新型耐高温胍基强碱树脂的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强碱性阴离子交换树脂广泛应用于水处理、电力行业、生物及化学药剂的分离纯化及催化合成等领域。但是,由于其在水中的热稳定性较低,普通商业强碱性阴离子交换树脂特别是氢氧型阴离子交换树脂的使用温度仅限于60℃以下,这是由于其结构中均含有季铵基团,它是以氯甲基化树脂与叔胺反应得到的。在高温下,季铵基团受到自身结构特点的影响易于发生Hofmann降解反应,造成季铵基的脱落或由强碱基团转变为弱碱基团,大大限制了强碱性阴离子交换树脂的应用。目前针对于强碱阴离子交换树脂耐高温性的改造都是以改变季铵基团与树脂骨架的连接方式,从而间接提高季铵基的热稳定性为主要方向,这些改进方法合成路线较长,生产成本高,更重要的是,受到季铵基团结构的局限,树脂的热稳定性并没有根本得到改善。
     本论文利用小分子胍具有强碱性、较高的热稳定性、特殊的化学结构特点创新性地将小分子胍基化合物通过两种不同的方法(即直接键联和原位反应)固载到树脂上,合成出一类含有新型功能团结构的强碱阴离子交换树脂,首次对这类胍基树脂的热稳定性进行了详细地研究,总结出胍基树脂热稳定性与树脂功能团连接方式之间的规律,从根本上改变了季铵基团对树脂热稳定性的影响,改善了强碱阴离子交换树脂的热稳定性。为了拓宽强碱胍基耐高温树脂的应用范围,以其作为吸附剂应用到对香菇多糖脱色工艺中,优化了吸附条件;其次将其作为催化剂应用于催化Knoevenagel缩合反应中,考察了耐高温胍基树脂的催化性能,运用多种实验技术对耐高温胍基树脂进行了表征,主要得到了如下具有创新性的结果:
     第一部分:首次系统研究了树脂热稳定性与树脂固载胍基官能团的连接方式之间的规律。以凝胶氯甲基化树脂为原料通过一步亲核取代反应将分子胍固载到树脂上,合成出胍基树脂,经红外、元素分析、酸碱滴定法测定了树脂的胺基交换量,对其反应条件进行了优化。采用树脂热稳定性测试方法,研究了不同胍基固载量树脂的热稳定性,提出了树脂的稳定性与树脂官能团的连接方式有关,热重分析测试结果也证明了上述结果,合成胍基树脂的热稳定性较商用树脂201热稳定性得到了提高。按照此思路,将二氯甲基苯(XDC)引入树脂中,改善胍基固载量高但热稳定性差的树脂,通过热稳定性和热重分析实验,表明了树脂的热稳定性得以改善,同时验证了上述树脂热稳定性解释的合理性。利用制备的胍基树脂和胍基-XDC树脂作为吸附剂分别考察了其对苯甲酸和甲基橙的吸附行为,树脂对其吸附等温线符合Freundlich模型,对不同的吸附结果进行了解释。
     第二部分:首次利用胍基官能团与树脂的连接方式,制备出功能基固载量高且热稳定性好的强碱阴离子交换树脂。以凝胶聚苯乙烯苄胺树脂为原料,将分子胍类化合物的原位合成方式应用到树脂合成上,采用两种方法(氰胺法和硫脲法)一步由弱碱阴离子交换树脂转化成为强碱阴离子交换树脂,然后与二氯甲基苯(XDC)反应合成出胍基-XDC强碱阴离子交换树脂,通过红外、酸碱滴定、元素分析、SEM对树脂进行了表征。另外,优化了pH值、投料比、温度等条件,树脂经热稳定性和热失重分析法测定,树脂的耐热性能得到改善,并对其原因进行了解释。为了考察胍基官能团连接方式对其它骨架树脂热稳定性的影响,以丙烯酸树脂骨架和氯乙酰化树脂为原料,将分子胍固载到树脂上,制备得到不同类型连接方式的胍基树脂,并且测定了树脂的热稳定性。
     第三部分:首次将耐高温胍基树脂作为吸附剂应用于香菇多糖提取液的脱色工艺中。为了拓宽耐高温胍基树脂的应用领域,利用一步原位反应由大孔聚苯乙烯苄胺树脂和单氰胺反应,得到的树脂再与二氯甲基苯(XDC)发生亲核反应制备出大孔型胍基-XDC强碱阴离子交换树脂,树脂经酸碱滴定、元素分析、SEW、N2吸附/脱附表征。通过筛选实验,考察了商品化大孔树脂、阳离子交换树脂、阴离子交换树脂对香菇多糖脱色性能的影响,筛选出胍基-XDC树脂对香菇多糖脱色效果最好,并对其原理进行了解释。在静态吸附实验中,考察了树脂用量、温度、pH值对脱色实验的影响,建立了吸附热力学模型。此外,确定了以胍基-XDC树脂为脱色剂对香菇多糖的动态工艺。
     第四部分:首次详细探讨了耐高温胍基树脂作为非均相催化剂催化Knoevenagel缩合反应过程。以凝胶型胍基-XDC强碱树脂为催化剂,选择环己酮和氰基乙酸乙酯为反应模板,探讨了反应温度、催化剂用量、反应物配比、反应溶剂、反应时间、反应选择性、树脂重复使用等因素对产率的影响,确定了反应的最佳条件。探讨了以胍基-XDC树脂为催化剂的Knoevenagel缩合反应的机理,并将其应用到不同反应底物的Knoevenagel缩合反应,实验结果表明,该树脂具有良好的催化活性,反应产率达到83.1-95.3%,反应条件温和、后处理简单、产物易于分离、胍基强碱树脂可循环使用,在7次重复实验中,其催化活性基本保持。所有的反应产物经核磁、红外、质谱、气相色谱表征,与文献的结果相一致。
Strongly basic anion exchange resin is widely used in water treatment, electric power industry, the separation and purification of biological and chemical agents, as well as catalytic synthesis. However, the temperature range in which conventional strongly basic anion exchange resin, especially in the form of hydroxyl group as counter ion can be applied has an upper limit of60℃due to the resin's low thermal stability in water. This phenomenon arises as a result of the structure of quaternary ammonium group through the reaction of chloromethylated resin with tertiary amine. The resin having quaternary ammonium group suffers from Hofmann degradation at higher temperatures, leading to the desquamation or conversion of strongly basic groups attached to the polymeric matrix. Therefore, the application of strongly basic anion exchange resin is greatly limited. At present, many efforts have been devoted to improving the thermal stability of polymeric resins by modification of the linkage between the quaternary ammonium groups and the polystyrene. However, it has been concluded that such modifications would not be economical for application to large-scale preparations because of the complicated synthetic processes required. Moreover, although these methods lead to slight improvements, it is difficult to fundamentally enhance the thermal stability due to the inherent nature of the quaternary ammonium group.
     Small molecule guanidine has the advantage of strong alkalinity, high thermal stability, special chemical structure, which has been applied to immobilize onto the resin innovatively through two different methods (namely direct immobilization and the in situ reaction) to afford novel guanidine resin. In the thesis, the thermal stability of the guanidine resin synthesized was studied in detail, for the first time, summing up the rule between thermal stability and the connection mode. The resin synthesized changed the influence of quaternary ammonium groups on the thermal stability of resin, improving the thermal stability of the strong-base anion exchange resin. The applications of guanidine resin both as adsorbent in lentinan decoloring process and as catalyst in catalyzing Knoevenagel condensation reaction were also investigated. The main research contents and conclusions are as follows:
     Part I:The connection mode between thermal stability and guanidine groups was study for the first time. The guanidine resins were prepared by the nucleophilic substitution reaction of free guanidine and gel chloromethylated resin as the raw material. The guanidine resins were characterized by FT-IR, TQ and the contents of the basic functional groups bound to the resin were determined by acid-base titration and elemental analysis. The reaction conditions were optimized. It was shown that the thermal stability of the resin was inversely proportional to the amounts of guanidine groups attached on the resin, which was confirmed by thermogravimetric analysis. The more stable guanidine resin was, the lower contents of guanidine resin were. It can be attributed to the unique structure of guanidine and the cross-linking connection mode between the guanidine and the polymeric matrix. According to the explanation to the result, p-xylylene dichloride (XDC) was selected as a post-synthesis cross-linking agent to react with guanidine incorporated into the resin in order to improve thermal stability of resin with high contents of guanidine groups. The experiment result was demonstrated that the thermal stability of resin had been improved, which verified the above explanation in the meanwhile. The adsorption performance of guanidine resin and guanidine-XDC resin were both studied. The benzoic acid and methyl orange were selected as adsorbates. Experimental results were showed that the isotherms could be represented by Freundlich model reasonably. The adsorption mechanism indicated that the adsorption was the synergistic effect of hydrophobic interaction, dipole-dipole interaction and hydrogen bonding.
     Part II:To obtain a thermally stable resin with high contents of guanidine groups loaded, gel benzylamine polystyrene had been allowed to react nucleophilic addition with cyanamide or thiourea in situ to generate strongly basic resin from weak basic one, followed by the reaction with p-xylylene dichloride (XDC) to give guanidine-XDC resin. The resins synthesized were determined by FT-IR, acid-base titration, elemental analysis and SEM. The effects of pH value, material ratio and temperature on the reaction were also investigated. The experiment results had been indicated that the resin had good thermal stability. At the same time, different types of guanidine resins were prepared by the reaction of the resins having different matrixes, as raw materials, with free guanidine.
     Part III:The guanidine resin as the adsorbent was, for the first time, applied in lentinan decoloring process. The macroporous guanidine-XDC resin had been prepared through the one-step reaction of primary amine resin with cyanamide, followed by the reaction with p-xylylene dichloride (XDC) to obtain macroporous resin with guanidine groups. The resins synthesized had been characterized by acid-base titration, elemental analysis, SEM and N2adsorption-desorption experiments. Under the same conditions, guanidine resins, commercial cation exchange resins, commercial anion exchange resins, macroporous resins were screened to carry out the decolorization of lentinan. It was shown that guanidine-XDC resin had the best decoloring efficiency, which had been explained using the corresponding principle. The static adsorption experiments of the lentinan on guanidine-XDC resin were performed under different temperature, amounts of the resin, pH value, and were set up the adsorption thermodynamics model. Besides, the technology on the decolorization of lentinan were studied.
     Part IV:The Knoevenagel condensation reaction catalyzed by gel guanidine-XDC resin as heterogeneous catalyst had been investigated for the first time. The effect of reaction temperature, amounts of the resin, ratio of reactants, reaction solvent, reaction time, reaction selectivity, reusability on the Knoevenagel condensation reactions between cyclohexane and ethyl cyanoacetate were also discussed. The catalytic mechanism had been proposed. The guanidine-XDC resin had been found to efficiently catalyze Knoevenagel condensation reactions with the yield of83.1-95.3%, and even the reactions of relatively inactive substrates can be accomplished at higher temperatures. The resin can be removed after reaction by simple filtration with the advantages of easy separation, mile reaction condition, recyclability without losing catalytic activity more than7times. All the reaction products were characterized by NMR, FT-IR, MS, GC, which were consistent with the literature results.
引文
[1]钱庭宝.离子交换树脂.高分子通报,1989,1:51-56
    [2]Kyokawa A,Heat-resistant anion exchangers for ultrapure water preparation [P]. JP:05 49949, 1993
    [3]Kiba H, Kubota H, Sawada S. Styrene derivative copolymer anion exchangers for extraprure water preparation [P]. JP:07289919,1995
    [4]Ogawa H, Onozuka T, Ito T, et al. Crosslinked anion exchangers for hot-water treatment in power plants [P]. JP:0557200,1993.
