Cu_2ZnSnS_4光电薄膜的电沉积制备与物理性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能是可再生、廉价和清洁的能源之一,如果把太阳能转化为电能可以缓解甚至彻底解决人类面临的能源短缺和环境污染两大问题,太阳电池正是实现该目标的重要手段。因此,太阳电池材料的研究受到人们广泛关注。Cu_2ZnSnS_4(CZTS)化合物直接带隙约1.5eV,具有很高的光吸收系数(104cm~(-1)-10~5cm~(-1))及光电转换效率,被公认为是最具潜力的清洁、安全和环保的太阳电池吸收层材料。但是,目前对CZTS化合物的制备和性能研究尚处于初期阶段,如何降低其制造成本和提高其光电转换效率是当前的研究热点。采用电沉积方法制备CZTS薄膜具有所需设备简单、原材料成本低和容易大面积成膜等优点,极具工业化前景。因此,本文重点研究了电沉积预制层的机理、溶液配方、电沉积工艺参数及后续硫化或退火工艺对合成CZTS薄膜材料的影响,并应用第一性原理的方法计算了其电子结构、光学、力学和热力学等性质。
     采用分步电沉积法先制备层状金属预制层,然后通过后续硫化处理成功合成了CZTS薄膜。通过电沉积机理分析三种金属预制层最佳电沉积顺序为Cu/Sn/Zn。Cu、Sn和Zn预制层在FTO衬底上比在Mo衬底上电沉积电位都更负。通过工艺优化,在Mo衬底上Cu、Sn和Zn分别用-0.6V、-1.2V和-1.35V电位分别电沉积5min、2min和10min得到了较好成分比例和均匀的层状预制层;在FTO衬底上Cu、Sn和Zn分别用-0.9V、-1.35V和-1.6V电位分别电沉积5min、0.5min和4min也得到了较好成分比例和均匀的层状预制层。金属预制层低温下合金化易生成Cu_6Sn_5和CuZn相,硫参与反应后这些合金化合物分解并形成二元硫化物CuS、SnS和ZnS,随着温度的升高二元硫化物相互反应形成三元硫化物Cu2SnS3,最终二元和三元硫化物间相互反应转变为四元的Cu_2ZnSnS_4。研究发现预制层于550℃硫化1h合成的CZTS薄膜晶粒呈多面体形态,沿(112)晶面择优取向生长,且平均Cu/(Zn+Sn)和Zn/Sn分别为0.97和1.0,与CZTS化学计量比接近。对比不同衬底的结果发现在FTO衬底上比在Mo衬底上合成CZTS所需温度提高,时间延长。研究结果发现金属预制层在H2S气氛下比在纯硫气氛下硫化合成CZTS的温度要高。纯硫气氛中550℃硫化1h合成的CZTS薄膜禁带宽度约为1.54eV;H2S气氛中550℃硫化1h合成的CZTS薄膜禁带宽度约为1.52eV,两者基本是一致的。
     使用三元共电沉积法先制备均匀的金属预制层,然后通过后续硫化处理成功合成了CZTS薄膜。通过控制变量法优化出溶液配方及工艺参数。利用含0.40g CuSO_4·5H_2O、0.96gZnSO_4·7H_2O、0.18g SnCl_2·2H_2O、1.34g NaOH、3.26g C_6H_5Na_3O_7和2.28g C_4H_6O_6的配方溶液,在Mo衬底上用-1.62V电沉积5min得到了较好成分比例和均匀的三元共沉积金属预制层。其它成分不变,调整CuSO_4·5H_2O为0.56g的配方溶液,在FTO衬底上用-2.2V电沉积5min也得到了较好成分比例和均匀的三元共沉积金属预制层。三元金属预制层在低温下元素间合金化易生成Cu_3Sn、Cu_6Sn_5和Cu_4Zn等化合物,与硫蒸气反应先形成二元硫化物CuS、SnS和ZnS,随着温度的升高二元硫化物相互反应形成三元硫化物Cu4SnS6,最终二元和三元硫化物间相互反应完全转变为四元的Cu_2ZnSnS_4。纯硫气氛中预制层经550℃硫化1h合成的CZTS薄膜平均Cu/(Zn+Sn)为0.96,平均Zn/Sn为1.10,与CZTS的化学计量比相接近,其禁带宽度约为1.62eV。
     利用四元共电沉积法先制备预制层,然后将预制层退火成功合成了CZTS薄膜。通过控制变量法优化出四元溶液配方及工艺参数。利用含0.30g CuSO_4·5H_2O、0.40g ZnSO_4·7H_2O、0.31gSnCl_2·2H_2O、0.40g Na_2S_2O_3·5H_2O、0.34g NaOH、3.26g C_6H_5Na_3O_7和2.28g C4H_6O_6的配方溶液,在Mo衬底上用-1.2V电沉积5min和在FTO衬底上用-1.3V电沉积5min均得到了较好成分比例的四元预制层。溶液中Cu~(2+)和Sn~(2+)浓度不仅影响其自身的电沉积速度,还影响溶液中其它金属元素的电沉积速度,而Zn~(2+)浓度仅影响其自身沉积速度。预制层二元硫化物随着退火温度的升高逐渐相互反应转变为四元硫化物。预制层经550℃退火1h合成的CZTS膜层原子比为Cu:Zn:Sn:S=23.72:12.22:13.07:50.99,与CZTS的化学计量比相接近,禁带宽度约1.6eV。
     综合比较三种合成方法,对预制层成分比例控制方面分步电沉积比三元共电沉积更简单和更稳定,最终合成的CZTS薄膜晶粒度也较大,有利于提高其光电性能。四元共电沉积预制层的溶液不稳定,制备的预制层均匀性和致密性相对较差。因此,采用制备金属预制层及后续硫化工艺更具有应用前景。
     利用第一性原理的方法和准谐德拜模型理论计算了KS型和ST型结构CZTS化合物的电子结构、光学性质、力学性质和热物理性质。理论计算得出CZTS为直接带隙半导体材料,在可见光区,吸收系数平均高于10~4cm~(-1)及较低的反射率和电导率,与实验结果基本一致。能量损耗接近0。通过力学稳定性判据验证两种结构的CZTS化合物理论计算的弹性常数满足其力学稳定性标准。沿[100]和[010]方向的键合强度与沿[001]方向的键合强度相同;在{001}面的剪切弹性性质存在各向异性。根据计算的B/G值判断,CZTS化合物表现为较好的韧性。CZTS化合物的热容在300K以上接近200J/mol·K。在相同压强下,热膨胀系数随温度升高而缓慢升高,熵随温度的升高呈指数变化,内能则几乎以线性变化,吉布斯自由能随温度升高而降低。在室温时,KS和ST型的CZTS德拜温度分别为338K和297K;Grüneisen因子分别为2.50和2.36。CZTS化合物的物理性能理论计算结果为其制备和应用提供了理论依据。
Solar energy is one kind of renewable, inexpensive and clean energy resources. It can helphumankind to relieve or even solve energy shortage and environmental pollution on condition that thesolar energy can be transformed to electric power by means of solar cells. Therefore, the solar cellmaterials have attracted extensive attention. Cu_2ZnSnS_4(CZTS)with clean, safe and environmentallyfriendly components, is a highly promising absorber for solar cells, which possess direct energy gap(about1.5eV), extraordinary high absorption coefficient (104cm~(-1)-10~5cm~(-1)) and high photoelectricconversion efficiency. However, study of preparation and performance for CZTS is still at primarystage by now. Key factors on CZTS are how to reduce its production cost, meanwhile, improve thephotoelectric conversion efficiency. Electrodeposition method for