R. Mitogen-activated protein kinase pathwaysmediated by ERK, JNK, and p38protein kinases. Science,2002,298(5600):1911~1912
    12Zhao Y, Shen S, Guo J, et al. Mitogen-activated protein kinases andchemoresistance in pancreatic cancer cells. J Surg Res,2006,136(2):325~335
    13Shen H, Xu W, Luo W, et al. Upregulation of mdr1gene is related toactivation of the MAPK/ERK signal transduction pathway and YB-1nuclear translocation in B-cell lymphoma. Exp Hematol,2011,39(5):558~569
    14Guo X, Ma N, Wang J, et al. Increased p38-MAPK is responsible forchemotherapy resistance in human gastric cancer cells. BMC Cancer,2008,8:375
    15Barancík M, Bohácová V, Sedlák J, et al. LY294,002, a specific inhibitorof PI3K/Akt kinase pathway, antagonizes P-glycoprotein-mediatedmultidrug resistance. Eur J Pharm Sci,2006,29(5):426~434
    16Liang J, Ge F, Guo C, et al. Inhibition of PI3K/Akt partially leads to theinhibition of PrP(C)-induced drug resistance in gastric cancer cells. FEBSJ,2009,276(3):685~694
    1Bandorowicz-Piku a J, Wo M, Piku a S.Participation of annexins insignal transduction, regulation of plasma membrane structure andmembrane repair mechanisms. Postepy Biochem,2012,58(2):135~148
    2Fatimathas L, Moss SE. Annexins as disease modifiers. HistolHistopathol,2010,25(4):527~532
    3Barnes JA, Gomes AV. Proteolytic signals in the primary structure ofannexins. Mol Cell Biochem,2002,231(1-2):1~7
    4Moss SE, Morgan RO. The annexins. Genome Biol,2004,5(4):219
    5Hawkins TE, Merrifield CJ, Moss SE. Calcium signaling and annexins.Cell Biochem Biophys,2000,33(3):275~296
    6Langen R, Isas JM, Luecke H, et al. Membrane-mediated assembly ofannexins studied by site-directed spin labeling. J Biol Chem,1998,273(35):22453~22457
    7ranishte T, Arsenescu-Georgescu C, Tomescu MC, et al. Annexins,calcium-dependent phospholipid binding proteins in irreducible heartfailure. Rev Med Chir Soc Med Nat Iasi,2013,117(3):648~653
    8Gillette JM, Chan DC, Nielsen-Preiss SM. Annexin2expression isreduced in human osteosarcoma metastases. J Cell Biochem,2004,92(4):820-832.
    9Fernández-Madrid F, Tang N, Alansari H, et al. Autoantibodies toAnnexin XI-A and Other Autoantigens in the Diagnosis of Breast Cancer.Cancer Res,2004,64(15):5089~5096
    10Guzmán-Aránguez A, Olmo N, Turnay J, et al. Differentiation of humancolon adenocarcinoma cells alters the expression and intracellularlocalization of annexins A1, A2, and A5. J Cell Biochem,2005,94(1):178~193
    11Hayes MJ, Longbottom RE, Evans MA, et al. Annexinopathies. SubcellBiochem,2007,45:1~28
    12Iglesias JM, Morgan RO, Jenkins NA, et al. Comparative genetics andevolution of annexin A13as the founder gene of vertebrate annexins. MolBiol Evol,2002,19(5):608~618
    13Rand JH. The annexinopathies: a new category of diseases. BiochimBiophys Acta,2000,1498(2-3):169~173
    14Kenis H, Hofstra L, Reutelingsperger CP. Annexin A5: shifting from adiagnostic towards a therapeutic realm. Cell Mol Life Sci,2007,64(22):2859~2862
    15Singh P. Role of Annexin-II in GI cancers: interaction withgastrins/progastrins. Cancer Lett,2007,252(1):19~35
    16Rosengarth A, Luecke H. A calcium-driven conformational switch of theN-terminal and core domains of annexin A1. J Mol Biol,2003,326(5):1317~1325