    [5]Onozuka T, Shindo M, KiBa H, et al. Styrene derivative copolymers for removal of silicon compounds in water [P]. JP:07289924,1995
    [6]Kunin R. Ion exchange. Industrial and engineering chemistry,1949,41(1):55-59
    [7]Carre E L, Lewis N, Ribas C, et al. Convenient preparation of functionalised polymer-based resins via an economical preparation of chloromethylated polystyrene resins (Merrifield Type). Organic Process Research & Development,2000,4:606-610
    [8]Felton G. Eighth Annual Conf. Food Technol.,1948,June
    [9]Challinors S W, Kieser M E, Pollard A. Effect of ion-exchange treatment on the stability of apple juice. Nature,1948,161:1023-1025
    [10]陶建伟,姚跃良,陆庆宁.强碱阴离子交换树脂催化合成羟丙腈.离子交换与吸附,2001,17(1):78-83
    [11]杨华铮,陆荣健.应用阴离子交换树脂有效合成3-芳氨基-4-氰基-5-氨基吡唑.合成化学,1997,5(2):185-188
    [12]陈志荣,李浩然,梁晓东等.用碱性阴离子交换树脂催化合成丁酮醇的工艺方法.中国专利,1297878.2001-06-06
    [13]王德堂,周立雪,冷士良.用大孔强碱性阴离子交换树脂催化制取苯基苯酚甲醛树脂的方法.中国专利,1865307.2006-11-22
    [14]陈群,何明阳等.一种新型环氧乙烷水合反应催化剂及制备方法.中国专利,1559684 A.2005-01-05
    [15]陈群,何明阳等.一种用于催化环氧乙烷水合的季磷型阴离子交换树脂的合成方法.中国专利,1460551A.2003-12-10
    [16]陈群,何明阳等.一种环氧乙烷水合反应的阴离子交换树脂催化剂及制备方法.中国专利,1513597A.2004-07-21
    [17]王璠,陈金龙,陈群等.耐高温阴离子交换树脂的合成及在环氧乙烷催化水合反应中的应用.分子催化,2006,20(2):97-101
    [18]王璠,陈金龙,陈群等.一种带有醚键结构的阴离子交换树脂的合成.高分子材料科学与工程,2006,22(1):73-79
    [19]Wang F, Chen J L, Zhang B, et al. Hydration of ethylene oxide over modified silica gel. Chinese Journal of Catalysis,2005,26(5):355-356
    [20]谢文磊.强碱阴离子交换树脂多相催化油脂的酯交换.应用化学,2001,18(10):846-848
    [21]柯中炉等.强碱性阴离子交换树脂催化菜籽油酯交换反应合成脂肪酸甲酯.离子交换与吸附,2010,26(2):145-152
    [22]欧植泽,徐满才,俞善信.三丁胺胺化强碱性阴离子交换树脂催化苯乙腈的α-丁基化反应.离子交换与吸附,2002,18(3):277-280
    [23]Schuchardt U, Vargas R M, Gelbard G Transesterification of soybean oil catalyzed by alkylguanidines heterogenized on different substituted polystyrenes. Journal of Molecular Catalysis A:Chemical,1996,109:37-44
    [24]Levesque C L, Craig A M. Kinetics of an esterification with cation-exchange resin catalyst. Journal of Industrial and Engineering Chemistry,1948,40:96-99
    [25]Haskell V C, Hammett L P. Rates and temperature coefficients in the hydrolysis of some aliphatic esters with a cation-exchange resin as the catalyst. Journal of the American Chemical Society,1949,71:1284-1288
    [26]范云鸽等.耐高温强碱阴离子交换树脂研究进展.离子交换与吸附,2005,21(4):376-384
    [27]崔焕芳等.强碱性阴离子交换树脂耐热性能测试方法研究.中国电力,2005,4:41- 53
    [28]Sanchez, J M, Hidalgo M, Salvado V. A comparison of the separation behavior of some new coordinating resins and commercial quaternary ammonium resins with reference to their separation of gold (Ⅲ) and Palladium (II) in hydrochloric acid media. Solvent Extraction and Ion Exchange,2004,22(2):285-303
    [29]Khashimova M, Dzhalilov T. Heat-resistant anion exchangers. Journal of Applied Polymer Science,1982, (1):48-49
    [30]范云鸽,肖国林.耐高温强碱阴离子交换树脂研究进展.离子交换与吸附,2005,21(4):376-384
    [31]Downey D. Four year of operating with type III strong base anion resin. Off Proc International Water Conference [C]. Engineers Society of western Pennsyvania,2002,63rd 111-116
    [32]邵林.水处理用离子交换树脂.北京:水利电力出版社,1989.168-171
    [33]肖国林,范云鸽,赫连朋丽等.强碱阴离子交换树脂合成及热稳定性研究.离子交换与吸附,2005,21(6):514-521
    [34]Neagu V, Bunia I. Acrylic weak base anion exchangers and their chemical stability in aggressive media. Polymer Degradation and Stability,2004,83(1):133-138
    [35]Hatch M J, Lloyd W D. Preparation and properties of a neophyl-type anion-exchange resin. Journal of Applied Polymer Science,1964,8(4):1659-1666
    [36]Dzhalilov A T,Askarov M A. Anion-exchange Resins. SU 675056,1979
    [37]Khashimova S M, Dzhalilov A T, Askarov M A. Thermal properties of stabilized copolymers of vinylbenzyl chloride and divinylbenzene. Uzbekskii Khimicheskii Zhurnal,1982,1:48-49
    [38]Henmi M, Noyoro M, Yoshioka T. Heat-resistant anion exchangers. JP:01 75041,1989
    [39]Hennmi M. Heat-resistant anion exchangers for treating fluids. WO 90 10,500,1994
    [40]Onozuka T, Shindo M, Ito T, et al. Heat-resistant anion exchangers for use as gas absorbents. JP:07 24334,1995
    [41]Watanabe J, Kubota H. Novel anion exchange resins with heat and chemical stability, Off Proc Int Water Conf[C], Pennsylvania, Engineers'Society of Water,1996,57th,453-459
    [42]Tomoi M, Yamaguchi R. Synthesis and thermal stability of novel anion exchange resins with spacer chains. Journal of Applied Polymer Science,1997,64(6):1161-1167
    [43]Masuda S, Andou K. Thermally stable anion exchange resin (DIAION XSA Series): characteristics and applications [A], Ion Exchange at the Millenium [C]; Proceedings of IEX 2000,8th, Cambridge, UK 2000,253-260
    [44]友井正男,久保田裕久.高分子加工(日),1999,48(2):57-63
    [45]工藤.工程材料(日),2000,48(5):71-74
    [46]岩仓具敦,宫城秀和.生产亚烷基二元醇的方法.中国专利,1198429A.1998-11-11
    [47]Iwakura T, Miyagi H. Method of producing alkylene glycols by oligomerization and hydration of alkylene oxide. JP:11012206.1999-01-19
    [48]Kubota H, Yano K, Watanabe J, Jyo A. Cation exchangers or chelating agents and process for the preparation thereof. WO:9804595,1998-02-05
    [49]Keiko K, Masako Y, Hirohisa K. Thermally stable anion exchange resin and postulated effect by application in condensate polishing system. PowerPlant Chemistry,2002,4(6):349-353
    [50]Hu Y, Shimizu T, Hattori K, et al. Synthesis and gas permeation properties of poly(diarylacetylene)s having substituted and twisted biphenyl moieties. Journal of Polymer Science part A:Polymer Chemistry,2010,48(4):861-868
    [51]Kubota H, Yano K. Heat-resistant weakly basic anion exchange resin and their manufacture. JP:10045830,1998-02-17
    [52]Nagata K, Furuya T. Preparation of glycol ethers using anion exchange resin catalysts. JP: 10053550,1998-02-24
    [53]Tomoi M, Yamaguchi K, Ando R, Kantake Y. Synthesis and thermal stability of novel anion exchange resins with space chains. Journal of Applied Polymer Science,1997,64(6):1161-1167
    [54]Nagata K, Furuya T. Method for producing a glycol. US:5945568,1999-8-31
    [55]Iwakura T, Miyagi H. Process for producing alkylene glycol. US:614726,2000-11-14
    [56]Terayama H, Kubota H. Removal of silica from water by anion exchang. JP:10137752, 1998-05-26
    [57]Terayama H, Takeuchi K, Kubota H. Disinfection of water purifying apparatus. JP:10137750, 1998-05-26
    [58]Kubota H, Yano K, Sawada S. Novel anion exchange resins with thermal stability:synthesis and characteristics. Special Publication-Royal Society of Chemistry,1996,182(3):398-406
    [59]Osaki Y, Hashimoto H, Kudo K. Method for production of strongly basic anion exchangers. JP:2002212226,2002-07-31
    [60]Watanabe J, Kubota H, Yano K. Novel anion exchange resins with heat and chemical stability. Official Proceedings-International Water Conference,1996,57th,453-459
    [61]Yasutomi M, Kubota H. Thermally stable anion exchange resin. Studies in Surface Science and Catalysis,2003,145(Science and Technology in Catalysis 2002),555-556
    [62]Watanabe J, Kubota H, Yano K, Fukuda J, Shindo M. Anion exchange resins with heat and chemical stability. Ultrapure Water,1997,14(6),39-42
    [63]Kubota H. Thermally stable anion exchange resins. Kino Zairyo,2002,22(9),56-63
    [64]Hirano Y. Crosslinked polymer, method for manufacturing it and use thereof. US:20022888. 2002-02-18
    [65]过慕英,梁凯,宁珍.阴离子交换树脂热降解性能试验研究.离子交换与吸附,1999,15(3):272-278
    [66]马升灯.强碱性阴离子交换树脂在水中的热稳定性.浙江师范大学学报(自然科学版),1998,21(3):65-67
    [67]张澄信,张红梅.凝结水处理用阴离子交换树脂耐热性能对比试验.热力发电,1997,4:38-41
    [68]张澄信,游喆,钱勤等.强碱阴离子交换树脂耐热性能测定方法的研究.华北电力技术,2001,7:17-20
    [69]龚云峰,吴春华,丁恒如.树脂溶出物在离子交换树脂上吸着行为的试验研究.上海电力学院学报,2000,16(1):29-32
    [70]龚云峰,吴春华,丁恒如.离子交换树脂溶出物的测定及其对水质的影响.给水排水,2000,26(5):39-42
    [71]龚云峰,吴春华,丁恒如.凝结水处理用树脂溶出物问题研究.离子交换与吸附,2000,16(5):461-466
    [72]胡泓梵.一种耐高温阴离子交换树脂的合成及在催化合成丙酸苄酯中的应用.精细化工体,2007,37(5):59-63
    [73]肖国林,范云鸽.强碱阴离子交换树脂合成及热稳定性能研究.离子交换与吸附,2005,21(6):514-521
    [74]王金明,刘文飞,张勇.一种耐高温碱性阴离子交换树脂制作方法.中国专利,101481466A.2009-07-15
    [75]陈群,何明阳,刘迎春,高山.一种带有长间隔臂的强碱阴离子交换树脂的制备方法.中国专利,101333265A.2008-12-31
    [76]Miyake T. Novel base imidazolylmethylstyrene compound, its polymer, a process for the preparation thereof and a use as ion exchange resin. US:4430445.1982-07-26
    [77]Kambara H. Methylquinoline anion exchange resin based on haloalkyl vinyl aromatic polymers. US:4247648.1973-10-30
    [78]吉田康夫Strong base anion resin日本化学会第58春季年会.