preparing CZTS thin films has a lotof advantages, such as simple equipments, low-cost raw materials, large-area preparation and so on.Then, CZTS thin film solar cells can be industrialized widely in the future. Therefore, this workfocuses on investigating the electrodeposition mechanism for precursors, electrolyte formula,electrodeposition process parameters, and effects of the sulfidizing or annealing process on thesynthesis of CZTS thin film. Moreover, electronic structures, optical, mechanical and thermodynamicproperties of the CZTS compound are calculated using the First-principles calculstions.
     The CZTS films are successfully synthesized by using a process of sequentially electrodepositedCu-Sn-Zn precursors on Mo and FTO substrates, succeeded by annealing in saturated sulfuratmosphere. The Cu/Sn/Zn sequence is found to be the best one through the electrodepositionmechanism analysis. The layer and uniform precursor with good proportion of ingredient can beachieved on Mo substrate using-0.6V for5min in Cu electrolyte,-1.2V for2min in Sn electrolyte,and-1.36V for10imn in Zn electrolyte, and on FTO substrate using-0.9V for5min in Cu electrolyte,-1.35V for0.5min in Sn electrolyte, and-1.6V for4min in Zn electrolyte, respectively. Layerprecursors firstly alloy into Cu_6Sn_5and CuZn at low temperature. Then Cu_6Sn_5and CuZn alloysdecompose in sulfur atmosphere, and CuS, SnS and ZnS are formed. Cu_2SnS_3forms through reactionbetween CuS and SnS with increasing temperature. Finally, the CZTS film is synthesized throughreaction among binary and ternary sulfides. CZTS films synthesized in sulfur atmosphere at550℃for1h have morphology of polyhedral crystals, grain along the (112) crystal plane orientation growth,and average concentration ratio of0.97and1.0for Cu/(Zn+Sn) and Zn/Sn, respectively, which is inagreement with CZTS stoichiometry. The synthesized temperature and time are higher and longer on FTO substrate than that on Mo substrate under the same condition. Temperature of synthesized CZTSis higher in H2S atmosphere than in sulfur atmosphere on FTO substrate. The energy gap (1.54eV) ofCZTS film synthesized in pure sulfur atmosphere is consistent with that (1.52eV) in H2S atmosphereat550℃for1h.
     The CZTS films are successfully prepared using a process of co-electrodeposited Cu-Sn-Znprecursors on Mo and FTO substrates, succeeded by annealing in saturated sulfur atmosphere.Electrolyte formula and process parameters are optimized by controlling variables method. The goodternary precursor of suitable proportion of ingredient can be achieved on molybdenum substrate at-1.62V for5min using an100ml electrolyte containing0.40g CuSO_4·5H_2O,0.96g ZnSO_4·7H_2O,0.18gSnCl_2·2H_2O,1.34g NaOH,3.26g C_6H_5Na_3O_7and2.28g C_4H_6O_6. The ternary precursor of satisfactoryproportion of ingredient can also be deposited on FTO substrate at-2.2V for5min using a100mlelectrolyte containing above-mentioned same compositions except for0.56g CuSO_4·5H_2O. Cu3Sn,Cu_6Sn_5and Cu4Zn alloys are firstly synthesized at low annealing temperature. Then, these alloysdecompose in sulfur atmosphere and CuS, SnS and ZnS are formed. Cu4SnS6is formed throughreaction between CuS and SnS with the temperature rise. Finally, the CZTS films are synthesizedthrough reaction among binary and ternary sulfides. CZTS films synthesized in pure sulfuratmosphere at550℃for1h have an average concentration ratio of0.96and1.1for Cu/(Zn+Sn) andZn/Sn, respectively, which is in agreement with CZTS stoichiometry, and energy gap with about1.62eV.
