高精度人脸识别算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脸识别是一个古老而又年轻的学术问题,人们对它的探索已经跨越了三个世纪。早在1888年,《Nature》杂志首次发表了利用人脸进行身份识别的文章,掀开了人类对人脸识别探索的序幕。120年后的2008年,《Science》杂志刊登了关于“100%自动人脸识别精度”技术评论,指出现实环境下的高精度人脸识别仍然是一个遥远的目标,需要我们持续开展创新的研究工作。
     人脸识别是一个特殊的复杂模式识别问题,它具有:1)训练集合的高维性和小样本性;2)图像的类内变化远大于类间变化;3)特征空间内样本的结构复杂等特点。然而,现有的识别算法大多从特定目标函数出发,缺乏对人脸自身属性的考虑。它们虽然能够从数学上很好地描述具有固定变化的数据集,从而取得很高的识别精度,却不能解决现实复杂环境下的人脸识别问题。为了从根本上提高技术水平,使得算法能够应对现实环境的复杂性和不可预测性,本文引入了两个人脸识别的新思路。第一,从人脸类别在特征空间中的类别分布特点出发,利用人脸类别分布的先验知识,设计适应人脸自身属性的新特征提取算法;第二,引入心理学、神经科学等跨学科知识,利用多层次的仿生手段,设计生物启发式人脸特征提取算法。以这两种思路为指导,面向现实环境下的高精度人脸识别需求,本文主要进行了如下研究:
     (1)从全局散度分析、局部重叠分析、流形结构分析和分类错误四个角度出发,利用实验手段探索了人脸图像空间中的类别分布特性。各个类别的人脸图像在测量空间中呈现出相似的结构,而且高度重叠。基于人脸类别结构的特殊性,提出人脸空间类别分布的两个先验假设:第一,每类的协方差矩阵相等,同时类内散度远大于类间散度,使得每类的协方差矩阵都近似等于全局的协方差矩阵。第二,不同人之间的类间散度存在于同一子空间中,而且该类间子空间的主方向与类内散度的子空间主方向是不“冲突”的。这两个先验知识使得算法可以不用局限于特定人的训练集合,转而采用大规模的通用数据库对人脸识别中的特征抽取模型进行训练。在FERET数据库上的大规模实验证明,在基于类别结构先验知识的通用学习框架下,采用经典线性鉴别分析方法就可以获得大大超过国际评测最好结果的精度。
     (2)通过对当前特征抽取算法的深入分析,提出了一个基于投影寻踪技术的算法框架,统一了主成分分析、独立成分分析、线性鉴别分析、局部保持投影、非监督鉴别投影等主流的特征抽取算法,给出了人脸识别中的特征抽取问题的一种新颖的综合性表述。在投影寻踪框架中,算法首先通过白化变换对数据进行预处理,随后利用优化技术寻找具有最优投影特性的低维投影向量。基于投影寻踪框架的实验验证了当前的非监督特征抽取算法都不能很好地寻找低维特征投影,它们在人脸识别中的高性能主要来源于白化过程对人脸类别结构的变换,而并非以往研究中声称的低维投影。为了充分利用人脸类别结构的先验知识,本文提出了一个局部寻踪算法,在白化空间内最大限度地保持样本的局部邻近特性。在AR和FERET数据库上的实验表明局部寻踪算法的非监督和监督版本、线性和核版本都能获得高于当前同类算法的精度。
     (3)从“样本均匀化”的几何直觉出发,提出了局部离散寻踪算法,解决单训练样本条件下的人脸识别难题。该算法的目标是使得在特征空间中靠近的类别变得分散,降低类间样本混淆的风险,从而提高识别精度。局部寻踪算法引入了两种样本均匀化的新方法:第一,基于奇异值分解的新白化变换理论—该变换可以在小样本情况下把训练样本集变换成一个规范正交集,使得样本间距完全均匀。第二,局部离散投影—对主成分分析进行局部化改造,可以在降低数据维数的同时使得原来局部聚集的样本变得稀疏。该算法的核版本能够进一步提高算法对非线性结构的学习能力,在使用更小量的特征的情况下获得同等精度。在包含1196人的大规模FERET数据库上,局部离散寻踪算法仅采用每人单样本的训练就可以获得远远高于FERET'97评测最好结果的精度水平。为了进一步提高精度水平,本文还提出了融合通用特征模型和特定人特征模型的人脸识别新方法,在FERET评测的duplicate测试图像集中的识别精度超过90%,为该测试集至今发表的最高识别精度。
     (4)从心理学、神经科学与模式识别的交叉性出发,提出一种多层次的生物启发特征提取方法。该方法包含三个层次。第一,在低层特征生成阶段,采用了一组源于视觉通路早期阶段响应特性的生物启发式特征来表示人类图像。这些特征针对多方面的视觉特性,涵盖了空间局部性、空间频率选择性、边缘方向选择性、色度选择性等。第二,从低层特征到高层特征的映射采用了一个增量式的鲁棒鉴别分析模型。首先使用增量式主成分分析方法把高维低层特征映射为通用的中层特征,再使用鲁棒鉴别分析模型映射为专用于身份识别的高层特征。第三,对不同的人脸特征进行独立的编码,形成独立的视觉通路。最后的识别决策融合了不同的视觉通路得到的多个人脸编码的相似度。生物启发式人脸识别系统模拟了复杂的人类信息融合策略,有效地整合各种信息源获得稳定的人脸识别性能。FRGC版本2实验4中,生物启发式系统获得了超过93%的验证率,不仅超过了FRGC2005评测的最好性能,而且为目前在该标准实验中发表的最高识别精度。
Human has an excellent appetence on face recognition, it's our dream to makes the machine has the same intelligent recognition ability. Original dream and curiosity drive people conduct the continuing research on automatic face recognition. As the development of the modern information technologies, automatic face recognition is attached importance to broad fields such military, commercial, security, in virtue of its good applicability and non-intrusive property. Face recognition has become one of the most representative and challenging research content of pattern recognition domain. Face recognition is an old but young academic problem, about which people have though across three