    17Dempsey AC, Walsh MP, Shaw GS. Unmasking the annexin I interactionfrom the structure of Apo-S100A11. Structure,2003,11(7):887~897
    18Solito E, Christian HC, Festa M, et al. Post-translational modificationplays an essential role in the translocation of annexin A1from thecytoplasm to the cell surface. FASEB J,2006,20(9):1498~1500
    19Waisman DM. Annexin II tetramer: structure and function. Mol CellBiochem,1995,149-150:301~322
    20Kwon M, MacLeod TJ, Zhang Y, et al. S100A10, annexin A2, andannexin a2heterotetramer as candidate plasminogen receptors. FrontBiosci,2005,10:300~325
    21Vedeler A, Holl s H, Grindheim AK, et al. Multiple roles of annexin A2in post-transcriptional regulation of gene expression. Curr Protein PeptSci,2012,13(4):401~412
    22Tait JF, Smith C, Xu L, et al. Structure and polymorphisms of the humanannexin III (ANX3) gene. Genomics,1993,18(1):79~86
    23Hofmann A, Raguénès-Nicol C, Favier-Perron B, et al. The annexinA3-membrane interaction is modulated by an N-terminal tryptophan.Biochemistry,2000,39(26):7712~7721
    24Sopkova J, Raguenes-Nicol C, Vincent M, et al. Ca(2+) and membranebinding to annexin3modulate the structure and dynamics of its Nterminus and domain III. Protein Sci,2002,11(7):1613~1625
    25Butsushita K, Fukuoka S, Ida K, et al. Crystal structures of sodium-boundannexin A4. Biosci Biotechnol Biochem.2009,73(10):2274~2280
    26Willshaw A, Grant K, Yan J, et al. Identification of a novel proteincomplex containing annexin A4, rabphilin and synaptotagmin. FEBS Lett,2004,559(1-3):13~21
    27Neumann JM, Sanson A, Lewit-Bentley A. Calcium-induced changes inannexin V behaviour in solution as seen by proton NMR spectroscopy.Eur J Biochem,1994,225(3):819~825.
    28Oling F, Santos JS, Govorukhina N, et al. Structure of membrane-boundannexin A5trimers: a hybrid cryo-EM-X-ray crystallography study. JMol Biol,2000,304(4):561~573
    29Oling F, Bergsma-Schutter W, Brisson A. Trimers, dimers of trimers, andtrimers of trimers are common building blocks of annexin a5two-dimensional crystals. J Struct Biol,2001,133(1):55~63
    30Smith PD, Davies A, Crumpton MJ, et al. Structure of the human annexinVI gene. Proc Natl Acad Sci U S A,1994,91(7):2713~2717
    31Verzili D, Zamparelli C, Mattei B, et al. The sorcin-annexin VIIcalcium-dependent interaction requires the sorcin N-terminal domain.FEBS Lett,2000,471(2-3):197~200
    32Liemann S, Bringemeier I, Benz J, et al. Crystal structure of theC-terminal tetrad repeat from synexin (annexin VII) of Dictyosteliumdiscoideum. J Mol Biol,1997,270(1):79~88
    33Naidu DG, Raha A, Chen XL, et al. Partial truncation of theNH2-terminus affects physical characteristics and membrane binding,aggregation, and fusion properties of annexin A7. Biochim Biophys Acta,2005,1734(2):152~168
    34Crotti TN, O'Sullivan RP, Shen Z, et al. Bone matrix regulates osteoclastdifferentiation and annexin A8gene expression. J Cell Physiol,2011,226(12):3413~3421
    35Goebeler V, Poeter M, Zeuschner D, et al. Annexin A8regulates lateendosome organization and function. Mol Biol Cell,2008,19(12):5267~5278