     The CZTS films are successfully synthesized using a process of co-electrodeposited Cu-Sn-Zn-Sprecursors on Mo and FTO substrates, succeeded by annealing in pure nitrogen atmosphere.Electrolyte formula and process parameters are also optimized by controlling variables method. Thequaternary precursors with fine proportion of ingredient can be deposited on Mo and FTO substrate at-1.2V and-1.3V for5min by using a100ml electrolyte containing0.30g CuSO_4·5H_2O,0.40gZnSO_4·7H_2O,0.31g SnCl_2·2H_2O,0.40g Na2S2O3·5H_2O,0.34g NaOH,3.26g C_6H_5Na_3O_7and2.28gC4H6O6. Concentrations of Cu~(2+)and Sn~(2+)not only influence deposition rate of themselves, but alsochange deposition rate of other elements in quaternary electrolyte. However, Zn~(2+)concentrations onlyinfluence itself the deposition rate in quaternary electrolyte. The binary sulfides in precursortransform into ternary and quaternary sulfides during annealing. Precursor annealed in nitrogenatmosphere at550℃for1h transform into CZTS film withan average concentration atom ratio of23.72:12.22:13.07:50.99for Cu:Zn:Sn:S, and energy gap of about1.6eV.
     Through comprehensive comparison of the three kinds of synthetic methods, metal composition using sequentially electrodeposited method is more stability than that using ternaryco-electrodeposited method. The crystal grain of CZTS synthesized using a process of sequentiallyelectrodeposited Cu-Sn-Zn precursors, succeeded by sulfurizing is bigger than that using a process ofco-electrodeposited Cu-Sn-Zn precursors, succeeded by sulfurizing, which is favorable to improvephotoelectric performance of CZTS films. Electrolyte used for co-electrodeposition of Cu-Sn-Zn-Sprecursors is usually unstable, and uniform and compactless, resulting at the quality of preparedCu-Sn-Zn-S precursors are relatively poor. Therefore, the preparation process using metal Cu-Sn-Znprecursors, and succeeded by annealing in saturated sulfur atmosphere has more industrial prospectsthan the process using co-electrodeposited Cu-Sn-Zn-S precursors, and succeeded by annealing inpure nitrogen atmosphere.
     The electronic structures, optical, mechanical and the thermodynamics properties of the KS-typeand ST-type CZTS have been calculated by using First-princinples calculations and the quasiharmonicDebye model. The theoretical calculations show CZTS is a direct bandgap semiconductor material.The average absorption coefficient is more than104cm1, reflectivity and electrical conductivity islow in the visible wavelength ranges, which are all in agreement with the experimental value. Andenergy loss is close to0for CZTS. The elastic constants of the KS-type and ST-type CZTS obtainedfrom calculation meet both their mechanical stability conditions. The bonding strength along the [100]and [010] direction is the same to that along the [001] direction and the shear elastic properties of the{001} plane are anisotropic for CZTS. Both compounds exhibit ductile behavior due to their high B/Gratio. The value of thermal capacity is close to200J/mol·K at above300K, and the thermal expansioncoefficients decrease with increasing pressure at same temperature. The entropy is variable bypower-exponent, and the internal energy is almost linear when increasing temperature for CZTS. TheGibbs energy of CZTS decreases with increasing temperature at same pressure. The Debyetemperatures are338K and297K, and Grüneisen parameters are2.50and2.36for KS-type andST-type CZTS at300K, respectively.
引文
[1] E D Porter. Are we running out of oil?[R]. USA: American Petroleum Institute,1995:5-14.
    [2]中国可再生能源发展项目办公室.中国光伏产业发展研究报告[R].北京中国环境科学出版社,2004,1-2.
    [3]中华人民共和国工业与信息化部.太阳能光伏产业“十二五”发展规划.太阳能,2012,6:1-6.
    [4] H Takakura, Y Hamakawa. Device simulation and modeling of microcrystalline silicon solar cells[J]. Sol. Energy Mater. Sol. Cells,2002,74:479-487.
    [5]庄大明,张弓.铜铟镓硒薄膜太阳电池的发展现状以及应用前景[J].真空,2004,41:1-7.
    [6]杨基南.太阳电池产业的现状和发展[J].微细加工技术,2005,2:1-5.
    [7] EPIA. Photovoltaic energy electricity from the sun[R]. Belgium: European Photovoltaic IndustryAssociation,2009,3-16.
    [8] EPIA. Global market outlook for photovoltaics until2014[R]. Belgium: European PhotovoltaicIndustry Association,2010,5-6.
    [9] EREC. Renewable energy scenario to2040[R]. Belgium: European Renewable Energy Council,2004,15-16.
    [10] EPIA. Unlocking the sunbelt: potential of photovoltaics[R]. Belgium: European PhotovoltaicIndustry Association,2010,9-10.
    [11] IEA. Energy technology perspectives2010: scenarios&strategies to2050[R]. France:International Energy Agency,2010,23-25.
    [12]刘恩科.半导体物理学[M].西安:西安交通大学出版社,2006.
    [13]安其霖,曹国琛,李国欣.太阳电池原理与工艺[M].上海:上海科学技术出版社,1984.
    [14] A E Becquerel. Mémoire sur les effets électriques produits sous1'influence des rayons solaires[J]. Compt. Rend. Acad. Sci.,1839,9:561-567.