century. As early as 1888, Nature magazine published the first academic paper on face recognition, starting people's exploration on face recognition.120 years later, i.e.2008, Science magazine published a technical comment on "100% automatic face recognition accuracy", which pointed out the highly accurate face recognition in the real world application is still an ambitious goal and its solution require me to continue the innovative research.
     Face recognition is a special complex pattern recognition problem, whose particularities lie in its high feature dimensionality versus small sample size, the large within-class variations versus the small between-class variations, and so on. These particularities make the mature pattern classification theory cannot be applied to solve face recognition problem, which quality the feature extraction as the determinant of the accuracy level. Unfortunately, traditional feature extraction methods often start from a specific object function, which makes the algorithm can adapt to the specific variations contained in a certain data set, and thus achieve high recognition accuracy. However, they cannot solve the real world recognition problem in complex conditions. In order to improve state-of-the-art performance, we induce two core ideas in this paper. Firstly, capitalize on the prior knowledge on the class configuration of the face feature space, design the algorithm that can adapt to the intrinsic property of the face pattern. Secondly, conduct the take an interdisciplinary research, drawing from the accumulated and vast knowledge of both the computer vision and psychology communities to solve the face recognition problem. Inspired by the two core ideas, the major research contents of this paper are as follows.
     (1) Explore the class configuration of the face space by global scatter analysis, local overlap analysis, manifold structure analysis and classification error, and draw a conclusion that the each face class share a common structure in the measurement space, and their structures high overlap in the space. Based on these characteristics, we suggests two important prior assumption on the face space:First, each class share the same covariance matrix, the within-class scatter is much larger than the between-class scatter, which makes the class conditional covariance is roughly equal to the global covariance of the whole data set. Second, the difference between different persons resides in the same between-class subspace, and the principal direction of the between-class subspace is not conflict with the within-class subspace. These two prior assumptions makes us can train the algorithm in a large generic data set. The large-scale experiments on FERET database shows the traditional algorithm that makes use of these prior assumptions can largely outperform the best results reported in the international evaluation.