    [79]Hick H. Tailoring of 4-vinylpyrindine-base resins for hydrolytic degradation and solubilisation. Tetrahedron,1999,55:9585-9594
    [80]Van K. Process for the preparation of alkylene glycols.US:5874653.1997-05-29
    [81]Panster P. Polymeric ammonium compounds with a silica-type backbone, processes for their preparation and use. US:4410669.1982-07-08
    [82]Shvets F. Manufacture of alkylene glycols by catalytic hydration of alkylene oxides. WO: 9912876.1999-03-18
    [83]Shvets F. Method of synthesis of alkylene glycols. RU:2149864.2000-03-27
    [84]Shvets F. Catalytic process for obtaining alkylene glycols. WO:9733850.1997-09-18
    [85]许辉,胡喜章Friedel-Crafts酰基化法制备聚苯乙烯型阴离子交换树脂.功能高分子学报,1998,11(12):513-520
    [86]Orner B P, Hamilton A D. The guanidinium group in molecular recognition:design and synthetic approaches. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2001, 41:141-147
    [87]高海翔,鲁润华,汪汉卿.胍基化合物研究进展.有机化学,2001,21(7):485-492
    [88]Brunelle D J, Scotia N Y. Bis penta:alkyl-guanidinium salts-are prepd. by reaction of penta: alkyl-guaidine with alkylene di:halide, useful as phase transfer catalysts. US:5081298. 1992-01-14
    [89]Huang J, Jiang T, Gao H X, et al. Pd nanoparticles immobilized on molecular sieves by ionic liquids:heterogeneous catalysts for solvent-free hydrogenation. Angewandte Chemie, International Edition,2004,43(11),1397-1399
    [90]Brunelle D J, Scotia N Y. Prepn. Of high mol. Wt. aromatic polyether polymer-by contacting alkali metal salt(s) of di:hydroxyl-substd. Aromatic hydrocarbon and substd. Aromatic cpd(s). in the presence of phase transfer catalyst. US:5229482.1993-07-20
    [91]Gros P, Le Perchec P, Sene J P. Reaction of epoxide with chlorocarbonylated compounds catalyzed by hexaalkylguanidium chloride. Journal of Organic Chemistry,1994,59(17): 4925-4930
    [92]段海峰,张所波,林英杰等.新型室温离子液体六烷基胍盐的制备及性质.高等学校化学学报,2003,11:2024-2026
    [93]Brunelle D J. Bis penta:alkyl-guanidinium salts-are prepd. by reaction of penta: alkyl-guanidine with alkylene di:halide, useful as phase transfer catalysts. US:5229482. 1992-01-12
    [94]Fukutomi R, Tanatani A, Kakuta H, et al. Aromatic layered guanidines bind sequence-specifically to DNA minor groove with precise fit. Tetrahedron Letters,1998, 39(36):6475-6478
    [95]Schneider S E, Bishop P A; Salazar M A. Solid phase synthesis of oligomeric guanidium. Tetrahedron,1998,54(50):15063-15086
    [96]Xie H B, Duan H F, Li S H, et al. The effective synthesis of propylene carbonate catalyzed by silica-supported hexaalkylguanidinium chloride. New Journal of Chemistry,2005,29(9): 1199-1203
    [97]Riordan J F. Arginyl residues and anion bingding sites in proteins. Molecualr and Cellular Biochemistry,1979,26(2):71-92
    [98]Moser H E, Dervan P B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science,1987,238(4827):645-649
    [99]Boyle P H, Convery M A, Davis A P, et al. Deprotonation of nitroalkanes by bicyclic amidine and guanidine bases; evidence for molecular recognition within a catalytic cycle for carbon-carbon bond formation. Journal of the Chemical Society, Chemical Communications, 1992,3:239-242
    [100]Simoni D, Invidiata P F, Manfredini S, et al. Facile synthesis of 2-nitroalkanols by tetramethylguanidine (TMG)-catalyzed addition of primary nitroalkanes to aldehydes and alicyclic ketones. Tetrahedron Lett.1997,38(15):2749-2752
    [101]Schneider S E, Bishop P A, Salazar M A, et al. Solid Phase Synthesis of Oligomeric Guanidiniums. Tetrahedron 1998,54:15063-15086
    [102]林雪,杨益中,何炳林等.几种新型含氮螯合树脂的合成及其性能的研究.化学试剂,1991,13(2):65-68
    [103]李玲颖,阎永平,陈克等.用新型胍基SG螯合树脂作为Au、Pt、Pd组试剂及ICP-AES同时测定的研究.离子交换与吸附,1989,5(6):426-430
    [104]Jermakowicz-Bartkowiak D, Kolarz B N. Gold sorption on weak base anion exchangers with aminoguanidyl groups. European Polymer Journal,2002,38:2239-2246
    [105]Kolarz B N, Trochimczuk A W, Jermakowicz-Bartkowia D, et al. Synthesis and some sorption properties of anion exchangers bearing ligands of different length with guanidyl and biguanidyl end groups. Polymer,2002,43:1061-1068
    [106]Jermakowicz-Bartkowiak D, Kolarz B N, Serwin A. Sorption of precious metals from acid solutions by functionalized vinylbenzyl choride-acrylonitryle-divinylbenzene copolymers bearing amino and guanidine ligands. Reactive & Functional Polymers,2005,65:135-142
    [107]Owsik I A, Kolarz B N, Jermakowicz-Bartkowiak D, Jezierska J. Synthesis and characterization of resins with ligands containing guanidine derivatives. Cu (II) sorption and coordination properties. Polymer,2003,44:5547-5558
    [108]Ma X, Li Y, Ye Z, et al. Novel chelating resin with cyanoguanidine group:Useful recyclable material for Hg (II) removal in aqueous environment. Journal of Hazardous Materials,2011, 185:1348-1354
    [109]Yang Y F, Lu M L, Xu B, Zeng Z X. Guanidine-Functionalized Resin-Supported Pd(0) Catalyst:Activity, Reusability, and Redeposition of Active Pd Species in Heck vinylation Chinese Journal of Chemistry,2008,26:30-34
    [110]Leadbeater N E, Cornella P. Development of catalysts for the Baylis-Hillman reaction:the application of tetramethylguanidine and attempts to use a supported analogue. Journal of the Chemical Society, Perkin Transaction,2001,21:2831-2835
    [111]姚静,陈圣春,孙富安等.含胍基强碱阴离子交换树脂的合成及应用.离子交换与吸附,2012,28(4):321-328
    [112]Owsik I A, Kolarz B N. The catalytic oxidation of hydroquinone:influence of surface properties of polymeric catalysts with aminoguanidyl ligand on catalytic properties. Catalysis Today,2004,91:199-204
    [113]Bromberg L, Hatton T A. Poly (N-vinylguanidine):Characterization, and catalytic and bactericidal properties. Polymer,2007,48:7490-7498
    [114]Gelbard G, Vielfaure-Joly F. Polynitrogen strong bases as immobilized catalysts. Reactive & Functional Polymers,2001,48:65-74
    [1]何炳林,黄文强.离子交换与吸附树脂.上海:上海科技教育出版社,1992.17-23
    [2]范云鸽,肖国林.耐高温强碱阴离子交换树脂研究进展.离子交换与吸附,2005,21(4):376-384
    [3]陈群,刘迎春,孙奇,高山,何明阳.耐高温强碱阴离子交换树脂催化剂的合成及应用.分子催化,2009,23(3):243-247
    [4]Hiroshi K. Methylquinoline Anion Exchange Resin Based On Haloalkyl Vinyl Aromatic Polymers. US:4247648.1981-01-27
    [5]Tetsuya Miyake. Novel Basic Imidazolylmethylstyrene Compound, Its Polymer, A Process For the Preparation Thereof and A Use as Ion Exchange Resin. US:4430445. 1984-02-07
    [6]Yoshiaki Hirano. Crosslinked Polymer, Method for Manufacturing it and Use Thereof. US: 20020028887.2002-02-08
    [7]Bonhote P, Dias A P, Papageorigious N, et al. Hydrophobic, higly conductive ambient-temperature molten salts. Inorganic Chemistry,1996,35(5):1168-1178
    [8]沈宗旋,王亚玲,张雅文.胍类化合物的制备及在有机合成中的应用.有机化学,2002, 22(6):388-396
    [9]林雪,杨益忠,何炳林等.几种新型含氮螯合树脂的合成及其性能研究.化学试剂,1991,13(2):65-68
    [10]Simoni D, Invidiata F P, Manfredini S, et al. Facile synthesis of primary nitroalkanes to aldehydes and alicyclic ketones. Tetrahedron Letters,1997,38(15):2749-2752
    [11]Waldman T E, McGhee W D. Isocyanates from primary amines and carbon dioxide: 'dehydration' of carbamate anions. Journal of the Chemical Society, Chemical Communications,1994, (8):957-958
    [12]Gelbard F, Vielfaure-Joly F. Polymitrogen Strong Bases:1-New Syntheses of Biguanides and their Catalytic Properities in Transesterification Reactions. Tetrahedron Letters,1998,39(18): 2743-2747
    [13]Baumgarth M, Beier N, Gericke R. [2-Methyl-5-(methylsulfonyl)benzoyl]guanidine Na+/H+ antiporter inhibitors. Journal of Medicinal Chemistry,1997,40(13):2017-2034
    [14]王方.离子交换树脂标准手册.北京:中国标准出版社,2003.242-251
    [15]张政朴,钱庭宝.交联聚苯乙烯-二乙烯苯共聚物的氯甲基化反应.离子交换与吸附,1987,3(5):70-76
    [16]国标标准GB5760-86阴离子交换树脂交换容量测定方法
    [17]耿啸天.高选择性吸附树脂结构设计及在中药复方有效成分提取中的应用:[博士学位论文].天津:南开大学,2010
    [18]张澄信,梁凯,钱勤等.对凝结水处理用离子交换树脂的有机溶出物的研究.离子交换与吸附,1999,15(3):272-278
    [19]李玲颖,闫永平,林雪.新型SGN螯合树脂吸附贵金属性能和机理的研究.离子交换与吸附,1992,8(2):128-134
    [20]Leadbeater N E, Cornelia P. Development of catalysts for the Baylis-Hillman reaction:the application of tetramethylguanidine and attempts to use a supported analogue. Journal of the Chemical Society, Perkin Transactions,2001,21:2831-2835
    [21]Li A, Zhang Q, Chen J, et al. Adsorption of phenolic compounds on Amberlite XAD-4 and its acetylated derivative MX-4. Reactive & Functional Polymers,2001,49(3):225-233
    [22]Schneider S E, Bishop P A, Salazar M A. Solid phase synthesis of oligomeric guanidiniums. Tetrahedron,1998,54(50):15063-15086
    [23]Duan H F, Li S H, Lin Y J, et al. Synthesis of cyclic carbonates from CO2 and epoxides catalyzed by hexaalkylguanidinium halides. Chemical Research in Chinese Universities, 2004,20(5):568-571
    [24]Amick D R. Uniform polymer beads and ion exchange resins therefrom prepared by post-crosslinking of lightly crosslined beads. US:4192920.1980-03-11
    [25]Pan B C, Xiong Y, Li A M, et al. Adsorption of aromatic acids on an aminated hypercrosslinked macroporous polymer. Reactive & Functional Polymers,2002,53(2-3): 63-72
    [26]袁彦超,陈炳稔,王瑞香,石光,陈玉媚.新型交联壳聚糖树脂的制备及其对苯甲酸的 吸附行为研究.化学学报,2004,62(8),842-846
    [27]Zhang H, Ji, L, Wu P, et al. In situ ozonation of anthracene in unsaturated porous media. Journal of hazardous materials,2005,120(1-3):143-148