    [15] C E Fritts. On a new form of selenium photocell [J]. Proc. Am. Assoc. Adv. Sci.,1983,33:97-101.
    [16] R S Ohl. Light-sensitive electricdevice including silicon: USA, US Patent2443542[P].1941-05-27.
    [17] D M Chapin, C S Fuller and G L Pearson. A new silicon p-n junction photocell for convertingsolar radiation into electrical power [J]. J. Appl. Phys.,1954,25:676-677.
    [l8] D C Reynolds, G Leies, L Antes, et al.. Photovoltaic effect in cadmium sulfide [J]. Phys. Rev.,1954,96:533-534.
    [19] D Jenny, J Loferski, P Rappaport. Photovoltaic effect in GaAs p-n junctions and solar energyconversion [J]. Phys. Rev.,1956,101:1208-1209.
    [20] D A Cusano. CdTe solar cells&photovoltaic heterojunctions in II-VI compounds [J]. Solid StateElectronics,1963,6:217-232.
    [21] J L Shay, S Wagner and H M Kasper. Efficient CuInSe2/CdS solar cells [J]. Appl. Phys. Lett.,1975,27:89-90.
    [22] P Jackson, D Hariskos, E Lotter, et al.. New world record efficiency for Cu(In,Ga)Se2thin-filmsolar cells beyond20%[J]. Prog. Photovolt: Res. Appl.,2011,18:894-897.
    [23] X Wu, J C Keane, R G Dhere, et al.16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell,Coference Proceedings,17th European Photovoltaic Solar Energy Conference, Munich,Germany,22-26October2001,2:995-1000.
    [24] R Service. Outlook brightens for plastic solar cells[J]. Science,2011,332(6027):293-293.
    [25] N Koide, R Yamanaka, H Katayama. Recent advances of dye-sensitized solar cells and integratedmodules at SHARP [J]. MRS Proceeding,2009,1211:1211-R12-02.
    [26] M A Green, K Emery, Y Hishikawa et al.. Solar cell efficiency tables [J]. Prog. Photovolt: Res.Appl.,2012,20:12-20.
    [27]王长贵,王斯成.太阳能光伏发电实用技术[M].北京化学工业出版社,2005,31-32.
    [28] M A Green. Third generation photovoltaics: solar cells for2020and beyond [J]. Physics E,2002,14(1-2):65-70.
    [29]倪萌.太阳电池的研究进展[J].可再生能源,2004,114:9-11.
    [30] A Marti, G L Araújo. Limiting efficiencies for photovoltaic energy conversion in multigapsystems [J]. Sol. Energy Mater. Sol. Cells,1996,43(2):203-222.
    [31] M A Green. Third generation photovoltaics: Ultra-high conversion efficiency at low cost [J].Prog. Photovolt: Res. Appl.2001,9:137-144.
    [32J A J Nozik.. Quantum dot solar cells [J]. Physics E,2002, l4(1-2):115-120.
    [33] J E Jaffe and A Zunger. Theory of the band-gap anomaly in ABC2chalcopyrite semiconductors[J]. Phys. Rev. B,1984,29:1882-1906.
    [34] A Goetzberger and C Hebling. Photovoltaic materials, past, present, future [J]. Sol.Energy Mater.Sol. Cells,2000,62(1-2):1-19.
    [35] J Zhao, A Wang, M A Green.19.8%efficient “honeycomb” textured multicrystalline and24.4%monocrystalline silicon solar cells [J]. Appl. Phys. Lett.,1998,73:1991-1993.
    [36] A Shah, P Torres, R Tschamer, et al.. Photovoltaic technology: the case for thin-film solar cells[J]. Science,1999,285:692-698.
    [37]中国可再生能源发展项目办公室.中国光伏产业发展研究报告[R].北京中国环境科学出版社,2007,13-13.
    [38] M A Green.“Third generation”photovoltaics and silicon nanostructures [C].5th IEEEInternational Conference on Group IV Photonics,17-19Sept.2008,389.
    [39] H Katagiri, K Jimbo, W S Maw, et al.. Development of CZTS-based thin film solar cells [J]. ThinSolid Films,2009,517:2455-2460.
    [40] H Katagiri, K Saitoh, T Washio, et al.. Development of thin film solar cell based on Cu2ZnSnS4thin films [J]. Solar Energy Materials and Solar Cells,2001,65(1-4):141-148.
    [41] H Katagiri, K Jimbo, K Moriya, et al.. Solar cell without environmental pollution by using CZTSthin film [C], Proceedings of3rd World Conference on Photovoltaic Energy Conversion (IEEECat. No.03CH37497),2003,3:2874-2879.
    [42] K Jimbo, R Kimura, T Kamimura, et al.. Cu2ZnSnS4-type thin film solar cells using abundantmaterials[J]. Thin Solid Films,2007,515:5997-5999.
    [43] H Katagiri, K Jimbo, S Yamada, et al.. Enhanced conversion efficiencies of Cu2ZnSnS4-basedthin film solar cells by using preferential etching technique [J]. Applied Physics Express,2008,1(4):041201(1-2).
    [44] K Wang, O Gunawan, T Todorov, et al.. Thermally evaporated Cu2ZnSnS4solar cells [J]. Appl.Phys. Lett.,2010,97:143508(1-3).
    [45] K Wang, B Shin, K B Reuter, et al. Structural and elemental characterization of high efficiencyCu2ZnSnS4solar cells [J]. Appl. Phys. Lett.,2011,98(5):051912(1-3).