    36Morgan RO, Jenkins NA, Gilbert DJ, et al. Novel human and mouse annexin A10are linked to the genome duplications during early chordateevolution. Genomics,1999,60(1):40~49
    37Liu SH, Lin CY, Peng SY, et al. Down-regulation of annexin A10inhepatocellular carcinoma is associated with vascular invasion, earlyrecurrence, and poor prognosis in synergy with p53mutation. Am JPathol,2002,160(5):1831~1837
    38Bances P, Fernandez MR, Rodriguez-Garcia MI, et al. Annexin A11(ANXA11) gene structure as the progenitor of paralogous annexins andsource of orthologous cDNA isoforms. Genomics,2000,69(1):95~103
    39Lecona E, Turnay J, Olmo N, et al. Structural and functionalcharacterization of recombinant mouse annexin A11: influence of calciumbinding. Biochem J,2003,373(Pt2):437~449
    40Iglesias JM, Morgan RO, Jenkins NA, et al. Comparative genetics andevolution of annexin A13as the founder gene of vertebrate annexins. MolBiol Evol,2002,19(5):608~618
    41Turnay J, Lecona E, Fernández-Lizarbe S, et al. Structure-functionrelationship in annexin A13, the founder member of the vertebrate familyof annexins. Biochem J,2005,389(Pt3):899~911
    42Reiske H, Sui B, Ung-Medoff H, et al. Identification of annexin A13as aregulator of chemotherapy resistance using random homozygous geneperturbation. Anal Quant Cytol Histol,2010,32(2):61~69
    43谭婉燕,熊枝繁. AnxA1在食管鳞状细胞癌组织中的表达及意义.胃肠病学和肝病学杂志,2010,19(9):823~825
    44Luthra R, Singh RR, Luthra MG, et al. MicroRNA-196a targets annexinA1: a microRNA-mediated mechanism of annexin A1downregulation incancers. Oncogene,2008,27(52):6667~6678
    45Wang KL, Wu TT, Resetkova E, et al. Expression of annexin A1inesophageal and esophagogastric junction adenocarcinomas: associationwith poor outcome. Clin Cancer Res,2006,12(15):4598~4604
    46薛丽燕,滕梁红,邹霜梅,等.膜联蛋白Ⅰ在多种癌组织中的表达.中华肿瘤杂志,2007,29(6):444~448
    47Sinha P, Hütter G, K ttgen E, et al. Increased expression of annexin I andthioredoxin detected by two-dimensional gel electrophoresis of drugresistant human stomach cancer cells. J Biochem Biophys Methods,1998,37(3):105~116
    48Sato Y, Kumamoto K, Saito K, et al. Up-regulated Annexin A1expressionin gastrointestinal cancer is associated with cancer invasion and lymphnode metastasis. Exp Ther Med,2011,2(2):239~243
    49Yu G, Wang J, Chen Y, et al. Tissue microarray analysis reveals strongclinical evidence for a close association between loss of annexin A1expression and nodal metastasis in gastric cancer. Clin Exp Metastasis,2008,25(7):695~702
    50周家鹏,舒国顺,刘栋才,等.直肠癌组织中膜联蛋白A1和A2表达水平及临床病理意义.医学临床研究,2010,27(9):1654~1656
    51Li Y, Wen T, Zhu M, et al. Glycoproteomic analysis of tissues frompatients with colon cancer using lectin microarrays and nanoLC-MS/MS.Mol Biosyst,2013,9(7):1877~1887
    52He ZY, Wen H, Shi CB, et al. Up-regulation of hnRNP A1, Ezrin, tubulinβ-2C and Annexin A1in sentinel lymph nodes of colorectal cancer. WorldJ Gastroenterol,2010,16(37):4670~4676
    53Su N, Xu XY, Chen H, et al. Increased expression of annexin A1iscorrelated with K-ras mutation in colorectal cancer. Tohoku J Exp Med,2010,222(4):243~250
    54Zhang Z, Huang L, Zhao W, et al. Annexin1induced byanti-inflammatory drugs binds to NF-kappaB and inhibits its activation:anticancer effects in vitro and in vivo. Cancer Res,2010,70(6):2379~2388.