    [28]Chao L, Hong Z, Li Z, et al. Study on adsorption characteristic of macroporous resin to phenol in wastewater. Canadian Journal of Chemical Engineering,2010,88(3):417-424
    [29]徐锡彪,褚宏伟,孙建中.高浓度有机化工废水处理新技术-催化氧化.环境保护,2001,3:17-18
    [30]Lin S H, Huang C Y. Adsorption of BTEX from aqueous solution by macroreticular resins. Journal of Hazardous Materials,1999,70(1-2):21-37
    [31]胡淑婉,李文军,常志东等.磁性碳纳米管吸附去除水中甲级橙的研究.光谱学与光谱分析,2011,31(1):205-209
    [32]高宝玉,岳钦文,岳钦艳等.化学氧化法和化学混凝法用于染料废水的脱色研究.环境科学研究,1999,12(1):1-9
    [33]方宗堂,王宏,葛玮等.多相催化湿式氧化法处理高浓度难降解有机废水的研究.化工环保,2005,25(1):8-11
    [34]Gibbs G, Tobin J M, Guibal E. Sorption of Acid Green 25 on chitosan:influence of experimental parameters on uptake kinetics and sorption isotherms. Journal of Applied Polymer Science,2003,90(4):1073-1080
    [35]Abburi K. Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin. Journal of Hazardous Materials,2003,105(1-3): 143-156
    [36]刘福强,陈金龙,李爱民等.超高交联吸附树脂对苯甲酸的吸附研究.离子交换与吸附,2002,18(6):522-528
    [37]任萍.水体系中高选择性氢键吸附树脂的结构设计、吸附机理及应用研究:[博士学位论文].天津:南开大学,2008
    [38]Gessner P K, Hasan M M. Freundlich and Langmuir isotherms as models for the adsorption of toxicants on activated charcoal. Journal of Pharmaceutical Sciences,1987,76(4):319-327
    [39]Scherer M M, Richter S, Valentine R L, et al. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Critical Reviews in Environmental Science and Technology,2000,30(3):363-411
    [40]Schroeder G, Eitner K, Gierczyk B, et al. Reaction of fluoronitrobenzenes with tetramethylguanidine in acetonitrile. Journal of Molecular Structure,1999,478(1-3):243-253
    [41]Gierczyk B,Eitner K, Schroeder G, et al. Reactions of fluoronitrobenzenes with MTBD strong base in acetonitrile in the presence of water molecules. Journal of Molecular Structure, 2003,655(2):259-267
    [42]Jarczewski A, Hubbard C D. A review of proton transfer reactions between various carbon-acids and amine bases in aprotic solvents. Journal of Molecular Structure,2003, 649(3):287-307
    [43]黄贱苟,徐满才,李海涛等.非水体系中大孔交联酰胺基树脂的吸附热力学.物理化学学报,2003,19(3):208-211
    [44]Huang J H, Zhou Y, Huang K L, et al. Adsorption behavior, thermodynamics, and mechanism of phenol on polymeric adsorbents with amide group in cyclohexane. Journal of Colloid and Interface Science,2007,316(1):10-18
    [1]黄春华,俞斌.新型杀菌剂长链烷基胍.精细化工,2002,19:51-53
    [2]展义臻,赵雪.有机胍类抗菌剂的研究进展.国际纺织导报,2009,5:47-54
    [3]方文彦.吗啉脒胍盐酸盐生产工艺的对比及改进.化学工程师,2006,2:51-53
    [4]孙才英,郭雪飞,马楠,郭廷翘等.醋酸十二胍的合成.精细化工,1998,15(6):9-11
    [5]Ma X, Poon T Y, Wong P T H, Chui W K. Synthesis and in vitro evaluation of 2,4-diamino-1,3,5-triazine derivatives as neuronal voltage-gated sodium channel blockers. Bioorganic & Medicinal Chemistry Letters,2009,19(19):5644-5647
    [6]王晓天,张建宾,金汝城.对胍基苯甲酸盐酸盐的制备及衍生物卡莫他特甲磺酸盐的合成.精细化工,2004,21(8):597-599
    [7]李秀丽,董朝红,朱平,翟海群.新型抗菌剂壳聚糖双胍盐酸盐的制备机器抑菌性能研究.染整技术,2009,8:1-4
    [8]Wang Y, Daryl R S, Stevan W D. A facile and practical one-pot 'catch and release' synthesis of substituted guanidines. Tetrahedron Letters,2009,50(36),5145-5148
    [9]Li M, Wilson L J, et al. A simple solid-phase synthesis of disubstituted guanidines using Rink amide resin as an amine component. Tetrahedron Letters,2001,42(12):2273-2275
    [10]Kolarz B N, Jermakowicz-Bartkowiak D, Trochimczuk A W, et al. Influence of the structure of chelating resins with guanidyl groups on gold sorption. Reactive & Functional Polymers, 1999,42(3):213-222
    [11]Kolarz B N, Bartkowiak D, Trochimczuk A W, et al. New selective resins with guanidyl groups. Reactive & Functional Polymers,1998,36(2):185-195
    [12]Owsik I A, Kolarz B N, Jermakowicz-Bartkowiak D, et al. Synthesis and characterization of resins with ligands containing guanidine derivatives. Cu(II) sorption and coordination properties. Polymer,2003,44(19):5547-5558
    [13]Jermakowicz-Bartkowiak D, Kolarz B N. Gold sorption on weak base anion exchangers with aminoguanidyl groups. European Polymer Journal,2002,38(11),2239-2246
    [14]Owsik I A, Kolarz B N. The catalytic oxidation of hydroquinone:influence of surface properties of polymeric catalysts with aminoguanidyl ligand on catalystic properties. Catalysis Today,2004,91-92,199-204
    [15]姚金烽,杨文革,沈磊,赵晓磊等.2,6-胍基己酸盐酸盐的合成.现代化工,2009,7:57-58
    [16]潘志信,臧剑甬.用兰氧化硫脲合成氨基胍.应用化学,2001,18(11):936-938
    [17]赵声贵,钟宏,刘广义等.硫酸辛基胍的合成.农药研究与应用,2006,10(4):24-25
    [18]赵昔慧,李群,杨蕊.聚胍的合成及其在纺织品上的抗菌应用研究.印染助剂,2010,27(1):16-22
    [19]匡永清,张生勇,蔚琳琳.N-(4-溴丁基)邻苯二甲酰亚胺的合成.化学试剂,2001,23(6):359-361
    [20]匡永清等.合成N-甲基-4-氨基邻苯二甲酰亚胺的新路线.化学试剂,1992,14(5):315
    [21]张建春,黄机质,郝新敏.织物防水透湿原理与层压织物生产技术.北京:中国纺织出版社,2003.109-121
    [22]Nishizawa K, Mizutani H, Dohzono M. Absorbent article e.g. disposable diaper or napkin-using liq. Impermeable but vapour permeable, porous backing film, made from polyolefin, filler and liq. or waxy hydrocarbon polymer. US:4626252.1983-09-14
    [23]Kolarz B N, Jermakowicz-Bartkowiak D, Jezierska J, et al. Anion exchangers with alkyl substituted guanidyl groups gold sorption and Cu(Ⅱ) coordination. Reactive & Functional Polymers,2001,48(1-3),169-179
    [24]许辉,胡喜章Friedel-Crafts酰基化法制备聚苯乙烯型阴离子交换树脂.功能高分子学报,1998,12(4):513-520
    [25]何炳林,张全兴,李效白等.氯甲基化苯乙烯-二乙烯苯共聚物的Friedel-Craft反应.高分子通讯,1980,6:329-334
    [26]Qu J B, Zhou W Q, Wei W, et al. Chemical modification and characterization of gigaporous polystyrene microspheres as rapid separation of proteins base supports. Journal of Polymers Science, Part A:Polymer Chemistry,2008,46(17):5794-5804
    [27]Haratake M, Ogawa N, Sugii A. Sorption of phenols on anion-exchange resins having ω-oxoalkyl or ω-hydroxyalkyl spacer. Analytical Sciences,1988,4(6):591-594
    [28]王玲,高保娇,王世伟.季鳞盐型三相相转移催化剂的制备及其化学结构与相转移催化活性的关系.催化学报,2010,31(1):112-119
    [29]Walker K A M, Wallach M B, Hirschfeld D R. 1-(Naphthylalkyl)-1H-imidazole derivatives, a new class of anticonvulsant agents, Journal of Medicinal Chemistry,1981,24(1):67-74
    [1]Ramesh H P, Yamaki K, Tsushida T. Effect of fenu greek (Trigonelafoenum graecum L.) galactomannan fractions on phagocytosis in rat macrophages and on proliferation and IgM secretion in HB4C5 cells. Carbohydrate Polymers,2002,50(1):79-83
    [2]Fabregas J, Garcia D, Fernandez-Alonso M, et al. In vitro inhibition of the replication of haemorrhagic septicemia (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral Research,1999,44(1):67-73
    [3]张俐娜,张平义,李翔等.香菇多糖的成分及其分子量研究.高等学校化学学报,1998,19(9):1513-1517
    [4]Takuma S, Nobuo T. Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes. Carbohydrate Research,1976,47(1):99-105
    [5]姚磊,王静,赵海田.香菇多糖生物活性研究进展.中国甜菜糖业,2004,3:27-30
    [6]杜宇野.香菇多糖的研究进展.中国食用菌,1995,14(4):9-11
    [7]Suzuki M, Kikuchi T, Takatsuki F, et al. Curative effects of combination therapy with lentinan and tinterleukin-2 against estabished murine tumors, and the role of CD8-positive T cell. Cancer Immumol Immunmther,1994,38(1):1-8
    [8]Takatsuki F, Namiki R, Tomoko K, et al. Lentinan augments skin reaction induced by bradykinin:its correlation with vascular dilatation and hemorrhage responses and antitumor activities. International Journal of Immunopharmacology,1995,17(6):465-474
    [9]Markova N, Kussovsk V, et al. Effects of intraperitoneal and intranasal application of lentinan on cellular response in rats, International Immunopharmacology,2002,2(12):1641-1645
    [10]林桂兰,许学书,连文思.食用菇多糖提取物体外抗氧化性能研究.华东理工大学学报(自然科学版),2006,2(3):278-317
    [11]陈玉岭,蔡显鹏,石继红等.香菇柄水溶性多糖提取工艺的研究.现代化工,1998,10:25-28
    [12]梁佩琼.香菇的产后处理与加工.食用菌,1989,4:45-49
    [13]郭会灿,敦冬梅,杨明等.1400树脂对香菇多糖脱色性能的研究.中国酿造,2008,16,45-47
    [14]田光辉.香菇多糖提取工艺的优化.延安大学学报(自然科学版),2002,21(1):46-47
    [15]李红民,黄仁泉.提高黄芪多糖提取收率的工艺研究.西北大学学报(自然科学版),2000,30(6):509-510
    [16]Hromadkova Z, Ebringerova A, et al. Comparison of classical and ultrasound-assisted extraction of polysaccharides from salvia officinalis. Ultrasonic Sonochemistry,1995,5(4): 163-169
    [17]杨娟,吴谋成,张声华.香菇子实体蛋白多糖的分离纯化及组成结构分析.植物资源与环境学报,2001,10(2):4-6
    [18]耿安静.香菇多糖的制备、结构特性和生物活性的研究:[硕士学位论文].广州:华南理工大学,2010
    [19]郭尽力.大豆低聚糖的提取工艺研究.烟台大学学报(自然科学与工程版),2004,17(4):298,-302
    [20]付学鹏,杨晓杰.植物多糖脱色技术的研究.食品研究与开发,2007,28(11):166-169
    [21]贾淑珍,王成忠,于功明等.香菇多糖脱色方法的研究.食品科技,2007,6:113-115
    [22]谢红旗,周春山.香菇多糖脱色工艺研究.离子交换与吸附,2007,23(2):158-165
    [23]吴雪辉,郭祀远,李琳等.磁性阴离子交换树脂对糖液的脱色效能.华南理工大学学报(自然科学版),1999,27(6):41-45
    [24]龙祯,蒋丽华,华欲飞.大孔树脂对大豆低聚糖超滤液的脱色效果的研究.中国油脂,2008,33(2):53-56
    [25]马建标,何炳林.离子交换树脂在天然产物提取分离中的应用.中国医药工业杂志,1992,24(8):376-384
    [26]刘永宁,史作清等.脱色树脂性能研究.离子交换与吸附,1993,9(5):429-432
    [27]曹鹏伟.灵芝多糖脱色研究:[硕士学位论文].无锡:江南大学,2009
    [28]芦明春,邸铮,谢明杰等.大孔吸附树脂吸附大豆异黄酮的特性研究.食品与发酵工业,2004,30(4):92-95
    [29]Fischer K P, Hofsommer H J. Application of the adsorption technique in the fruit juice industry. Confructa studien,1992,36(3/4),101-104
    [30]蒋维钧,雷良恒等.化工原理(第2版,下册).北京:清华大学出版社,2003.406-409
    [31]顾惕人,朱步瑶,李外郎等.表面化学.北京:科学出版社,2001.322-325
    [32]严希康.生化分离工程.北京:化学工业出版社,2001.256-258
    [33]仇农学,郭善广.LSA-800B吸附树脂对苹果汁吸附脱色的动力学研究.农业工程学报,2004,20(6);15-19
    [34]王洋.孔径均匀的离子交换树脂制备及在植物多糖脱色中的应用:[硕士学位论文].天津:南开大学,2010
    [1]白素松,伍艳辉.分子筛固体碱催化剂在有机合成中的应用.工业催化,2008,16(1):37-41
    [2]淳宏,谢文磊,李会.固体碱催化剂在有机合成中的应用.四川化工,2008,3:30-34
    [3]Sheibani H, Seifi M, Bazgir A. Three-Component Synthesis of Pyrimidine and Pyrimidinone Derivatives in the Presence of High-Surface-Area MgO, a Highly Effective Heterogeneous Base Catalyst. Synthetic Communications,2009,39(6):1055-1064