    [46] B Shin, O Gunawan, Y Zhu, et al.. Thin film solar cell with8.4%power conversion efficiencyusing an earth-abundant Cu2ZnSnS4absorber [J]. Prog. Photovolt: Res. Appl.,2011, DOI:10.1002/pip.1174.
    [47] T Todorov, K Reuter, D Mitzi, et al.. High efficiency solar cell with earth abundant liquidprocessed absorber[J]. Advanced Materials,2010,22:E156-E159.
    [48] D A Barkhouse, O Gunawan, T Gokmen, et al.. Device characteristics of a10.1%hydrazine-processed Cu2ZnSn(Se,S)4solar cell [J]. Prog. Photovolt: Res. Appl.,2012,20:6-11.
    [49] J Zhang, L X Shao, Y J Fu, et al.. Cu2ZnSnS4thin films prepared by sulfurization of ion beamsputtered precursor and their electrical and optical properties [J]. Rare Metals,2006,25:315-319.
    [50]黄景兴,邵乐喜,付玉军. Cu2ZnSnS4薄膜的制备及其光电性质研究[J].湛江师范学院学报,2007,28(3):59-62.
    [51] J Zhang and L X Shao. Cu2ZnSnS4thin films prepared by sulfurizing different multilayer metalprecursors [J]. Science in China Series E: Technological Sciences,2009,52(1):269-272.
    [52] X Zhang, X Z Shi, W C Ye, et al.. Electrochemical deposition of quaternary Cu2ZnSnS4thinfilms as potential solar cell material [J]. Appl, Phys. A,2009,94:381–386.
    [53] F Y Liu, Y Li, K Zhang, et al.. In situ growth of Cu2ZnSnS4thin films by reactive magnetronco-sputtering [J]. Sol. Energy Mater. Sol. Cells,2010,94:2431-2434.
    [54]江丰,沈鸿烈,金佳乐,王威. Cu2ZnSnS4薄膜光电性能及其太阳电池的制备和研究[J].功能材料,2012,15(43):2040-2044.
    [55] W Schafer and RNitsche. Tetrahedral quaternary chalcogenides of the type Cu2-II-IV-S4(Se4)[J].Mate. Res. Bull.,1974,9:645-654.
    [56] F Jiang, H L Shen, W Wang, et al.. Preparation and properties of Cu2ZnSnS4absorber andCu2ZnSnS4/amorphous silicon thin-film solar cell [J]. Appl. Phys. Express,2011,4:074101(1-3).
    [57] B A Schubert, B Marsen, S Cinque, et al.. Cu2ZnSnS4thin film solar cells by fast coevaporation[J]. Prog. Photovolt: Res. Appl,2011,19:93-96.
    [58] A Weber, R Mainz, T Unold, et al.. ln-situ XRD on formation reactions of Cu2ZnSnS4thin films[J]. Phys. Status Solidi C,2009,6:1245-1248.
    [59] P A Fernandes, P M P Salome and A F da Cunha. Growth and Raman scattering characterizationof Cu2ZnSnS4thin films [J]. Thin Solid Films,2009,517:2519-2523.
    [60] H Yoo and J Kim. Growth of Cu2ZnSnS4thin films using sulfurization of stacked metallicfilms[J]. Thin Solid Films,2010,518:6567-6572.
    [61] N Nakavama, and K Ito. Sprayed films of stannite Cu2ZnSnS4[J]. Applied Surface Science1996,92:171-175.
    [62] Y B Kishore Kumar, G. Suresh Babu, P Udav Bhaskar, et al.. Preparation and haracterization ofspray-deposited Cu2ZnSnS4thin films [J]. Solar Energy Materials&Solar Cells,2009,93:1230-1237.
    [63] V G Rajeshmon, C Sudha Kartha, K P Vijayakumar, et al.. Role of precursor solution incontrolling the opto-electronic properties of spray pyrolvsed Cu2ZnSnS4thin films [J]. SolarEnergy,2011,85:249-255.
    [64] K Tanaka, Y Fukui, N Moritake, et al.. Chemical composition dependence of morphological andoptical properties of Cu2ZnSnS4thin films deposited by sol-gel sulfurization and Cu2ZnSnS4thinfilm solar cell efficiency[J]. Sol. Energy Mater. Sol. Cells,2011,95:838-842.
    [65] M Y Yeh, C C Lee, D S Wuu. Influences of synthesizing temperatures on the properties ofCu2ZnSnS4prepared by sol-gel spin-coated deposition[J]. J. Sol-Gel. Sci Tech.2009,52:65-68.
    [66] A Fischereder, T Rath, W Haas, et al.. Investigation of Cu2ZnSnS4formation from metal salts andthioacetamide [J]. Chem. Mater.,2010,22:3399-3406.
    [67]陈国华,王光信.电化学方法应用[M].北京:化学工业出版社,2003.
    [68]朱立群.功能膜层的电沉积理论与技术[M].北京:北京航空航天大学出版社,2005.
    [69] R Schurr, A Holzing, S Jost, et al.. The crystallisation of Cu2ZnSnS4thin film solar cell absorbersfrom co-electroplated Cu-Zn-Sn precursors [J]. Thin Solid Films,2009,517:2465-2468.
    [70] H Araki, Y Kubo, K Jimbo, et al.. Preparation of Cu2ZnSnS4thin films by sulfurization ofco-electroplated Cu-Zn-Sn precursors [J]. Phys. Status Solidi C,2009,6:1266-1268.
    [71] A Ennaoui, M Lux-Steiner, A Weber, et al.. Cu2ZnSnS4thin film solar cells from electroplatedprecursors: Novel low-cost perspective [J]. Thin Solid Films,2009,517:2511-2514.