    55戴启宇,杨廷桐,陆建福,等.肝组织中膜联蛋白Ⅰ的表达与原发性肝癌病理机制的相关性[J].实用医药杂志,2013,30(8):677~679
    56Masaki T, Tokuda M, Ohnishi M, et al. Enhanced expression of theprotein kinase substrate annexin in human hepatocellular carcinoma[J].Hepatology,1996,24(1):72~81
    57锁爱莉,姚煜,张王刚.人肝癌细胞HepG2和人正常肝细胞7702的差异蛋白质组学研究.西安交通大学学报(医学版),2011,32(5):545~549
    58de Coupade C, Gillet R, Bennoun M, et al. Annexin1expression andphosphorylation are upregulated during liver regeneration andtransformation in antithrombin III SV40T large antigen transgenic mice.Hepatology,2000,31(2):371~380
    59Suo A, Zhang M, Yao Y, et al. Proteome analysis of the effects ofsorafenib on human hepatocellular carcinoma cell line HepG2. MedOncol,2012,29(3):1827~1836
    60Wang D, Zhang H, Fang Z, et al. Annexin-1downregulation is associatedwith clinical outcome in Chinese patients with hilar cholangiocarcinoma.Eur Surg Res,2010,45(3-4):151~157
    61Hongsrichan N, Rucksaken R, Chamgramol Y, et al. Annexin A1: A newimmunohistological marker of cholangiocarcinoma. World JGastroenterol,2013,19(16):2456~2465
    62Bai XF, Ni XG, Zhao P, et al. Overexpression of annexin1in pancreaticcancer and its clinical significance. World J Gastroenterol,2004,10(10):1466~1470
    63倪晓光,白晓枫,王贵齐,等.膜联蛋白A1和Ki67抗原在胰腺癌组织中的表达及其相互关系.中国肿瘤,2010,19(8):549~552
    64Liu Q, Hu H, Ran YL, et al. In vivo effect of annexin I down-regulationon the growth of human pancreatic cancer in nude mice. Zhonghua ZhongLiu Za Zhi,2008,30(12):897~900
    65Zhang L, Yang X, Zhong LP, et al. Decreased expression of Annexin A1correlates with pathologic differentiation grade in oral squamous cellcarcinoma. J Oral Pathol Med,2009,38(4):362~370
    66Nomura H, Uzawa K, Yamano Y, et al. Down-regulation of plasmamembranous Annexin A1protein expression in premalignant andmalignant lesions of the oral cavity: correlation with epithelialdifferentiation. J Cancer Res Clin Oncol,2009,135(7):943~949
    67Lin CY, Jeng YM, Chou HY, et al. Nuclear localization of annexin A1is aprognostic factor in oral squamous cell carcinoma. J Surg Oncol,2008,97(6):544~550
    68Faria PC, Sena AA, Nascimento R, et al. Expression of annexin A1mRNA in peripheral blood from oral squamous cell carcinoma patients.Oral Oncol,2010,46(1):25~30
    69张洵,支会英,张健,等.钙磷脂结合蛋白II在人食管鳞状细胞癌中的表达.中华肿瘤杂志,2003,25(4):353~355
    70Qi YJ, He QY, Ma YF, et al. Proteomic identification of malignanttransformation-related proteins in esophageal squamous cell carcinoma. JCell Biochem,2008,104(5):1625~1635
    71Feng JG, Liu Q, Qin X, et al. Clinicopathological pattern and Annexin A2and Cdc42status in patients presenting with differentiation andlymphnode metastasis of esophageal squamous cell carcinomas. Mol BiolRep,2012,39(2):1267~1274
    72Emoto K, Sawada H, Yamada Y, et al. Annexin II overexpression iscorrelated with poor prognosis in human gastric carcinoma. AnticancerRes,2001,21(2B):1339~1345.
    73马洪喜,许颖,魏振彤,等.膜联蛋白-2在胃癌患者胃黏膜组织中的表达及意义.中国老年学杂志,2012,32(18):4010~4011
    74Zhang Q, Ye Z, Yang Q, et al. Upregulated expression of annexin II is aprognostic marker for patients with gastric cancer. World J Surg Oncol,2012,10:103
    75Yan GR, Ding W, Xu SH, et al. Characterization of phosphoproteins ingastric cancer secretome. OMICS,2011,15(1-2):83~90
    76Tomonaga T1, Matsushita K, Yamaguchi S, et al. Identification of alteredprotein expression and post-translational modifications in primarycolorectal cancer by using agarose two-dimensional gel electrophoresis.Clin Cancer Res,2004,10(6):2007~2014