    [4]Climent M J, Corma A, et al. Chemicals from biomass:Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysis. The role of acid-base pairs. Journal of Catalysis,2010,269(1),140-149
    [5]Climent M J, Corma A, Fornes V, et al. Aldol condensations on solid catalysts:a cooperative effective between weak acid and base sites. Advanced Synthesis & Catalysis,2002,344(10): 1090-1096
    [6]Hosseinzadeh R, Tajbakhsh M, Mohadjerani M, et al. Synthesis of diary ethers through the copper-catalyzed arylation of phenols with aryl iodides using KF/Al2O3. Synthetic Communications,2008,38(17):3023-3031
    [7]蔡红,周斌.离子交换树脂在有机催化反应中的应用进展.化工进展,2007,26(3):386-391
    [8]车荣睿,魏荣宝.阴离子交换树脂催化醇的氰乙基化反应.离子交换与吸附,1995,11(1):18-23
    [9]欧植泽,徐满才,俞善信.三丁胺胺化强碱性阴离子交换树脂催化合成苄叉丙酮.离子交换与吸附,2000,16(2):167-170
    [10]胡微,劳学军,张健等.碱性阴离子交换树脂催化合成甲基乙烯基酮.江苏化工,2003,31(2):47-48
    [11]石秀敏,徐静莉,王树江等.碱性树脂催化剂上丙酮的醇醛缩合反应.吉林工业大学学报(自然科学版),2001,22(3):35-37
    [12]唐斯萍,李谦和,尹笃林.阴离子交换树脂催化丙醛缩合制备2-甲基-2-戊烯醛.湖南师范大学自然科学学报,2001,24(1):42-44
    [13]Morwick T M. High-Throughput Ester Hydrolysis with Catch-and-Release Isolation of Carboxylic Acids. Journal of Combinatorial Chemistry,2006,8(5):649-651
    [14]Tomoi M, Inomata K, Kakiuchi H, et al. Polymer-supported bases.10. Synthesis of phosphatidylcholines using polymer-supported or free acylimidazoles. Synthetic Communications,1989,19(5-6):907-915
    [15]谢文磊.强碱阴离子交换树脂多相催化油脂的酯交换.应用化学,2001,18(10):846-848
    [16]俞善信,刘美艳,管仕斌,文瑞明.聚苯乙烯三乙醇胺树脂的相转移催化作用.湖南文理学院学报(自然科学版),2005,17(4):20-22
    [17]王树清,高崇.强碱性阴离子交换树脂催化合成邻乙酰乙酰氨基苯甲醚.精细石油化工进展,2011,12(4):32-34
    [18]俞善信,肖立新,俞冠源.聚氯乙烯-吡啶树脂的合成及其催化水解反应的研究.离子交换与吸附,1995,11(3):259-262
    [19]Li J T, Li T S, Li L J, et al. Synthesis of ethyl α-cyanocinnamates under ultrasound irradiation. Ultrasonics Sonochemistry,1999,6(4):199-201
    [20]高金宝,王丽冰,刘秀丽,高国华.功能化SBA-15的合成、表征及其在Knoevenagel缩合反应中溶剂效应的研究.分子催化,2008,22(2):117-122
    [21]Cabello J A, Campelo J M, Garcia A, et al. Knoevenagel Condensation in the Heterogeneous-Phase Using AlPO4-Al2O3 as a New Catalyst. Journal of the Organic Chemistry,1984,49(26):' 5195-5197
    [22]Choudary B M, Kantam M L, Sreekanth P, et al. Knoevenagel and aldol condensations catalysed by a new diamino-functionalised mesoporous material, Journal of Molecular Catalysis A:Chemical,1999,142(3):361-365
    [23]陈学伟,李雪辉,宋红兵等.咪唑阴离子型碱性离子液体的合成及其催化Knoevenagel 缩合反应.催化学报,2008,29(10):957-959
    [24]Wang C, Guo L, Li H, et al. Preparation of simple ammonium ionic liquids and their application in the cracking of dialkoxypropanes. Green Chemistry,2006,8(7):603-607
    [25]Song G H, Cai Y Q, Peng Y Q. Amino-functionalized ionic liquid as a nucleophilic scavenger in solution phase combinatiorial sythsis. Journal of Combinatorial Chemistry,2005,7(4): 561-566
    [26]Darvatkar N B, Deoorukhkar A R, et al. Ionic liquid-mediated Knoevenagel condensation of Meldrum's acid and aldehydes. Synthetic Communications,2006,36(20):3043-3051
    [27]Ranu B C, Jana R. Ionic Liquid as Catalyst and Reaction Medium-A Simple, Efficient and Green Procedure for Knoevenagel Condensation of Aliphatic and Aromatic Carbonyl Compounds Using a Task-Specific Basic Ionic Liquid. European of Organic Chemistry,2006, 16:3767-3770
    [28]Forbes D C, Law A M, Morrison D W. Tetrahedron Letters,2006,47(11),1699-1703
    [29]侯敏,余波,李志良.微波辐射下肉桂酸的合成研究.合成化学,2002,10(3):211-215
    [30]Peng Y Q, Song G H. Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catalysis Communications,2006,8(2):111-114
    [31]吕全建,范学森,张新迎.微波促进下的无溶剂Knoevenagel反应研究.河南师范大学学报(自然科学版),2008,36(5):83-85
    [32]陈学伟,宋红兵,李雪辉等.咪唑根碱性离子液体在水介质Knoevenagel反应中的催化作用.催化学报,2011,32(4):693-698
    [33]Reddy K R, Rajgopal K, Uma C, et al. Chitosan hydrogel:A green and recyclable biopolymer catalyst for aldol and Knoevenagel reactions. New Journal of Chemistry,2006, 30(11):1549-1552
    [34]吴长增,胡先明.水相中磷酸氢二铵催化Knoevenagel反应.化学研究与应用,2008,20(1):84-86
    [35]王丽敏,胡文姬等.无溶剂条件下DBU催化Knoevenagel缩合反应的研究.精细与专用化学品,2011,19(7):16-21
    [36]Rao P S, Venkataratnam R V, Zinc chloride as a new catalyst for Knoevenagel condensation. Tetrahedron Letters,1991,32(41):5821-5822
    [37]Prajapati D, Sanduh J S. Cadmium iodide as a new catalyst for Knoevenagel condensations. Journal of the Chemical Society, Perkin Transactions 1:Organic and Bio-Organic Chemistry, 1993,6:739-740
    [38]Kun K A, Kunin R. The pore structure of macroreticular ion exchange resin. Journal of Polymer Science, Polymer Symposia,1967,16:1457-1469
    [39]Rana S, White P, Bradley M. Influence of resin cross linking on solid phase chemistry. Journal of Combinatorial Chemistry,2001,3(1):9-15
    [40]Xing R, Wu H H, et al. Mesopolymer solid base catalysts with variable basicity:preparation and catalytic properties. Journal of Materials Chemistry,2009,19(23):4004-4011
    [1]钱庭宝.离子交换树脂.高分子通报,1989,1:51-56
    [2]Kyokawa A. Heat-resistant anion exchangers for ultrapure water preparation [P]. JP:05 49949, 1993
    [3]Kiba H, Kubota H, Sawada S. Styrene derivative copolymer anion exchangers for extrapture water preparation [P]. JP:07289919,1995
    [4]Ogawa H, Onozuka T, Ito T, et al. Crosslinked anion exchangers for hot-water treatment in power plants [P]. JP:0557200,1993.
    [5]Onozuka T, Shindo M, KiBa H, et al. Styrene derivative copolymers for removal of silicon compounds in water [P]. JP:07289924,1995
    [6]Kunin R. Ion exchange. Industrial and engineering chemistry,1949,41(1):55-59
    [7]Carre E L, Lewis N, Ribas C, et al. Convenient preparation of functionalised polymer-based resins via an economical preparation of chloromethylated polystyrene resins (Merrifield Type). Organic Process Research & Development,2000,4:606-610
    [8]Felton G. Eighth Annual Conf. Food Technol.,1948, June
    [9]Challinors S W, Kieser M E, Pollard A. Effect of ion-exchange treatment on the stability of apple juice. Nature,1948,161:1023-1025
    [10]陶建伟,姚跃良,陆庆宁.强碱阴离子交换树脂催化合成羟丙腈.离子交换与吸附,2001,17(1):78-83
    [11]杨华铮,陆荣健.应用阴离子交换树脂有效合成3-芳氨基-4-氰基-5-氨基吡唑.合成化学,1997,5(2):185-188
    [12]陈志荣,李浩然,梁晓东等.用碱性阴离子交换树脂催化合成丁酮醇的工艺方法.中国专利,1297878.2001-06-06
    [13]王德堂,周立雪,冷士良.用大孔强碱性阴离子交换树脂催化制取苯基苯酚甲醛树脂的方法.中国专利,1865307.2006-11-22
    [14]陈群,何明阳等.一种新型环氧乙烷水合反应催化剂及制备方法.中国专利,1559684A.2005-01-05
    [15]陈群,何明阳等.一种用于催化环氧乙烷水合的季磷型阴离子交换树脂的合成方法.中国专利,1460551A.2003-12-10
    [16]陈群,何明阳等.一种环氧乙烷水合反应的阴离子交换树脂催化剂及制备方法.中国专利,1513597A.2004-07-21
    [17]王璠,陈金龙,陈群等.耐高温阴离子交换树脂的合成及在环氧乙烷催化水合反应中的应用.分子催化,2006,20(2):97-101
    [18]王璠,陈金龙,陈群等.一种带有醚键结构的阴离子交换树脂的合成.高分子材料科学与工程,2006,22(1):73-79
    [19]Wang F, Chen J L, Zhang B, et al. Hydration of ethylene oxide over modified silica gel. Chinese Journal of Catalysis,2005,26(5):355-356
    [20]谢文磊.强碱阴离子交换树脂多相催化油脂的酯交换.应用化学,2001,18(10):846-848
    [21]柯中炉等.强碱性阴离子交换树脂催化菜籽油酯交换反应合成脂肪酸甲酯.离子交换与吸附,2010,26(2):145-152
    [22]欧植泽,徐满才,俞善信.三丁胺胺化强碱性阴离子交换树脂催化苯乙腈的α-丁基化反应.离子交换与吸附,2002,18(3):277-280
    [23]Schuchardt U, Vargas R M, Gelbard G Transesterification of soybean oil catalyzed by alkylguanidines heterogenized on different substituted polystyrenes. Journal of Molecular Catalysis A:Chemical,1996,109:37-44
    [24]Levesque C L, Craig A M. Kinetics of an esterification with cation-exchange resin catalyst. Journal of Industrial and Engineering Chemistry,1948,40:96-99
    [25]Haskell V C, Hammett L P. Rates and temperature coefficients in the hydrolysis of some aliphatic esters with a cation-exchange resin as the catalyst. Journal of the American Chemical Society,1949,71:1284-1288
    [26]范云鸽等.耐高温强碱阴离子交换树脂研究进展.离子交换与吸附,2005,21(4):376-384
    [27]崔焕芳等.强碱性阴离子交换树脂耐热性能测试方法研究.中国电力,2005,4:41-53
    [28]Sanchez, J M, Hidalgo M, Salvado V. A comparison of the separation behavior of some new coordinating resins and commercial quaternary ammonium resins with reference to their separation of gold (III) and Palladium (II) in hydrochloric acid media. Solvent Extraction and Ion Exchange,2004,22(2):285-303
    [29]Khashimova M, Dzhalilov T. Heat-resistant anion exchangers. Journal of Applied Polymer Science,1982, (1):48-49
    [30]范云鸽,肖国林.耐高温强碱阴离子交换树脂研究进展.离子交换与吸附,2005,21(4):376-384
    [31]Downey D. Four year of operating with type III strong base anion resin. Off Proc International Water Conference [C]. Engineers Society of western Pennsyvania,2002,63rd 111-116
    [32]邵林.水处理用离子交换树脂.北京:水利电力出版社,1989.168-171
    [33]肖国林,范云鸽,赫连朋丽等.强碱阴离子交换树脂合成及热稳定性研究.离子交换与吸附,2005,21(6):514-521
    [34]Neagu V, Bunia I. Acrylic weak base anion exchangers and their chemical stability in aggressive media. Polymer Degradation and Stability,2004,83(1):133-138
    [35]Hatch M J, Lloyd W D. Preparation and properties of a neophyl-type anion-exchange resin. Journal of Applied Polymer Science,1964,8(4):1659-1666
    [36]Dzhalilov A T, Askarov M A. Anion-exchange Resins. SU 675056,1979
    [37]Khashimova S M, Dzhalilov A T, Askarov M A. Thermal properties of stabilized copolymers of vinylbenzyl chloride and divinylbenzene. Uzbekskii Khimicheskii Zhumal,1982,1:48-49
    [38]Henmi M, Noyoro M, Yoshioka T. Heat-resistant anion exchangers. JP:0175041,1989
    [39]Hennmi M. Heat-resistant anion exchangers for treating fluids. WO 90 10,500,1994
    [40]Onozuka T, Shindo M, Ito T, et al. Heat-resistant anion exchangers for use as gas absorbents. JP:07 24334,1995