    [72] J J Scragg, P J Dale and L M Peter. Synthesis and characterization of Cu2ZnSnS4absorber layersby an electrodeposition-annealing route [J]. Thin Solid Films,2009,517:2481-2484.
    [73] J J Scragg, P J Dale, L M. Peter, et al.. New routes to sustainable photovoltaics: evaluation ofCu2ZnSnS4as an alternative absorber material [J]. Phys. Stat. Sol.(b),2008,245:1772-1778.
    [74] H Araki, Y Kubo, A Mikaduki, et al.. Preparation of Cu2ZnSnS4thin films by sulfurizingelectroplate dprecursors [J]. Sol. Energy Mater. Sol. Cells,2009,93(6-7):996-999.
    [75] J J Scragg, P J Dale, L M. Peter. Towards sustainable materials for solar energy conversion:preparation and photoelectrochemical characterization of Cu2ZnSnS4[J]. ElectrochemistryCommunications,2008,10:639-642.
    [76] S M Pawar, B S Pawara, A V Moholkara, et al.. Single step electro-synthesis of Cu2ZnSnS4(CZTS) thin films for solar cell application [J]. Electrochimica Acta,2010,55:4057-4061.
    [77]方景礼.电镀配合物—理论与应用[M].北京:化学工业出版社,2008.
    [78] H Okamoto. Binary Alloy Phase Diagrams [J]. The Materials Information Society,1990,3.
    [79] I D Olekseyuk, I V Dudchak, L V Piskach. Phase equilibria in the Cu2S-ZnS-SnS2system [J]. J.Alloys Compouds,2004,368:135-143.
    [80] P Hohenberg and W Kohn. Inhomogeneous electron gas [J]. Phys. Rev. B,1964,136:864-871.
    [81] W Kohn and L J Sham. Self-consistent equations including exchange and correlation effects [J].Phys. Rev. A,1965,140:1133-1138.
    [82] G L Oliver and J P Perdew. Spin-density gradient expansion for the kinetic energy [J]. Phys. Rev.A,1979,20:397-403.
    [83] H Stoll, C M E Pavlidou and H Preuss. On the calculation of correlation energies in thespin-density functional formalism [J]. Theor. Chem. Acta,1978,49:143-149.
    [84] A D Becke. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A,1988,38,3098-3100.
    [85] J P Perdew, J A Chevary, S H Vosko, et al.. Atoms, molecules, solids, and surfaces: Applicationsof the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B,1992,46:6671-6687.
    [86] J P Perdew, Y Wang. Accurate and simple analytic representation of the electron-gas correlationenergy [J]. Phys. Rev. B,1992,45:13244-13249.
    [87] J P Perdew, K Burke and Y Wang. Generalized gradient approximation for theexchange-correlation hole of a many-electron system [J]. Phys. Rev. B,1996,54:16533-16539.
    [88] J P Perdew, K Burke and M Ernzerhof. Generalized gradient approximation made simple [J].Phys. Rev. Lett.,1996,77:3865-3868.
    [89] J P Perdew. Density-functional approximation for the correlation energy of the inhomogeneouselectron gas [J]. Phys. Rev. B,1986,33:8822-8824.
    [90] C Lee, W Yang and R G Parr. Development of the Colle-Salvetti correlation-energy formula intoa functional of the electron density [J]. Phys. Rev. B,1988,37:785-789.
    [91]李震宇,贺伟,杨金龙.密度泛函理论及其数值方法新进展[J].化学进展,2005,17:192-202.
    [92] W F King and P H Cutler. A first principle pseudopotential calculation of the elastic shearconstants of beryllium [J]. Phys. Lett. A,1968,28:289-290.
    [93] W F King and P H Cutler. A first principle calculation of the total binding energy and c/a ratio ofmagnesium [J]. Phys. Lett. A,1970,32:395-396.
    [94] Y Wang, S Curtarolo, C Jiang, et al.. Ab initio lattice stability in comparison with CALPHADlattice stability [J]. Calphad,2004,28:79-90.
    [95] M H F Sluiter. Ab initio lattice stabilities of some elemental complex structures [J].Calphad,2006,30,357-366.
    [96] S Curtarolo, D Morgan and G Ceder. Accuracy of ab initio methods in predicting the crystalstructures of metals: A review of80binary alloys [J]. Calphad,2005,29:163-211.
    [97] S Curtarolo, A N Kolmogorov and F H Cocks. High-throughput ab initio analysis of the Bi–In,Bi–Mg, Bi–Sb, In–Mg, In–Sb, and Mg–Sb systems [J]. Calphad,2005,29:155-161.
    [98] G. Ghosh and G B Olson. Integrated design of Nb-based superalloys: Ab initio calculations,computational thermodynamics and kinetics, and experimental results [J]. Acta Mater.,2007,55:3281-3303.
    [99] P Ravindran, L Fast, P A Korzhavyi, et al.. Density functional theory for calculation of elasticproperties of orthorhombic crystals: Application to TiSi2[J]. J. Appl. Phys,1998,84:4891-4904.
    [100] M F Prestavoine, G Robert, M H Nadal, et al.. First-principles study of the relations between theelastic constants, phonon dispersion curves, and melting temperatures of bcc Ta at pressures upto1000GPa [J]. Phys. Rev. B,2007,76:104104(1-11).
    [101] G Stenuit and S Fahy. First-principles calculations of the mechanical and structural properties ofGaNxAs1x: Lattice and elastic constants [J]. Phys. Rev. B,2007,76:035201(1-7).
    [102] J Zhao, J M Winey and Y M Gupta. First-principles calculations of second-and third-orderelastic constants for single crystals of arbitrary symmetry [J]. Phys. Rev. B,2007,75:094105(1-7).