     (2) A family of linear feature extraction methods, such as PCA, ICA, LDA, LPP, and UDP, has been proved effective to address this challenging problem. In this paper we unify these methods into a projection pursuit framework with different projection indices, and suggest that their feasibility on face recognition mainly come from the whitening process. We propose a locality pursuit algorithm, which pursues the optimum projection that preserves or dissipates the local clusters in the whitened space. The experiments using AR and FERET databases show that the proposed method achieves better face recognition performance than other unsupervised methods.
     (3) Inspired by the geometric intuition of "sample uniform", we propose a locality pursuit algorithm, which aims to solve the challenging face recognition problem with single image per person. The idea of this algorithm is to disperse the samples which are close in the measurement space, and thus reduce the risk of recognition error. Experiments on the FERET database that contains 1196 persons show that locality pursuit algorithm can outperform the best result of the FERET'97 evaluation by a large margin. In order to further improve the face recognition accuracy, we propose to fuse the generic model and identity-specific model for face recognition. The new method achieves over 90% accuracy on the FERET duplicate probe set, which is the highest accuracy reported on this challenging probe set.
     (4) Face recognition technology is of great significance for applications involving national security and crime prevention. Despite enormous progress in this field, machine-based system is still far from the goal of matching the versatility and reliability of human face recognition. In this paper, we show that a simple system designed by emulating biological strategies of human visual system can largely surpass the state-of-the-art performance on uncontrolled face recognition. In particular, the proposed system integrates dual retinal texture and color features for face representation, an incremental robust discriminant model for high level face coding, and a hierarchical cue-fusion method for similarity qualification. We demonstrate the strength of the system on the large-scale face verification task following the evaluation protocol of the FRGC version 2 Experiment 4. The results are surprisingly well:Its modules significantly outperform their state-of-the-art counterparts, such as Gabor image representation, local binary patterns, and enhanced Fisher model. Furthermore, the integrated system reduces the recognition error rate by 71.3 percent over the FRGC 2005 best result.
     In summary, the algorithm proposed in this paper is simple but effective, with clear theoretical meaning. They achieve excellent on FERET and FRGC experiments, the two most major evaluation in the literature, which clear show the core ideas of this paper is highly applicable in the real world settings, worth further research.
引文
[1]Galton Francis, Personal Identification and Description, Nature,38(973):201-202, 1888.
    [2]W. Deng, J. Guo, J. Hu, and H. Zhang, Comment on "100% accuracy in automatic face recognition", Science,321(5891):912,2008.
    [3]P. Sinha, B. Balas, Y. Ostrovsky, R. Russell, Face Recognition by Humans:19 Results All Computer Vision Researchers Should Know About, Proceedings of the IEEE,94(11):1948-1962,2006.
    [4]J.G. Daugman, "Uncertainty Relation for Resolution in Space,Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters," J. Optical Soc.Amer.,2(7):1160-1169,1985.
    [5]M. Meytlis and L. Sirovich, On the dimensionality of face space, IEEE Transactions on Pattern Analysis and Machine Intelligence,29(7):1262-1267,2007.
    [6]A. J. O'Toole, P. J. Phillips, F. Jiang, J. Ayyad, N. Penard, and H. Abdi, Face recognition algorithms surpass humans matching faces over changes in illumination, IEEE Transactions on Pattern Analysis and Machine Intelligence,29(9):1642-1646, 2007.
    [7]Samal Iyengar, Automatic Recognition and Analysis of Human Faces and Facial Expressions, Pattern Recognition, vol.25,1992.
    [8]Chellappa, Wilson, and Sirohey, Human and Machine Recognition of Faces:A Survey, Proceeding of IEEE, vol.83,1995.
    [9]Zhao, Chellappa, Rosenfeld, and Phillips, Face Recognition:A Literature Survey, ACM Computing Survey,35(4):399-458,2003
    [10]周杰,卢春雨,张长水,李衍达,人脸自动识别方法综述,电子学报,No.4,pp103-107,20.00。
    [11]张翠平,苏光大,人脸识别技术综述,中国图形图像学报,5(11),pp885-894,2000。
    [12]山世光,人脸识别中若干关键问题的研究,中国科学院计算技术研究所,[博士学位论文],2004年7月。
    [13]Stan Li, Anil Jain (Ed). Handbook of Face Recognition, Springer,2004.