    77Katayama M, Nakano H, Ishiuchi A, et al. Protein pattern difference inthe colon cancer cell lines examined by two-dimensional differentialin-gel electrophoresis and mass spectrometry. Surg Today,2006,36(12):1085~1093
    78Yang T, Peng H, Wang J, et al. Prognostic and diagnostic significance ofannexin A2in colorectal cancer. Colorectal Dis,2013,15(7):e373~381
    79Fenouille N1, Grosso S, Yunchao S, et al. Calpain2-dependent IκBαdegradation mediates CPT-11secondary resistance in colorectal cancerxenografts. J Pathol,2012,227(1):118~129
    80Zobiack N, Gerke V, Rescher U. Complex formation and submembranouslocalization of annexin2and S100A10in live HepG2cells. FEBS Lett,2001,500(3):137~140
    81张海健,王理,严美娟,等.肝细胞性肝癌膜联蛋白A2异常表达的临床病理学特征及意义.中华临床医师杂志(电子版),2013,7(2):550~554
    82Yu GR, Kim SH, Park SH, et al. Identification of molecular markers forthe oncogenic differentiation of hepatocellular carcinoma. Exp Mol Med,2007,39(5):641~652
    83Mohammad HS, Kurokohchi K, Yoneyama H, et al. Annexin A2expression and phosphorylation are up-regulated in hepatocellularcarcinoma. Int J Oncol,2008,33(6):1157~1163
    84魏丽丽,李润册,强荣兵,等.膜联蛋白A2对人肝癌细胞生物学行为的影响.中国生物工程杂志,2010,30(11):11~16
    85Zhao P, Zhang W, Tang J, et al. Annexin II promotes invasion andmigration of human hepatocellular carcinoma cells in vitro via itsinteraction with HAb18G/CD147. Cancer Sci,2010,101(2):387~395
    86Yonglitthipagon P, Pairojkul C, Chamgramol Y, et al. Up-regulation ofannexin A2in cholangiocarcinoma caused by Opisthorchis viverrini andits implication as a prognostic marker. Int J Parasitol,2010,40(10):1203~1212
    87Vishwanatha JK, Chiang Y, Kumble KD, et al. Enhanced expression ofannexin II in human pancreatic carcinoma cells and primary pancreaticcancers. Carcinogenesis,1993,14(12):2575~2579
    88Díaz VM, Hurtado M, Thomson TM, et al. Specific interaction oftissue-type plasminogen activator (t-PA) with annexin II on the membraneof pancreatic cancer cells activates plasminogen and promotes invasion invitro. Gut,2004,53(7):993~1000
    89Ortiz-Zapater E, Peiró S, Roda O, et al. Tissue plasminogen activatorinduces pancreatic cancer cell proliferation by a non-catalytic mechanismthat requires extracellular signal-regulated kinase1/2activation throughepidermal growth factor receptor and annexin A2. Am J Pathol,2007,170(5):1573~1584
    90Rengifo-Cam W, Umar S, Sarkar S, et al. Antiapoptotic effects ofprogastrin on pancreatic cancer cells are mediated by sustained activationof nuclear factor-{kappa}B. Cancer Res,2007,67(15):7266~7274
    91Takano S, Togawa A, Yoshitomi H, et al. Annexin II overexpressionpredicts rapid recurrence after surgery in pancreatic cancer patientsundergoing gemcitabine-adjuvant chemotherapy. Ann Surg Oncol,2008,15(11):3157~3168
    92Kagawa S, Takano S, Yoshitomi H, et al. Akt/mTOR signaling pathway iscrucial for gemcitabine resistance induced by Annexin II in pancreaticcancer cells. J Surg Res,2012,178(2):758~767
    93Zhong LP, Wei KJ, Yang X, et al. Increased expression of Annexin A2inoral squamous cell carcinoma. Arch Oral Biol,2009,54(1):17~25
    94Huang TT, Chen JY, Tseng CE, et al. Decreased GRP78proteinexpression is a potential prognostic marker of oral squamous cellcarcinoma in Taiwan. J Formos Med Assoc,2010,109(5):326~337
    95Rodrigo JP, Lequerica-Fernández P, Rosado P, et al. Clinical significanceof annexin A2downregulation in oral squamous cell carcinoma. HeadNeck,2011,33(12):1708~1714
    96易巍. Annexin A3在胃腺癌中的表达及意义.中南大学外科学硕士论文,2012
    97Liu Y, Li Y, Tan BB, et al. Technique appraisement of comparativeproteomics and screening of differentiation-related protein in gastriccarcinoma. Hepatogastroenterology,2013,60(123):633~637