    [103] X Huang, I I Naumov and K M Rabe. Phonon anomalies and elastic constants of cubic NiAlfrom first principles [J]. Phys. Rev. B,2004,70:064301(1-7).
    [104] Y L Page and P Saxe. Symmetry-general least-squares extraction of elastic coefficients from abinitio total energy calculations [J]. Phys. Rev. B,2001,63:174103(1-8).
    [105]丁大同.固体理论讲义[M].南开大学出版社,2001,182-188.
    [106]黄昆,韩汝琦.固体物理[M].高等教育出版社,1988,122-132.
    [107] G Pei, C Xia, Y Dong, et al.. Studies of magnetic interactions in Mn-doped β-Ga2O3fromfirst-principles calculations [J]. Scripta Mater.,2008,58:943-946.
    [108] J Wang, J Wang, Y Zhou et al.. Phase stability, electronic structure and mechanical properties ofternary-layered carbide Nb4AlC3: An ab initio study [J]. Acta Mater.,2008,56:1511-1518.
    [109] A Bouhemadou, R Khenata, M Chegaar, etal.. First-principles calculations of structural, elastic,electronic and optical properties of the antiperovskite AsNMg3[J]. Phys. Lett. A,2007,371:337-343.
    [110] B Xiao, J Feng, J C Chen and L Yu. Crystal structures and electronic properties of MC2(M=Mg, Ca, Sr, Ba) by comparative studies based on ab-initio calculations [J]. Chem. Phys. Lett.,2007,448:35-40.
    [111] C Zhang, Z Zhang, P Wang, et al.. First-principles study of electronic structure of V2AlC andV2AlN, Solid State Commu.[J].2007,144:347-351.
    [112] C Jiang, L Q Chen and Z K Liu. First-principles study of constitutional point defects in B2NiAlusing special quasirandom structures [J]. Acta Mater.,2005,53:2643-2652.
    [113] K Ito, T Nakazawa. Electrical and optical properties of stannite-type quaternary semiconductorthin film [J]. Jpn. J. Appl. Phys.1988,27,2094-2097.
    [114] M Pourbaix. Atlas of electrochemical equilibriain aqueous solutions [C]2ndedn. NACEInternational Cebelcor, USA,1974.
    [115] R Schurr, A H lzing, R Hock. Real-time investigations on the formation reactions duringannealing of sulfurized Cu-Sn precursors [J]. Thin Solid Films,2011,519(21):7412-7415.
    [116] J P Leitao, N M Santos, P A Fernandes, et al.. Photoluminescence and electrical study offluctuating potentials in Cu2ZnSnS4-based thin films [J]. Phys. Rev. B,2011,84:024120(1-8).
    [117] M Altosaar, J Raudoja, K Timmo, et.al.. Cu2Zn1–xCdxSn(Se1–ySy)4solid solutions as absorbermaterials for solar cells [J]. phys. stat. sol.(a),2008,205(1):167–170.
    [118] J Li, T T Ma, M Wei, et al.. The Cu2ZnSnSe4thin films solar cells synthesized byelectrodeposition route [J]. Applied Surface Science,2012,258(17):6261-6265.
    [119] R Ju kēnas, S Kanapeckaitē, V Karpavi inē, et al.. A two-step approach for electrochemicaldeposition of Cu–Zn–Sn and Se precursors for CZTSe solar cells [J]. Sol. Energy Mater. Sol.Cells,2012,101:277-282.
    [120] B W Gregory and J L Stickney. Electrochemical atomic layer epitaxy (ECALE)[J]. Journal ofElectroanalytlcal Chemistry,1991,300:543-561.
    [121] I Villegas and J L Stickne. Preliminary studies of GaAs deposition on Au (100),(1l0) and (111)surfaces by electrochemical atomic layer epitaxy [J]. Journal of Electroanalytical Chemistry,1992,139:686-694.
    [122] M Jeon, Y Tanaka, T Shimizu, S Shingubara. Formation and characterization of single-stepelectrodeposited Cu2ZnSnS4thin films: Effect of complexing agent volume [J]. EnergyProcedia,2011,10:255-260.
    [123] Y F Cui, S H Zuo, J C Jiang, et al.. Synthesis and characterization of co-electroplatedCu2ZnSnS4thin films as potential photovoltaic material [J]. Sol. Energy Mater. Sol. Cells,2011,95:2136-2140.
    [124] T Maeda, S Nakamura and T Wada. Phase stability and electronic structure of in-freephotovoltaic semiconductors, Cu2ZnSnSe4and Cu2ZnSnS4by first-principles calculation [J].Mater. Res. Symp. Proc.,2009,1165:1165-M04-03(1-7).
    [125] S Nakamura, T Maeda, and T Wada. Electronic structure of stannite-type Cu2ZnSnSe4by firstprinciples calculations [J]. Phys. Status Solidi C,2009,6:1261-1265.
    [126] T Maeda and T Wada. First-principles calculation of defect formation energy inchalcopyrite-type CuInSe2, CuGaSe2and CuAlSe2[J]. J. Phys. Chem. Solids,2005,66:1924-1927.
    [127] T Maeda, S Nakamura and T Wada. First principles calculations of defect formation in in-freephotovoltaic semiconductors Cu2ZnSnS4and Cu2ZnSnSe4[J]. J. Appl. Phys.,2011,50:04DP07(1-6).
    [128] S Y Chen, X G Gong, A Walsh and S H Wei. Crystal and electronic band structure ofCu2ZnSnX4(X=S and Se) photovoltaic absorbers: First-principles insights [J]. Appl. Phys. Lett.,2009,94:041903(1-3).