    [14]L.Harmon, M.K. Khan et al. Machine identification of human faces. Pattern Recognition,13(2):97-110.1981.
    [15]R.Brunelli, T.Poggio, Face recognition:features vs. templates. IEEE Transactions on Pattern Analysis and Machine Intelligence,15(10):1042-1052,1993.
    [16]T. Kanade. Picture processing system by computer and recognition of human faces. [Ph.D Dissertation]. Kyoto University,1973.
    [17]M. Turk, A. Pentland, Eigenfaces for recognition. Journal of Cognitive Neuroscience,3(1):71-86,1991.
    [18]B. Moghaddam and A. Pentland, Probabilistic Visual Learning for Object representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(7), pp696-710, July,1997.
    [19]P. Belhumeur, Hespanha, J. and Kriegman, D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence,19(7):711-720,1997.
    [20]W.Zhao, R. Chellappa, and A.Krishnaswamy, "Discriminant Analysis of Principal Components for Face Recognition", Proc. of Inter. Conf. Auto. Face and Gesture Recognition, pp.336-341,1998.
    [21]H. Yu and J. Yang, "A Direct LDA Algorithm for High-Dimensional Data with Application to Face Recognition," Pattern Recognition, vol.34, pp.2067-2070,2001.
    [22]L.-F. Chen, H.-Y.M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu, A New LDA-Based Face Recognition System Which Can Solve the Small Sample Size Problem, Pattern Recognition, vol.33, pp.1713-1726,2000.
    [23]R. Huang, Q. Liu, H. Lu, and S. Ma, Solving the Small Size Problem of LDA, Proc.16th Int'l Conf. Pattern Recognition, vol.3, pp.29-32, Aug.2002.
    [24]D.-Q. Dai and P.C. Yuen, Regularized Discriminant Analysis and Its Application to Face Recognition, Pattern Recognition, vol.36, pp.845-847,2003.
    [25]L.Wiskott, J.M.Fellous, N.Kruger, C.v.d.Malsburg, Face Recogniton by Elastic Bunch Graph Matching, IEEE Transactions on Pattern Analysis and Machine Intelligence,19(7):775-779,1997.
    [26]A. Lanitis, C. Taylor, and T. Cootes. Automatic interpretation and coding of face images using flexible models. IEEE Transactions on Pattern Analysis and Machine Intelligence,19(7):743-56,1997.
    [27]T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham, Active Shape Models-Their Training and Application., Computer Vision and Image Understanding,61(1): 38-59,1995.
    [28]Cootes T.F.; Edwards, G.J.; Taylor, C.J., Active appearance models, IEEE Transactions on Pattern Analysis and Machine Intelligence,23(6):681-685,2001.
    [29]T.F. Cootes, GJ. Edwards, C.J. Taylor, Active Appearance Models, Proc. European Conf. Computer Vision, vol.2, pp.484-498,1998.
    [30]P.Penev and J.Atick, Local Feature Analysis:A General Statistical Theory for Object Representation, Network:Computation in Neural Systems, vol.7, pp.477-500, 1996.
    [31]P.J.Phillips, H.Moon, The FERET Evaluation Methodology for face-Recognition Algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence,22(10): 1090-1104,2000.
    [32]V. Blanz and T. Vetter, Face Recognition Based on Fitting a 3D Morphable Model, IEEE Transactions on Pattern Analysis and Machine Intelligence,25(9): 1063-1075,2003.
    [33]J. Yang, F.F. Alejandro, J. Yang, D. Zhang, and Z. Jin, KPCA Plus LDA:A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence,27(2): 230-244,2005.
    [34]X. Wang and X. Tang, An Unified Framework for Subspace Face Recognition IEEE Transactions on Pattern Analysis and Machine Intelligence,26(9):1222-1228, 2004.