    98F Lam F, Jankova L, Dent OF, et al. Identification of distinctive proteinexpression patterns in colorectal adenoma. Proteomics Clin Appl,2010,4(1):60~70
    99Xie YQ, Fu D, He ZH, et al. Prognostic value of Annexin A3in humancolorectal cancer and its correlation with hypoxia-inducible factor-1α.Oncol Lett,2013,6(6):1631~1635
    100宗明珠,冯婉婷,杜楠,等.结直肠癌奥沙利铂耐药相关蛋白的筛选与鉴定.肿瘤,2013,33(3):223~228
    101徐康. Anxa3表达上调对小鼠肝癌Hca-P细胞株生物学行为的影响.大连医科大学生物化学与分子生物学硕士论文,2012
    102Pan QZ, Pan K, Weng DS, et al. Annexin A3promotes tumorigenesis andresistance to chemotherapy in hepatocellular carcinoma. Mol Carcinog,2013,[Epub ahead of print]
    103Moghanibashi M, Jazii FR, Soheili ZS, et al. Proteomics of a newesophageal cancer cell line established from Persian patient. Gene,2012,500(1):124~133
    104Lin LL, Chen CN, Lin WC, et al. Annexin A4: A novel molecular markerfor gastric cancer with Helicobacter pylori infection using proteomicsapproach. Proteomics Clin Appl,2008,2(4):619~634
    105Lin LL, Huang HC, Ogihara S, et al. Helicobacter pylori Disrupts HostCell Membranes, Initiating a Repair Response and Cell Proliferation. Int JMol Sci,2012,13(8):10176~10192
    106张志强,聂永梅,李秀娟,等. ANXA2和ANXA4在胃腺癌中的表达及临床意义.世界华人消化杂志,2012,20(11):930~935
    107Alfonso P, Ca amero M, Fernández-Carbonié F, et al. Proteome analysisof membrane fractions in colorectal carcinomas by using2D-DIGEsaturation labeling. J Proteome Res,2008,7(10):4247~4255
    108Wang JJ, Liu Y, Zheng Y, et al. Comparative proteomics analysis ofcolorectal cancer. Asian Pac J Cancer Prev,2012,13(4):1663~1666
    109蔡观福,王俊江,吴德庆,等. Annexin A4在结直肠癌中的表达及意义.广东医学,2011,32(20):2655~2657
    110Cui JF, Liu YK, Zhang LJ, et al. Identification of metastasis candidateproteins among HCC cell lines by comparative proteome and biologicalfunction analysis of S100A4in metastasis in vitro. Proteomics,2006,6(22):5953~5961
    111李泰阶,郭坤,李山,等.膜联蛋白A4对肝癌细胞株MHCC97H黏附能力及黏附相关基因表达的影响.临床检验杂志,2013,31(8):588~591
    112陈滨,彭民浩,李佳荃.膜联蛋白A4在原发性肝细胞癌中的表达及其意义.广西医学,2009,31(3):308~311
    113Shen J, Person MD, Zhu J, et al. Protein expression profiles in pancreaticadenocarcinoma compared with normal pancreatic tissue and tissueaffected by pancreatitis as detected by two-dimensional gelelectrophoresis and mass spectrometry. Cancer Res,2004,64(24):9018~9026
    114Sitek B, Sipos B, Alkatout I, et al. Analysis of the pancreatic tumorprogression by a quantitative proteomic approach andimmunhistochemical validation. J Proteome Res,2009,8(4):1647~1656
    115侯令密,汪建国,幸天勇,等.金黄地鼠胰腺癌模型差异蛋白质组学研究[J].重庆医学,2011,40(36):3646~3649
    116Jaiswal K, Lopez-Guzman C, Souza RF, Spechler SJ, Sarosi GA Jr. Bilesalt exposure increases proliferation through p38and ERK MAPKpathways in a non-neoplastic Barrett's cell line. Am J Physiol GastrointestLiver Physiol.2006Feb;290(2):G335~42
    117伍小平,唐英姿,黄卫国,等.胃癌多药耐药蛋白的相互作用蛋白鉴定及分子机制.世界华人消化杂志,2011,19(35):3568~3573
    118Chiang JH, Yang JS, Ma CY, et al. Danthron, an anthraquinone derivative,induces DNA damage and caspase cascades-mediated apoptosis in SNU-1human gastric cancer cells through mitochondrial permeability transitionpores and Bax-triggered pathways. Chem Res Toxicol,2011,24(1):20~29
    119Guo LY, Joo EJ, Son KH, et al. Cimiside E arrests cell cycle and inducescell apoptosis in gastric cancer cells. Arch Pharm Res,2009,32(10):1385~1392
    120Peng B, Guo C, Guan H, et al. Annexin A5as a potential marker intumors. Clin Chim Acta,2014,427:42~48
    121赵帅,肖琳.结肠腺癌中膜联蛋白A5的表达及其临床意义.肿瘤学杂志,2013,19(5):378~381