    [41]Watanabe J, Kubota H. Novel anion exchange resins with heat and chemical stability, Off Proc Int Water Conf[C], Pennsylvania, Engineers'Society of Water,1996,57th,453-459
    [42]Tomoi M, Yamaguchi R. Synthesis and thermal stability of novel anion exchange resins with spacer chains. Journal of Applied Polymer Science,1997,64(6):1161-1167
    [43]Masuda S, Andou K. Thermally stable anion exchange resin (DIAION XSA Series): characteristics and applications [A], Ion Exchange at the Millenium [C]; Proceedings of IEX 2000,8th, Cambridge, UK 2000,253-260
    [44]友井正男,久保田裕久.高分子加工(日),1999,48(2):57-63
    [45]工藤.工程材料(日),2000,48(5):71-74
    [46]岩仓具敦,宫城秀和.生产亚烷基二元醇的方法.中国专利,1198429A.1998-11-11
    [47]Iwakura T, Miyagi H. Method of producing alkylene glycols by oligomerization and hydration of alkylene oxide. JP:11012206.1999-01-19
    [48]Kubota H, Yano K, Watanabe J, Jyo A. Cation exchangers or chelating agents and process for the preparation thereof. WO:9804595,1998-02-05
    [49]Keiko K, Masako Y, Hirohisa K. Thermally stable anion exchange resin and postulated effect by application in condensate polishing system. PowerPlant Chemistry,2002,4(6):349-353
    [50]Hu Y, Shimizu T, Hattori K, et al. Synthesis and gas permeation properties of poly(diarylacetylene)s having substituted and twisted biphenyl moieties. Journal of Polymer Science part A:Polymer Chemistry,2010,48(4):861-868
    [51]Kubota H, Yano K. Heat-resistant weakly basic anion exchange resin and their manufacture. JP:10045830,1998-02-17
    [52]Nagata K, Furuya T. Preparation of glycol ethers using anion exchange resin catalysts. JP: 10053550,1998-02-24
    [53]Tomoi M, Yamaguchi K, Ando R, Kantake Y. Synthesis and thermal stability of novel anion exchange resins with space chains. Journal of Applied Polymer Science,1997,64(6):1161-1167
    [54]Nagata K, Furuya T. Method for producing a glycol. US:5945568,1999-8-31
    [55]Iwakura T, Miyagi H. Process for producing alkylene glycol. US:614726,2000-11-14
    [56]Terayama H, Kubota H. Removal of silica from water by anion exchang. JP:10137752, 1998-05-26
    [57]Terayama H, Takeuchi K, Kubota H. Disinfection of water purifying apparatus. JP:10137750, 1998-05-26
    [58]Kubota H, Yano K, Sawada S. Novel anion exchange resins with thermal stability:synthesis and characteristics. Special Publication-Royal Society of Chemistry,1996,182(3):398-406
    [59]Osaki Y, Hashimoto H, Kudo K. Method for production of strongly basic anion exchangers. JP:2002212226,2002-07-31
    [60]Watanabe J, Kubota H, Yano K. Novel anion exchange resins with heat and chemical stability. Official Proceedings-International Water Conference,1996,57th,453-459
    [61]Yasutomi M, Kubota H. Thermally stable anion exchange resin. Studies in Surface Science and Catalysis,2003,145(Science and Technology in Catalysis 2002),555-556
    [62]Watanabe J, Kubota H, Yano K, Fukuda J, Shindo M. Anion exchange resins with heat and chemical stability. Ultrapure Water,1997,14(6),39-42
    [63]Kubota H. Thermally stable anion exchange resins. Kino Zairyo,2002,22(9),56-63
    [64]Hirano Y. Crosslinked polymer, method for manufacturing it and use thereof. US:20022888. 2002-02-18
    [65]过慕英,梁凯,宁珍.阴离子交换树脂热降解性能试验研究.离子交换与吸附,1999,15(3):272-278
    [66]马升灯.强碱性阴离子交换树脂在水中的热稳定性.浙江师范大学学报(自然科学版),1998,21(3):65-67
    [67]张澄信,张红梅.凝结水处理用阴离子交换树脂耐热性能对比试验.热力发电,1997,4:38-41
    [68]张澄信,游喆,钱勤等.强碱阴离子交换树脂耐热性能测定方法的研究.华北电力技术,2001,7:17-20
    [69]龚云峰,吴春华,丁恒如.树脂溶出物在离子交换树脂上吸着行为的试验研究.上海电力学院学报,2000,16(1):29-32
    [70]龚云峰,吴春华,丁恒如.离子交换树脂溶出物的测定及其对水质的影响.给水排水,2000,26(5):39-42
    [71]龚云峰,吴春华,丁恒如.凝结水处理用树脂溶出物问题研究.离子交换与吸附,2000,16(5):461-466
    [72]胡泓梵.一种耐高温阴离子交换树脂的合成及在催化合成丙酸苄酯中的应用.精细化工体,2007,37(5):59-63
    [73]肖国林,范云鸽.强碱阴离子交换树脂合成及热稳定性能研究.离子交换与吸附,2005,21(6):514-521
    [74]王金明,刘文飞,张勇.一种耐高温碱性阴离子交换树脂制作方法.中国专利,101481466A.2009-07-15
    [75]陈群,何明阳,刘迎春,高山.一种带有长间隔臂的强碱阴离子交换树脂的制备方法.中国专利,101333265A.2008-12-31
    [76]Miyake T. Novel base imidazolylmethylstyrene compound, its polymer, a process for the preparation thereof and a use as ion exchange resin. US:4430445.1982-07-26
    [77]Kambara H. Methylquinoline anion exchange resin based on haloalkyl vinyl aromatic polymers. US:4247648.1973-10-30
    [78]吉田康夫Strong base anion resin日本化学会第58春季年会.
    [79]Hick H. Tailoring of 4-vinylpyrindine-base resins for hydrolytic degradation and solubilisation. Tetrahedron,1999,55:9585-9594
    [80]Van K. Process for the preparation of alkylene glycols. US:5874653.1997-05-29
    [81]Panster P. Polymeric ammonium compounds with a silica-type backbone, processes for their preparation and use. US:4410669.1982-07-08
    [82]Shvets F. Manufacture of alkylene glycols by catalytic hydration of alkylene oxides. WO: 9912876.1999-03-18
    [83]Shvets F. Method of synthesis of alkylene glycols. RU:2149864.2000-03-27
    [84]Shvets F. Catalytic process for obtaining alkylene glycols. WO:9733850.1997-09-18
    [85]许辉,胡喜章.Friedel-Crafts酰基化法制备聚苯乙烯型阴离子交换树脂.功能高分子学报,1998,11(12):513-520
    [86]Orner B P, Hamilton A D. The guanidinium group in molecular recognition:design and synthetic approaches. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2001-41:141-147
    [87]高海翔,鲁润华,汪汉卿.胍基化合物研究进展.有机化学,2001,21(7):485-492
    [88]Brunelle D J, Scotia N Y. Bis penta:alkyl-guanidinium salts-are prepd. by reaction of penta: alkyl-guaidine with alkylene di:halide, useful as phase transfer catalysts. US:5081298. 1992-01-14
    [89]Huang J, Jiang T, Gao H X, et al. Pd nanoparticles immobilized on molecular sieves by ionic liquids:heterogeneous catalysts for solvent-free hydrogenation. Angewandte Chemie, International Edition,2004,43(11),1397-1399
    [90]Brunelle D J, Scotia N Y. Prepn. Of high mol. Wt. aromatic polyether polymer-by contacting alkali metal salt(s) of di:hydroxyl-substd. Aromatic hydrocarbon and substd. Aromatic cpd(s). in the presence of phase transfer catalyst. US:5229482.1993-07-20
    [91]Gros P, Le Perchec P, Sene J P. Reaction of epoxide with chlorocarbonylated compounds catalyzed by hexaalkylguanidium chloride. Journal of Organic Chemistry,1994,59(17): 4925-4930
    [92]段海峰,张所波,林英杰等.新型室温离子液体六烷基胍盐的制备及性质.高等学校化学学报,2003,11:2024-2026
    [93]Brunelle D J. Bis penta:alkyl-guanidinium salts-are prepd. by reaction of penta: alkyl-guanidine with alkylene di:halide, useful as phase transfer catalysts. US:5229482. 1992-01-12
    [94]Fukutomi R, Tanatani A,'Kakuta H, et al. Aromatic layered guanidines bind sequence-specifically to DNA minor groove with precise fit. Tetrahedron Letters,1998, 39(36):6475-6478
    [95]Schneider S E, Bishop P A; Salazar M A. Solid phase synthesis of oligomeric guanidium. Tetrahedron,1998,54(50):15063-15086
    [96]Xie H B, Duan H F, Li S H, et al. The effective synthesis of propylene carbonate catalyzed by silica-supported hexaalkylguanidinium chloride. New Journal of Chemistry,2005,29(9): 1199-1203
    [97]Riordan J F. Arginyl residues and anion bingding sites in proteins. Molecualr and Cellular Biochemistry,1979,26(2):71-92
    [98]Moser H E, Dervan P B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science,1987,238(4827):645-649
    [99]Boyle P H, Convery M A, Davis A P, et al. Deprotonation of nitroalkanes by bicyclic amidine and guanidine bases; evidence for molecular recognition within a catalytic cycle for carbon-carbon bond formation. Journal of the Chemical Society, Chemical Communications, 1992,3:239-242
    [100]Simoni D, Invidiata P F, Manfredini S, et al. Facile synthesis of 2-nitroalkanols by tetramethylguanidine (TMG)-catalyzed addition of primary nitroalkanes to aldehydes and alicyclic ketones. Tetrahedron Lett.1997,38(15):2749-2752
    [101]Schneider S E, Bishop P A, Salazar M A, et al. Solid Phase Synthesis of Oligomeric Guanidiniums. Tetrahedron 1998,54:15063-15086
    [102]林雪,杨益中,何炳林等.几种新型含氮螯合树脂的合成及其性能的研究.化学试剂,1991,13(2):65-68
    [103]李玲颖,阎永平,陈克等.用新型胍基SG螯合树脂作为Au、Pt、Pd组试剂及ICP-AES同时测定的研究.离子交换与吸附,1989,5(6):426-430
    [104]Jermakowicz-Bartkowiak D, Kolarz B N. Gold sorption on weak base anion exchangers with aminoguanidyl groups. European Polymer Journal,2002,38:2239-2246
    [105]Kolarz B N, Trochimczuk A W, Jermakowicz-Bartkowia D, et al. Synthesis and some sorption properties of anion exchangers bearing ligands of different length with guanidyl and biguanidyl end groups. Polymer,2002,43:1061-1068
    [106]Jermakowicz-Bartkowiak D, Kolarz B N, Serwin A. Sorption of precious metals from acid solutions by functionalized vinylbenzyl choride-acrylonitryle-divinylbenzene copolymers bearing amino and guanidine ligands. Reactive & Functional Polymers,2005,65:135-142
    [107]Owsik I A, Kolarz B N, Jermakowicz-Bartkowiak D, Jezierska J. Synthesis and characterization of resins with ligands containing guanidine derivatives. Cu (II) sorption and coordination properties. Polymer,2003,44:5547-5558
    [108]Ma X, Li Y, Ye Z, et al. Novel chelating resin with cyanoguanidine group:Useful recyclable material for Hg (II) removal in aqueous environment. Journal of Hazardous Materials,2011, 185:1348-1354