    [35]X. Wang and X. Tang, Random Sampling for Subspace Face Recognition, International Journal of Computer Vision,70(1):91-104,2006.
    [36]J.B.Tenenbaum, V.de Silva and J.C.Langford, A Global Geometric framework for Nonlinear Dimensionality Reduction, Science,290 (5500):2319-2323,2000.
    [37]Sam Roweis, and Lawrence Saul. Nonlinear dimensionality reduction by locally linear embedding.Science,290(5500):2323-2326,2000.
    [38]X. He, S. Yan, Y. Hu, and etc., Face recognitionusing laplacianfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence,27(3):328-340,2005.
    [39]Warrell, J.; Elder, J.H.; Felisberti, F.M, Tied Factor Analysis for Face Recognition across Large Pose Differences Prince, IEEE Transactions on Pattern Analysis and Machine Intelligence,30(6):970-984,2008.
    [40]P. J. Phillips, P. J. Flynn, T. Scruggs, and etc., Overview of the face recognition grand challenge, IEEE Intl Conf. Computer Vision and Pattern Recognition,2005.
    [41]P. J. Phillips, P. J. Flynn, T. Scruggs, and etc., Preliminary face recognition grand challenge results, Proc. Seventh Intl Conf. Automatic Face and Gesture Recognition, pp.15-24,2006.
    [42]P.J. Phillips, W.T. Scruggs, A.J. O'Toole, and etc., FRVT 2006 and ICE 2006 Large-Scale Results, NISTIR 7408, March 2007.
    [43]J. Yang, D. Zhang, J.-Y. Yang, and etc., Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics, IEEE Transactions on Pattern Analysis and Machine Intelligence,29(4):650-664, 2007.
    [44]Stan Z. Li, RuFeng Chu, ShengCai Liao, and etc., Illumination Invariant Face Recognition Using Near-infrared Images, IEEE Transactions on Pattern Analysis and Machine Intelligence (Special issue on Biometrics:Progress and Directions).29(4): 627-639,2007.
    [45]边肇祺,张学工等,模式识别(第二版),清华大学出版社。
    [46]Y. Moses, Y. Adini, and S. Ullman. Face recognition:The problem of compensating for changes in illumination direction. In Proceedings of the European Conference on Computer Vision, volume A, pages 286-296,1994.
    [47]A.K.Jain, and B.Chandrasekaran, Dimensionality and sample size considerations in pattern recognition practice. In Handbook of Statistics, P.R. Krishnaiah and L.N. Kanal, Eds., vol 2,835-855,1982
    [48]Tae-Kyun Kim and Josef Kittler, Locally Linear Discriminant Analysis for Multi-modally Distributed Classes for Face Recognition with a Single Model Image, IEEE Transactions on Pattern Analysis and Machine Intelligence,27(3):318-327, 2005.
    [49]M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, "Face recognition by independent component analysis," IEEE Trans. Neural Networks,13(6):1450-1460, 2002.
    [50]B. Scholkopf, A. Smola, K.-R.Muller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation,10(5):1299-1319,1998.
    [51]M.H. Yang, Kernel eigenfaces vs. Kernel Fisherfaces:Face Recognition Using Kernel Methods, Proc. Fifth Int'l Conf. Automatic Face and Gesture Recognition, May 2002.
    [52]G. Baudat and F. Anouar, Generalized Discriminant Analysis Using a Kernel Approach, Neural Computation,12(10):2385-2404,2000.
    [53]S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang and S. Lin, Graph Embedding and Extensions:A General Framework for Dimensionality Reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence,29(1):40-51,2007.
    [54]T. Ahonen, A. Hadid, and M. Pietikainen, Face Description with Local Binary Patterns:Application to Face Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence,28(12):2037-2041,2006.
    [55]P. Shih and C. Liu, Comparative Assessment of Content-Based Face Image Retrieval in Different Color Spaces, International Journal of Pattern Recognition and Artificial Intelligence,19(7):873-893,2005.