    122Xue G, Hao LQ, Ding FX, et al. Expression of annexin a5is associatedwith higher tumor stage and poor prognosis in colorectaladenocarcinomas. J Clin Gastroenterol,2009,43(9):831~837
    123Wang JJ, Chern YT, Chang YF, et al. Dimethyladamantylmaleimide-induced in vitro and in vivo growth inhibition of human colon cancer Colo205cells. Anticancer Drugs,2002,13(5):533~543
    124Keshavan P, Schwemberger SJ, Smith DL, et al. Unconjugated bilirubininduces apoptosis in colon cancer cells by triggering mitochondrialdepolarization. Int J Cancer,2004,112(3):433~445
    125Wang X, Zhang S, Zhang J, et al. Annexin A6is down-regulated throughpromoter methylation in gastric cancer[J]. Am J Transl Res,2013,5(5):555~562
    126Clifton JG, Brown MK, Huang F, et al. Identification of members of theannexin family in the detergent-insoluble fraction of rat Morris hepatomaplasma membranes. J Chromatogr A,2006,1123(2):205~211
    127Sun MZ, Liu S, Tang J, et al. Proteomics analysis of two micehepatocarcinoma ascites syngeneic cell lines with high and low lymphnode metastasis rates provide potential protein markers for tumormalignancy attributes to lymphatic metastasis. Proteomics,2009,9(12):3285~3302
    128Guo C, Liu S, Greenaway F, et al. Potential role of annexin A7in cancers.Clin Chim Acta,2013,423:83~89
    129Hsu PI, Huang MS, Chen HC, et al. The significance of ANXA7expression and its correlation with poor cellular differentiation andenhanced metastatic potential of gastric cancer. J Surg Oncol,2008,97(7):609~614
    130Jin YL, Wang ZQ, Qu H, et al. Annexin A7gene is an important factor inthe lymphatic metastasis of tumors. Biomed Pharmacother,2013,67(4):251~259
    131Ibrahim MM, Sun MZ, Huang Y, et al. Down-regulation of ANXA7decreases metastatic potential of human hepatocellular carcinoma cells invitro. Biomed Pharmacother,2013,67(4):285~291
    132Jin Y, Wang S, Chen W, et al. Annexin A7suppresses lymph nodemetastasis of hepatocarcinoma cells in a mouse model. BMC Cancer,2013,13:522
    133Karanjawala ZE, Illei PB, Ashfaq R, et al. New markers of pancreaticcancer identified through differential gene expression analyses: claudin18and annexin A8. Am J Surg Pathol,2008,32(2):188~196
    134van Baal JW1, Milana F, Rygiel AM, et al. A comparative analysis bySAGE of gene expression profiles of esophageal adenocarcinoma andesophageal squamous cell carcinoma. Cell Oncol,2008,30(1):63~75
    135莫萍,施瑞华,张红杰,等.膜联蛋白A10在人食管鳞癌及其癌旁组织中的表达及临床意义.南京医科大学学报(自然科学版),2008,28(5):658~661
    136Kim J, Kim MA, Jee CD, et al. Reduced expression and homozygousdeletion of annexin A10in gastric carcinoma. Int J Cancer,2009,125(8):1842~1850
    137Kim JK, Kim PJ, Jung KH, et al. Decreased expression of annexin A10ingastric cancer and its overexpression in tumor cell growth suppression.Oncol Rep,2010,24(3):607~612
    138Lu SH, Chen YL, Shun CT, et al. Expression and prognostic significanceof gastric-specific annexin A10in diffuse-and intestinal-type gastriccarcinoma J Gastroenterol Hepatol,2011,26(1):90~97
    139肖恭卫. ANXA-10、MMP-9和VEGF在人HCC中表达的相关性、差异性及与临床病理特征关系的研究.南昌大学肿瘤学硕士论文,2010
    140陈萍. COX-2和AnnexinA11在胃癌中的表达及意义.延安大学内科学硕士论文,2013
    141Duncan R, Carpenter B, Main LC, et al. Characterisation and proteinexpression profiling of annexins in colorectal cancer. Br J Cancer,2008,98(2):426~433
    142王嘉盛,刘淑清,郭春梅,等. ANXA11表达稳定下调的肝癌Hca-P细胞株的建立.大连医科大学学报,2013,35(3):218~222
    143Iglesias JM, Morgan RO, Jenkins NA, et al. Comparative genetics andevolution of annexin A13as the founder gene of vertebrate annexins. MolBiol Evol.2002,19(5):608~618

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700