    [109]Yang Y F, Lu M L, Xu B, Zeng Z X. Guanidine-Functionalized Resin-Supported Pd(0) Catalyst:Activity, Reusability, and Redeposition of Active Pd Species in Heck vinylation Chinese Journal of Chemistry,2008,26:30-34
    [110]Leadbeater N E, Cornella P. Development of catalysts for the Baylis-Hillman reaction:the application of tetramethylguanidine and attempts to use a supported analogue. Journal of the Chemical Society, Perkin Transaction,2001,21:2831-2835
    [111]姚静,陈圣春,孙富安等.含胍基强碱阴离子交换树脂的合成及应用.离子交换与吸附,2012,28(4):321-328
    [112]Owsik I A, Kolarz B N. The catalytic oxidation of hydroquinone:influence of surface properties of polymeric catalysts with aminoguanidyl ligand on catalytic properties. Catalysis Today,2004,91:199-204
    [113]Bromberg L, Hatton T A. Poly (N-vinylguanidine):Characterization, and catalytic and bactericidal properties. Polymer,2007,48:7490-7498
    [114]Gelbard G, Vielfaure-Joly F. Polynitrogen strong bases as immobilized catalysts. Reactive & Functional Polymers,2001,48:65-74
    [1]何炳林,黄文强.离子交换与吸附树脂.上海:上海科技教育出版社,1992.17-23
    [2]范云鸽,肖国林.耐高温强碱阴离子交换树脂研究进展.离子交换与吸附,2005,21(4):376-384
    [3]陈群,刘迎春,孙奇,高山,何明阳.耐高温强碱阴离子交换树脂催化剂的合成及应用.分子催化,2009,23(3):243-247
    [4]Hiroshi K. Methylquinoline Anion Exchange Resin Based On Haloalkyl Vinyl Aromatic Polymers. US:4247648.1981-01-27
    [5]Tetsuya Miyake. Novel Basic Imidazolylmethylstyrene Compound, Its Polymer, A Process For the Preparation Thereof and A Use as Ion Exchange Resin. US:4430445. 1984-02-07
    [6]Yoshiaki Hirano. Crosslinked Polymer, Method for Manufacturing it and Use Thereof. US: 20020028887.2002-02-08
    [7]Bonhote P, Dias A P, Papageorigious N, et al. Hydrophobic, higly conductive ambient-temperature molten salts. Inorganic Chemistry,1996,35(5):1168-1178
    [8]沈宗旋,王亚玲,张雅文.胍类化合物的制备及在有机合成中的应用.有机化学,2002,22(6):388-396
    [9]林雪,杨益忠,何炳林等.几种新型含氮螯合树脂的合成及其性能研究.化学试剂,1991,13(2):65-68
    [10]Simoni D, Invidiata F P, Manfredini S, et al. Facile synthesis of primary nitroalkanes to aldehydes and alicyclic ketones. Tetrahedron Letters,1997,38(15):2749-2752
    [11]Waldman T E, McGhee W D. Isocyanates from primary amines and carbon dioxide: 'dehydration'of carbamate anions. Journal of the Chemical Society, Chemical Communications,1994,(8):957-958
    [12]Gelbard F, Vielfaure-Joly F. Polymitrogen Strong Bases:1-New Syntheses of Biguanides and their Catalytic Properities in Transesterification Reactions. Tetrahedron Letters,1998,39(18): 2743-2747
    [13]Baumgarth M, Beier N, Gericke R. [2-Methyl-5-(methylsulfonyl)benzoyl]guanidine Na+/H+ antiporter inhibitors. Journal of Medicinal Chemistry,1997,40(13):2017-2034
    [14]王方.离子交换树脂标准手册.北京:中国标准出版社,2003.242-251
    [15]张政朴,钱庭宝.交联聚苯乙烯-二乙烯苯共聚物的氯甲基化反应.离子交换与吸附,1987,3(5):70-76
    [16]国标标准GB5760-86阴离子交换树脂交换容量测定方法
    [17]耿啸天.高选择性吸附树脂结构设计及在中药复方有效成分提取中的应用:[博士学位论文].天津:南开大学,2010
    [18]张澄信,梁凯,钱勤等.对凝结水处理用离子交换树脂的有机溶出物的研究.离子交换与吸附,1999,15(3):272-278
    [19]李玲颖,闫永平,林雪.新型SGN螯合树脂吸附贵金属性能和机理的研究.离子交换与吸附,1992,8(2):128-134
    [20]Leadbeater N E, Cornelia P. Development of catalysts for the Baylis-Hillman reaction:the application of tetramethylguanidine and attempts to use a supported analogue. Journal of the Chemical Society, Perkin Transactions,2001,21:2831-2835
    [21]Li A, Zhang Q, Chen J, et al. Adsorption of phenolic compounds on Amberlite XAD-4 and its acetylated derivative MX-4. Reactive & Functional Polymers,2001,49(3):225-233
    [22]Schneider S E, Bishop P A, Salazar M A. Solid phase synthesis of oligomeric guanidiniums. Tetrahedron,1998,54(50):15063-15086
    [23]Duan H F, Li S H, Lin Y J, et al. Synthesis of cyclic carbonates from CO2 and epoxides catalyzed by hexaalkylguanidinium halides. Chemical Research in Chinese Universities, 2004,20(5):568-571
    [24]Amick D R. Uniform polymer beads and ion exchange resins therefrom prepared by post-crosslinking of lightly crosslined beads. US:4192920.1980-03-11
    [25]Pan B C, Xiong Y, Li A M, et al. Adsorption of aromatic acids on an aminated hypercrosslinked macroporous polymer. Reactive & Functional Polymers,2002,53(2-3): 63-72
    [26]袁彦超,陈炳稔,王瑞香,石光,陈玉媚.新型交联壳聚糖树脂的制备及其对苯甲酸的吸附行为研究.化学学报,2004,62(8),842-846
    [27]Zhang H, Ji, L, Wu P, et al. In situ ozonation of anthracene in unsaturated porous media. Journal of hazardous materials,2005,120(1-3):143-148
    [28]Chao L, Hong Z, Li Z, et al. Study on adsorption characteristic of macroporous resin to phenol in wastewater. Canadian Journal of Chemical Engineering,2010,88(3):417-424
    [29]徐锡彪,褚宏伟,孙建中.高浓度有机化工废水处理新技术-催化氧化.环境保护,2001,3:17-18
    [30]Lin S H, Huang C Y. Adsorption of BTEX from aqueous solution by macroreticular resins. Journal of Hazardous Materials,1999,70(1-2):21-37
    [31]胡淑婉,李文军,常志东等.磁性碳纳米管吸附去除水中甲级橙的研究.光谱学与光谱分析,2011,31(1):205-209
    [32]高宝玉,岳钦文,岳钦艳等.化学氧化法和化学混凝法用于染料废水的脱色研究.环境科学研究,1999,12(1):1-9
    [33]方宗堂,王宏,葛玮等.多相催化湿式氧化法处理高浓度难降解有机废水的研究.化工 环保,2005,25(1):8-11
    [34]Gibbs G, Tobin J M, Guibal E. Sorption of Acid Green 25 on chitosan:influence of experimental parameters on uptake kinetics and sorption isotherms. Journal of Applied Polymer Science,2003,90(4):1073-1080
    [35]Abburi K. Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin. Journal of Hazardous Materials,2003,105(1-3): 143-156
    [36]刘福强,陈金龙,李爱民等.超高交联吸附树脂对苯甲酸的吸附研究.离子交换与吸附,2002,18(6):522-528
    [37]任萍.水体系中高选择性氢键吸附树脂的结构设计、吸附机理及应用研究:[博士学位论文].天津:南开大学,2008
    [38]Gessner P K, Hasan M M. Freundlich and Langmuir isotherms as models for the adsorption of toxicants on activated charcoal. Journal of Pharmaceutical Sciences,1987,76(4):319-327
    [39]Scherer M M, Richter S, Valentine R L, et al. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Critical Reviews in Environmental Science and Technology,2000,30(3):363-411
    [40]Schroeder G, Eitner K, Gierczyk B, et al. Reaction of fluoronitrobenzenes with tetramethylguanidine in acetonitrile. Journal of Molecular Structure,1999,478(1-3):243-253
    [41]Gierczyk B, Eitner K, Schroeder G, et al. Reactions of fluoronitrobenzenes with MTBD strong base in acetonitrile in the presence of water molecules. Journal of Molecular Structure, 2003,655(2):259-267
    [42]Jarczewski A, Hubbard C D. A review of proton transfer reactions between various carbon-acids and amine bases in aprotic solvents. Journal of Molecular Structure,2003, 649(3):287-307
    [43]黄贱苟,徐满才,李海涛等.非水体系中大孔交联酰胺基树脂的吸附热力学.物理化学学报,2003,19(3):208-211
    [44]Huang J H, Zhou Y, Huang K L, et al. Adsorption behavior, thermodynamics, and mechanism of phenol on polymeric adsorbents with amide group in cyclohexane. Journal of Colloid and Interface Science,2007,316(1):10-18
    [1]黄春华,俞斌.新型杀菌剂长链烷基胍.精细化工,2002,19.51-53
    [2]展义臻,赵雪.有机胍类抗菌剂的研究进展.国际纺织导报,2009,5:47-54
    [3]方文彦.吗啉脒胍盐酸盐生产工艺的对比及改进.化学工程师,2006,2:51-53
    [4]孙才英,郭雪飞,马楠,郭廷翘等.醋酸十二胍的合成.精细化工,1998,15(6):9-11
    [5]Ma X, Poon T Y, Wong P T H, Chui W K. Synthesis and in vitro evaluation of 2,4-diamino-1,3,5-triazine derivatives as neuronal voltage-gated sodium channel blockers. Bioorganic & Medicinal Chemistry Letters,2009,19(19):5644-5647
    [6]王晓天,张建宾,金汝城.对胍基苯甲酸盐酸盐的制备及衍生物卡莫他特甲磺酸盐的合成.精细化工,2004,21(8):597-599
    [7]李秀丽,董朝红,朱平,翟海群.新型抗菌剂壳聚糖双胍盐酸盐的制备机器抑菌性能研究.染整技术,2009,8:1-4
    [8]Wang Y, Daryl R S, Stevan W D. A facile and practical one-pot'catch and release'synthesis of substituted guanidines. Tetrahedron Letters,2009,50(36),5145-5148
    [9]Li M, Wilson L J, et al. A simple solid-phase synthesis of disubstituted guanidines using Rink amide resin as an amine component. Tetrahedron Letters,2001,42(12):2273-2275
    [10]Kolarz B N, Jennakowicz-Bartkowiak D, Trochimczuk A W, et al. Influence of the structure of chelating resins with guanidyl groups on gold sorption. Reactive & Functional Polymers, 1999,42(3):213-222
    [11]Kolarz B N, Bartkowiak D, Trochimczuk A W, et al. New selective resins with guanidyl groups. Reactive & Functional Polymers,1998,36(2):185-195
    [12]Owsik I A, Kolarz B N, Jermakowicz-Bartkowiak D, et al. Synthesis and characterization of resins with ligands containing guanidine derivatives. Cu(II) sorption and coordination properties. Polymer,2003,44(19):5547-5558
    [13]Jermakowicz-Bartkowiak D, Kolarz B N. Gold sorption on weak base anion exchangers with aminoguanidyl groups. European Polymer Journal,2002,38(11),2239-2246
    [14]Owsik I A, Kolarz B N. The catalytic oxidation of hydroquinone:influence of surface properties of polymeric catalysts with aminoguanidyl ligand on catalystic properties. Catalysis Today,2004,91-92,199-204
    [15]姚金烽,杨文革,沈磊,赵晓磊等.2,6-胍基己酸盐酸盐的合成.现代化工,2009,7:57-58
    [16]潘志信,臧剑甬.用三氧化硫脲合成氨基胍.应用化学,2001,18(11):936-938
    [17]赵声贵,钟宏,刘广义等.硫酸辛基胍的合成.农药研究与应用,2006,10(4):24-25
    [18]赵昔慧,李群,杨蕊.聚胍的合成及其在纺织品上的抗菌应用研究.印染助剂,2010,27(1):16-22
    [19]匡永清,张生勇,蔚琳琳.N-(4-溴丁基)邻苯二甲酰亚胺的合成.化学试剂,2001,23(6):359-361
    [20]匡永清等.合成N-甲基-4-氨基邻苯二甲酰亚胺的新路线.化学试剂,1992,14(5):315
    [21]张建春,黄机质,郝新敏.织物防水透湿原理与层压织物生产技术.北京:中国纺织出版社,2003.109-121
    [22]Nishizawa K, Mizutani H, Dohzono M. Absorbent article e.g. disposable diaper or napkin-using liq. Impermeable but vapour permeable, porous backing film, made from polyolefin, filler and liq. or waxy hydrocarbon polymer. US:4626252.1983-09-14
    [23]Kolarz B N, Jennakowicz-Bartkowiak D, Jezierska J, et al. Anion exchangers with alkyl substituted guanidyl groups gold sorption and Cu(II) coordination. Reactive & Functional Polymers,2001,48(1-3),169-179