    [56]C. Liu and H. Wechsler:"Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition", IEEE Transactions on Image Processing,11(4):467-476,2002.
    [57]C. Liu, Gabor-based Kernel PCA with Fractional Power Polynomial Models for Face Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5):572-581,2004.
    [58]C. Liu, Capitalize on Dimensionality Increasing Techniques for Improving Face Recognition Grand Challenge Performance, IEEE Transactions on Pattern Analysis and Machine Intelligence,28(5):725-737,2006.
    [59]V.N. Vapnik, Statistical Learning Theory, Wiley-Interscience Publication, New York (1998).
    [60]J. Guo, N. Sun, Y. Nemoto, and etc., Recognition of handwritten characters using pattern transformation method with cosine function, IEICE Trans,1993, J76-D-Ⅱ(4):835-842.
    [61]J Guo, R Sato, N Sun, and etc., Recognition of handwritten character database ETL9B using pattern transformation method, Systems and Computers in Japan,25 (11):58-67,1994.
    [62]山世光,高文,唱轶钲,曹波,陈熙霖,人脸识别中的“误配准灾难”问题研究,计算机学报,28(5):782-791,2005.
    [63]Martinez, A.M. Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. I IEEE Transactions on Pattern Analysis and Machine Intelligence,25(6):748-763,2002.
    [64]D. Beymer, T. Poggio, Face recognition from one example view, IEEE International Conference on Computer Vision, pp.500-520,1995.
    [65]G Wen, S. Shan, et.al., Virtual Face Image Generation For Illumination And Pose Insensitive Face Recognition, Proc. of ICASSP2003, Vol.Ⅳ, pp.776-779,2003.
    [66]R. O. Duda, P. E. Hart, and D. G Stork, Pattern Classification,2nd ed. Wiley-Interscience,2000.
    [1]R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,2nd ed. Wiley-Interscience,2000.
    [2]Stan Li, Anil Jain (Ed). Handbook of Face Recognition, Springer,2004.
    [3]P. Phillips, H. Moon, P. Rizvi, and P. Rauss, "The feret evaluation method for face recognition algorithms," IEEE Trans. Pattern Anal. And Mach. Intell., vol.22, pp. 0162-8828,2000.
    [4]P. J. Phillips, P. J. Flynn, T. Scruggs, K. Bowyer, J. Chang, K. Homan, J. Marques, J. Min, and W. Worek, Overview of the face recognition grand challenge, IEEE Intl Conf. Computer Vision and Pattern Recognition,2005.
    [5]Wen Gao, Bo Cao, Shiguang Shan, Xilin Chen, Delong Zhou, Xiaohua Zhang, Debin Zhao. The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations. EEE Trans, on System Man, and Cybernetics (Part A).38(1), pp149-161, 2008.
    [6]T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression database. IEEE Trans. Pattern Anal. And Mach. Intell.,25(12):1615-1618,2003.
    [7]A. R. Martinez and R. Benavente. The AR face database. Technical Report 24, Computer Vision Center(CVC) Technical Report, Barcelona,1998.
    [8]F. Samaria and A. Harter. Parameterisation of a stochastic model for human face identification. In 2nd IEEE Workshop on Applications of Computer Vision, Sarasota, FL,1994.
    [9]P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence,19(7):711-720,1997.
    [10]A. Georghiades, D. Kriegman, and P. Belhumeur. From few to many:generative models for recognition under variable pose and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence,23(6):643-660,2001.
    [11]L. Shamir, Evaluation of Face Datasets as Tools for Assessing the Performance of Face Recognition Methods, International Journal of Computer Vision,79(3):225-230, 2008.
    [12]Robert P.W. Duin, Marco Looga, and Tin Kam Ho, Recent submissions in linear dimensionality reduction and face recognition,27(7):707-708,2006.
    [13]S. Shan, Y. Chang, W. Gao, B. Cao, Curse Of Mis-Alignment In Face Recognition:Problem And A Novel Mis-Alignment Learning Solution, Proceeding of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, pp314-320,2004.