    [129] S Y Chen, X G Gong, A Walsh, and S H Wei. Electronic structure and stability of quaternarychalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2compounds [J]. Phys. Rev. B,2009,79:165211(1-10).
    [130] S Y Chen, X G. Gong, A Walsh and S H Wei. Defect physics of the kesterite thin-film solar cellabsorber Cu2ZnSnS4[J]. Appl. Phys. Lett.,2010,96:021902(1-3).
    [131] S Y Chen, J H Yang, X G Gong, et al.. Intrinsic point defects and complexes in the quaternarykesterite semiconductor Cu2ZnSnS4[J]. Phys. Rev. B,2010,81:245204(1-10).
    [132] J Paier, R Asahi, A Nagoya and G Kresse. Cu2ZnSnS4as a potential photovoltaic material: Ahybrid Hartree-Fock density functional theory study [J]. Phys. Rev. B,2009,79:115126(1-8).
    [133] A Nagoya, R Asahi, R Wahl, and G Kresse. Defect formation and phase stability of Cu2ZnSnS4photovoltaic material [J]. Phys. Rev. B,2010,81:113202(1-4).
    [134] A Postnikov, N Beigom and M Amiri. Ab initio phonons in kesterite and stannite-typeCu2ZnSnSe4[J]. Jpn. J. Appl. Phys.,2011,50:05FE04(1-2).
    [135] M A Blanco, E Francisco, V Luana. GIBBS: isothermal-isobaric thermodynamics of solids fromenergy curves using a quasi-harmonic Debye model [J]. Comput. Phys. Commun.,2004,158:57-72.
    [136] X M Tao, P Jund, C Colinet, and J C Tedenac. Phase stability and physical properties of Ta5Si3compounds from first-principles calculations [J]. Phys. Rev. B,2009,80:104103(1-10).
    [137] X M Tao, P Jund, C Colinet, and J C Tedenac. First-principles study of the structural, electronicand elastic properties of W5Si3J]. Intermetallics,2010,18:688-693.
    [138] M D Segall, P J D Lindan, M J Probert, et al.. First-principles simulation: Ideas, illustrationsand the CASTEP code [J]. J Phys: Condens Matter,2002,14:2717-2744.
    [139] H J Monkhorst and J D Pack. Special points for Brillouin-zone integrations [J]. Phys. Rev. B,1972,13:5188-5192.
    [140] G Kresse and J Furthmuller. Efficient iterative schemes for ab initio total-energy calculationsusing a plane-wave basis set [J]. Phys. Rev. B,1996,54:11169-11186.
    [141] G Kresse and J Furthmuller. Efficiency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set [J]. Comput Mater. Sci.,1996,6:15-50.
    [142] P E Bl ch. Projector augmented-wave method [J]. Phys. Rev. B,1994,50:17953-17979.
    [143] G Kresse and D Joubert. From ultrasoft pseudopotentials to the projector augmented-wavemethod [J]. Phys. Rev. B,1999,59:1758-1775.
    [144]沈学础.半导体光谱和光学性质[M].北京:科学出版社,2002:1-32.
    [145]方容川.固体光谱学[M].合肥:中国科学技术大学出版社,2001:1-18.
    [146] P Vinet, J H Rose, J Ferrante, J R Smith. Universal features of the equation of state of solids [J].J. Phys. Condens. Mater.,1989,1:1941-1963.
    [147] C Kittel. Introduction to solid state physics.7th ed. New York: Wiley1996, p505.
    [148] Z J Wu, E J Zhao, H P Xiang, et al.. Crystal structures and elastic properties of superhard IrN2and IrN3from first principles [J]. Phys. Rev. B,2007,76,054115(1-15).
    [149] M A Blanco, A M Pendas, E Francisco, et al.. Thermodynamical properties of solids frommicroscopic theory: applications to MgF2and Al2O3[J]. J. Mol. Struct. Theochem,1996,368:245-255.
    [150] M Forez, J M Recio, E Francisco, et al.. First-principles study of the rocksalt–cesium chloriderelative phase stability in alkali halides [J]. Phys. Rev. B,2002,66:144112(1-8).
    [151] E Francisco, J M Recio, M A Blanco, and A M Pendas. Quantum-mechanical study ofthermodynamic and bonding properties of MgF2[J]. J Phys. Chem. A,1998,102:1595-1601.
    [152] E Francisco, M A Blanco, and G Sanjurjo. Atomistic simulation of SrF2polymorphs [J]. Phys.Rev. B,2001,63:094107(1-9).
    [153] C Persson. Electronic and optical properties of Cu2ZnSnS4and Cu2ZnSnSe4[J]. J Appl Phys,2010,107:053710(1-8).
    [154] M M Li, T X Wang, C J Xia, et al.. First-principles calculation of electronic structure andoptical properties of Cu2ZnSnS4and Cu2ZnSnSe4[J]. The Chinese Journal of NonferrousMetals,2012,22:1413-1420.
    [155] J S Seol, S Y Lee, J C Lee, et al.. Electrical and optical properties of Cu2ZnSnS4thin filmsprepared by rf magnetron sputtering process [J]. Sol. Energy Mater. Sol. Cells,2003,75:155-162.
    [156] K Lau, A K McCurdy. Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonalcrystals [J]. Phys. Rev. B,1998,58,8980-8984.
    [157] S F Pugh. Relations between the elastic moduli and the plastic properties of polycrystalline puremetals [J]. Philos. Mag.,1954,45,823-843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700