    [24]许辉,胡喜章Friedel-Crafts酰基化法制备聚苯乙烯型阴离子交换树脂.功能高分子学 报,1998,12(4):513-520
    [25]何炳林,张全兴,李效白等.氯甲基化苯乙烯-二乙烯苯共聚物的Friedel-Craft反应.高分子通讯,1980,6:329-334
    [26]Qu J B, Zhou W Q, Wei W, et al. Chemical modification and characterization of gigaporous polystyrene microspheres as rapid separation of proteins base supports. Journal of Polymers Science, Part A:Polymer Chemistry,2008,46(17):5794-5804
    [27]Haratake M, Ogawa N, Sugii A. Sorption of phenols on anion-exchange resins having ω-oxoalkyl or ω-hydroxyalkyl spacer. Analytical Sciences,1988,4(6):591-594
    [28]王玲,高保娇,王世伟.季鳞盐型三相相转移催化剂的制备及其化学结构与相转移催化活性的关系.催化学报,2010,31(1):112-119
    [29]Walker K A M, Wallach M B, Hirschfeld D R. 1-(Naphthylalkyl)-1H-imidazole derivatives, a new class of anticonvulsant agents, Journal of Medicinal Chemistry,1981,24(1):67-74
    [1]Ramesh H P, Yamaki K, Tsushida T. Effect of fenu greek (Trigonelafoenum graecum L.) galactomannan fractions on phagocytosis in rat macrophages and on proliferation and IgM secretion in HB4C5 cells. Carbohydrate Polymers,2002,50(1):79-83
    [2]Fabregas J, Garcia D, Fernandez-Alonso M, et al. In vitro inhibition of the replication of haemorrhagic septicemia (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral Research,1999,44(1):67-73
    [3]张俐娜,张平义,李翔等.香菇多糖的成分及其分子量研究.高等学校化学学报,1998,19(9):1513-1517
    [4]Takuma S, Nobuo T. Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes. Carbohydrate Research,1976,47(1):99-105
    [5]姚磊,王静,赵海田.香菇多糖生物活性研究进展.中国甜菜糖业,2004,3:27-30
    [6]杜宇野.香菇多糖的研究进展.中国食用菌,1995,14(4):9-11
    [7]Suzuki M, Kikuchi T, Takatsuki F, et al. Curative effects of combination therapy with lentinan and tinterleukin-2 against estabished murine tumors, and the role of CD8-positive T cell. Cancer Immumol Immunmther,1994,38(1):1-8
    [8]Takatsuki F, Namiki R, Tomoko K, et al. Lentinan augments skin reaction induced by bradykinin:its correlation with vascular dilatation and hemorrhage responses and antitumor activities. International Journal of Immunopharmacology,1995,17(6):465-474
    [9]Markova N, Kussovsk V, et al. Effects of intraperitoneal and intranasal application of lentinan on cellular response in rats, International Immunopharmacology,2002,2(12):1641-1645
    [10]林桂兰,许学书,连文思.食用菇多糖提取物体外抗氧化性能研究.华东理工大学学报(自然科学版),2006,2(3):278-317
    [11]陈玉岭,蔡显鹏,石继红等.香菇柄水溶性多糖提取工艺的研究.现代化工,1998,10:25-28
    [12]梁佩琼.香菇的产后处理与加工.食用菌,1989,4:45-49
    [13]郭会灿,敦冬梅,杨明等.1400树脂对香菇多糖脱色性能的研究.中国酿造,2008,16, 45-47
    [14]田光辉.香菇多糖提取工艺的优化.延安大学学报(自然科学版),2002,21(1):46-47
    [15]李红民,黄仁泉.提高黄芪多糖提取收率的工艺研究.西北大学学报(自然科学版),2000,30(6):509-510
    [16]Hromadkova Z, Ebringerova A, et al. Comparison of classical and ultrasound-assisted extraction of polysaccharides from salvia officinalis. Ultrasonic Sonochemistry,1995,5(4): 163-169
    [17]杨娟,吴谋成,张声华.香菇子实体蛋白多糖的分离纯化及组成结构分析.植物资源与环境学报,2001,10(2):4-6
    [18]耿安静.香菇多糖的制备、结构特性和生物活性的研究:[硕士学位论文].广州:华南理工大学,2010
    [19]郭尽力.大豆低聚糖的提取工艺研究.烟台大学学报(自然科学与工程版),2004,17(4):298-302
    [20]付学鹏,杨晓杰.植物多糖脱色技术的研究.食品研究与开发,2007,28(11):166-169
    [21]贾淑珍,王成忠,于功明等.香菇多糖脱色方法的研究.食品科技,2007,6:113-115
    [22]谢红旗,周春山.香菇多糖脱色工艺研究.离子交换与吸附,2007,23(2):158-165
    [23]吴雪辉,郭祀远,李琳等.磁性阴离子交换树脂对糖液的脱色效能.华南理工大学学报(自然科学版),1999,27(6):41-45
    [24]龙祯,蒋丽华,华欲飞.大孔树脂对大豆低聚糖超滤液的脱色效果的研究.中国油脂,2008,33(2):53-56
    [25]马建标,何炳林.离子交换树脂在天然产物提取分离中的应用.中国医药工业杂志,1992,24(8):376-384
    [26]刘永宁,史作清等.脱色树脂性能研究.离子交换与吸附,1993,9(5):429-432
    [27]曹鹏伟.灵芝多糖脱色研究:[硕士学位论文].无锡:江南大学,2009
    [28]芦明春,邸铮,谢明杰等.大孔吸附树脂吸附大豆异黄酮的特性研究.食品与发酵工业,2004,30(4):92-95
    [29]Fischer K P, Hofsommer H J. Application of the adsorption technique in the fruit juice industry. Confructa studien,1992,36(3/4),101-104
    [30]蒋维钧,雷良恒等.化工原理(第2版,下册).北京:清华大学出版社,2003.406-409
    [31]顾惕人,朱步瑶,李外郎等.表面化学.北京:科学出版社,2001.322-325
    [32]严希康.生化分离工程.北京:化学工业出版社,2001.256-258
    [33]仇农学,郭善广.LSA-800B吸附树脂对苹果汁吸附脱色的动力学研究.农业工程学报,2004,20(6):15-19
    [34]王洋.孔径均匀的离子交换树脂制备及在植物多糖脱色中的应用:[硕士学位论文].天津:南开大学,2010
    [1]白素松,伍艳辉.分子筛固体碱催化剂在有机合成中的应用.工业催化,2008,16(1):37-41
    [2]淳宏,谢文磊,李会.固体碱催化剂在有机合成中的应用.四川化工,2008,3:30-34
    [3]Sheibani H, Seifi M, Bazgir A. Three-Component Synthesis of Pyrimidine and Pyrimidinone Derivatives in the Presence of High-Surface-Area MgO, a Highly Effective Heterogeneous Base Catalyst. Synthetic Communications,2009,39(6):1055-1064
    [4]Climent M J, Corma A, et al. Chemicals from biomass:Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysis. The role of acid-base pairs. Journal of Catalysis,2010,269(1),140-149
    [5]Climent M J, Corma A, Fornes V, et al. Aldol condensations on solid catalysts:a cooperative effective between weak acid and base sites. Advanced Synthesis & Catalysis,2002,344(10): 1090-1096
    [6]Hosseinzadeh R, Tajbakhsh M, Mohadjerani M, et al. Synthesis of diary ethers through the copper-catalyzed arylation of phenols with aryl iodides using KF/Al2O3. Synthetic Communications,2008,38(17):3023-3031
    [7]蔡红,周斌.离子交换树脂在有机催化反应中的应用进展.化工进展,2007,26(3):386-391
    [8]车荣睿,魏荣宝.阴离子交换树脂催化醇的氰乙基化反应.离子交换与吸附,1995,11(1):18-23
    [9]欧植泽,徐满才,俞善信.三丁胺胺化强碱性阴离子交换树脂催化合成苄叉丙酮.离子交换与吸附,2000,16(2):167-170
    [10]胡微,劳学军,张健等.碱性阴离子交换树脂催化合成甲基乙烯基酮.江苏化工,2003,31(2):47-48
    [11]石秀敏,徐静莉,王树江等.碱性树脂催化剂上丙酮的醇醛缩合反应.吉林工业大学学报(自然科学版),2001,22(3):35-37
    [12]唐斯萍,李谦和,尹笃林.阴离子交换树脂催化丙醛缩合制备2-甲基-2-戊烯醛.湖南师范大学自然科学学报,2001,24(1):42-44
    [13]Morwick T M. High-Throughput Ester Hydrolysis with Catch-and-Release Isolation of Carboxylic Acids. Journal of Combinatorial Chemistry,2006,8(5):649-651
    [14]Tomoi M, Inomata K, Kakiuchi H, et al. Polymer-supported bases.10. Synthesis of phosphatidylcholines using polymer-supported or free acylimidazoles. Synthetic Communications,1989,19(5-6):907-915
    [15]谢文磊.强碱阴离子交换树脂多相催化油脂的酯交换.应用化学,2001,18(10):846-848
    [16]俞善信,刘美艳,管仕斌,文瑞明.聚苯乙烯三乙醇胺树脂的相转移催化作用.湖南文理学院学报(自然科学版),2005,17(4):20-22
    [17]王树清,高崇.强碱性阴离子交换树脂催化合成邻乙酰乙酰氨基苯甲醚.精细石油化工进展,2011,12(4):32-34
    [18]俞善信,肖立新,俞冠源.聚氯乙烯-吡啶树脂的合成及其催化水解反应的研究.离子交换与吸附,1995,11(3):259-262
    [19]Li J T, Li T S, Li L J, et al. Synthesis of ethyl a-cyanocinnamates under ultrasound irradiation. Ultrasonics Sonochemistry,1999,6(4):199-201
    [20]高金宝,王丽冰,刘秀丽,高国华.功能化SBA-15的合成、表征及其在Knoevenagel缩合反应中溶剂效应的研究.分子催化,2008,22(2):117-122
    [21]Cabello J A, Campelo J M, Garcia A, et al. Knoevenagel Condensation in the Heterogeneous Phase Using AlPO4-Al2O3 as a New Catalyst. Journal of the Organic Chemistry,1984,49(26): 5195-5197
    [22]Choudary B M, Kantam M L, Sreekanth P, et al. Knoevenagel and aldol condensations catalysed by a new diamino-functionalised mesoporous material, Journal of Molecular Catalysis A:Chemical,1999,142(3):361-365
    [23]陈学伟,李雪辉,宋红兵等.咪唑阴离子型碱性离子液体的合成及其催化Knoevenagel缩合反应.催化学报,2008,29(10):957-959
    [24]Wang C, Guo L, Li H, et al. Preparation of simple ammonium ionic liquids and their application in the cracking of dialkoxypropanes. Green Chemistry,2006,8(7):603-607
    [25]Song G H, Cai Y Q, Peng Y Q. Amino-functionalized ionic liquid as a nucleophilic scavenger in solution phase combinatiorial sythsis. Journal of Combinatorial Chemistry,2005,7(4): 561-566
    [26]Darvatkar N B, Deoorukhkar A R, et al. Ionic liquid-mediated Knoevenagel condensation of Meldrum's acid and aldehydes. Synthetic Communications,2006,36(20):3043-3051
    [27]Ranu B C, Jana R. Ionic Liquid as Catalyst and Reaction Medium- A Simple, Efficient and Green Procedure for Knoevenagel Condensation of Aliphatic and Aromatic Carbonyl Compounds Using a Task-Specific Basic Ionic Liquid. European of Organic Chemistry,2006, 16:3767-3770
    [28]Forbes D C, Law A M, Morrison D W. Tetrahedron Letters,2006,47(11),1699-1703
    [29]侯敏,余波,李志良.微波辐射下肉桂酸的合成研究.合成化学,2002,10(3):211-215
    [30]Peng Y Q, Song G H. Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catalysis Communications,2006,8(2):111-114
    [31]吕全建,范学森,张新迎.微波促进下的无溶剂Knoevenagel反应研究.河南师范大学学报(自然科学版),2008,36(5):83-85
    [32]陈学伟,宋红兵,李雪辉等.咪唑根碱性离子液体在水介质Knoevenagel反应中的催化作用.催化学报,2011,32(4):693-698
    [33]Reddy K R, Rajgopal K, Uma C, et al. Chitosan hydrogel:A green and recyclable biopolymer catalyst for aldol and Knoevenagel reactions. New Journal of Chemistry,2006, 30(11):1549-1552
    [34]吴长增,胡先明.水相中磷酸氢二铵催化Knoevenagel反应.化学研究与应用,2008,20(1):84-86
    [35]王丽敏,胡文姬等.无溶剂条件下DBU催化Knoevenagel缩合反应的研究.精细与专用化学品,2011,19(7):16-21
    [36]Rao P S, Venkataratnam R V. Zinc chloride as a new catalyst for Knoevenagel condensation. Tetrahedron Letters,1991,32(41):5821-5822
    [37]Prajapati D, Sanduh J S. Cadmium iodide as a new catalyst for Knoevenagel condensations. Journal of the Chemical Society, Perkin Transactions 1:Organic and Bio-Organic Chemistry, 1993,6:739-740
    [38]Kun K A, Kunin R. The pore structure of macroreticular ion exchange resin. Journal of Polymer Science, Polymer Symposia,1967,16:1457-1469
    [39]Rana S, White P, Bradley M. Influence of resin cross linking on solid phase chemistry. Journal of Combinatorial Chemistry,2001,3(1):9-15
    [40]Xing R, Wu H H, et al. Mesopolymer solid base catalysts with variable basicity:preparation and catalytic properties. Journal of Materials Chemistry,2009,19(23):4004-4011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700