    [14]山世光,高文,唱轶钲,曹波,陈熙霖,人脸识别中的“误配准灾难”问题研究,计算机学报,28(5),pp782-791,2005.
    [15]P. Viola and M. Jones, Robust Real-time Object Detection, International Journal of Computer Vision,57(2):137-154,2004.
    [16]Z.-H. Zhou and X. Geng. Projection functions for eye detection. Pattern Recognition,37(5):1049-1056,2004.
    [17]J.G. Daugman, "Uncertainty Relation for Resolution in Space,Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters," J. Optical Soc.Amer.,2(7):1160-1169,1985.
    [18]L. Wiskott, J.-M. Fellous, N. Kruger, and C. von der Malsburg, "Face recognition by elastic bunch graph matching," IEEE Trans. Pattern Anal. And Mach. Intell.,19(7): 775-779,1997.
    [19]C. Liu:"Gabor-based Kernel PCA with Fractional Power Polynomial Models for Face Recognition", IEEE Trans. Pattern Anal. And Mach. Intell.,26(5):572-581, 2004.
    [20]T. Ahonen, A. Hadid, and M. Pietikainen, Face Description with Local Binary Patterns:Application to Face Recognition, IEEE Trans. Pattern Anal. And Mach. Intell.,28(12):2037-2041,2008.
    [21]X. Tan and B. Triggs, "Fusing gabor and lbp feature sets for kernel based face recognition," Lecture Notes in Computer Science, vol.4778, pp.235-249,2007.
    [1]J.B.Tenenbaum, V.de Silva and J.C.Langford, A Global Geometric framework forNonlinear Dimensionality Reduction, Science 290 (5500):2319-2323,22 December 2000.
    [2]Sam Roweis & Lawrence Saul. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (5500):2323-2326, Dec.22,2000.
    [3]R. O. Duda, P. E. Hart, and D. G Stork, Pattern Classification,2nd ed. Wiley-Interscience,2000.
    [4]T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression database. IEEE Trans. Pattern Anal, and Mach. Intell.,25(12):1615-1618,2003.
    [5]K. Fukunaga, Introduction to Statistical Pattern Recognition,2nd ed. Academic Press,1990.
    [6]Y. Adini, Y. Moses, and S. Ullman, Face recognition:The problem of compensating for changes in illumination direction, European Conf. Computer Vision, pp.286-296,1994.
    [7]A. M. Martinez and M. Zhu, Where are linear feature extraction methods applicable? IEEE Trans. Pattern Anal, and Mach. Intell.,27(12):1934-1944,2005.
    [8]J. Hu, W. Deng, J. Guo and etc., Locality Discriminating Indexing for Document Classification, The 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'07), pp.689-690,2007.
    [9]J. Hu, W. Deng, J. Guo and etc., Learning a Locality Discriminating Projection for Classification, Knowledge-Based Systems, Elsevier,2009. (已录用)
    [10]P. N. Mikhail Belkin, Laplacian eigenmaps and spectral techniques for embedding and clustering, Advances in Neural Information Processing System, vol. 14, pp.585-591,2001.
    [11]X. He and P. Niyogi, Locality preserving projections, Proc. Conf. Advances in Neural Information Processing System,2003.
    [12]R. O. Duda, P. E. Hart, and D. G Stork, Pattern Classification,2nd ed. Wiley-Interscience,2000.
    [13]J. Wang, K.N. Plataniotis, A.N. Venetsanopoulos, On solving the face recognition problem with one training sample per subject, Pattern Recognition.39(9):1746-1762, 2006.
    [14]P. J. Phillips, H. Moon, P. Rizvi, and etc., The FERET evaluation Methodology for face recognition algorithms, IEEE Trans. Pattern Anal, and Mach. Intell.,22(10): 1090-1103,2000.
    [15]W. Zhao, R. Chellappa, and P. Phillips, Subspace linear discriminant analysis for face recognition, Automatic Face and Gesture Recognition, Proc. Third IEEE International Conference on, pp.336-341,1998.
    [16]C. Liu and H. Wechsler:"Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition", IEEE Transactions on Image Processing,11(4):467-476,2002.
    [1]J. H. Friedman and J. W. Tukey, A projection pursuit algorithm for exploratory data analysis, BIT Numerical Mathematics,23(9):881-890,1974.
    [2]M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience,3(1):71-86,1991.
    [3]M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, Face recognition by independent component analysis, IEEE Trans. Neural Networks,13(6):1450-1460, 2002.
    [4]P. N. Belhumeour, J. P. Hespanha, and D. J. Kriegman, Eigenfaces vs. fisherfaces: Recognition using class specific linear projection, IEEE Trans. Pattern Anal. Machine Intell.,19(7):711-720,1997.
    [5]X. He, S. Yan, Y. Hu, and etc., Face recognition using laplacianfaces, IEEE Trans. Pattern Anal. Mach. Intell.,27(3):328-340,2005.
    [6]J. Yang, D. Zhang, J.-Y. Yang, and etc., Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics, IEEE Trans. Pattern Anal. Mach. Intell.,29(4):650-664,2007.
    [7]D. L. Swets and J. J. Weng, Using discriminant eigenfeatures for image retrieval, IEEE Trans. Pattern Anal. Mach. Intell.,18(8):831-836,1996.
    [8]W. Zhao, R. Chellappa, and P. Phillips, Subspace linear discriminant analysis for face recognition, Automatic Face and Gesture Recognition, Proc. Third IEEE International Conference on, pp.336-341,1998.
    [9]C. Liu and H. Wechsler, Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition, IEEE Transactions on Image Processing,11(4):467-476,2002.
    [10]J. Hu, W. Deng, and J. Guo, Robust discriminant analysis of latent semantic feature for text categorization, Lecture Notes in Artificial Intelligence, vol.4223, pp. 400-409,2006.
    [11]A. Hyvarinen, J. Karhunen, and E. Oja, Indenpendent Component Analysis. John Wiley & Sons,2001.
    [12]A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Networks,10(3):626-634,1999.
    [13]W. Deng, J. Hu, J. Guo, and etc., Comments on "globally maximizing, locally minimizing:Unsupervised discriminant projection with applications to face and palm biometrics", IEEE Trans. Pattern Anal. Mach. Intell.,30(8):1503-1504,2008.
    [14]X. He and P. Niyogi, Locality preserving projections, Proc. Conf. Advances in Neural Information Processing System,2003.
    [15]X. He, D. Cai, and W. Min, Statistical and computational analysis of locality preserving projection, Proceedings of the 22nd International Conference on Machine Learning, pp.281-288,2005.
    [16]D. Cai, X. He, and J. Han, Document clustering using locality preserving indexing, IEEE Trans. Knowledge and Data Engineering,17(12):1624-1637,2005.
    [17]M. A. Vicente, P. O. Hoyer, and A. Hyvarinen, Equivalence of some common linear feature extraction techniques for appearance-based object recognition tasks, IEEE Trans. Pattern Anal. Mach. Intell.,29(5):896-900,2007.
    [18]M. Zhu and A. M. Martinez, Subclass discriminant analysis, IEEE Trans. Pattern Anal. Mach. Intell.,28(8):1274-1286,2006.
    [19]B. Scholkopf, A. Smola, K.-R.Muller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation,10(5):1299-1319,1998.
    [20]G Baudat and F. Anouar, Generalized Discriminant Analysis Using a Kernel Approach, Neural Computation,12(10):2385-2404,2000.
    [21]A. M. Martinez and R. Benavente, The ar face database, CVC Technical Report #24, June 1998.
    [22]P. J. Phillips, H. Moon, P. Rizvi, and etc., The FERET evaluation method for face recognition algorithms, IEEE Trans. Pattern Anal. Mach. Intell.,22(10):1090-1103, 2000.
    [23]C. Liu, Capitalize on Dimensionality Increasing Techniques for Improving Face Recognition Grand Challenge Performance, IEEE Transactions on Pattern Analysis and Machine Intelligence,28(5):725-737,2006.
    [24]S. Haykin, Neural Networks—A Comprehensive Foundation. Macmillan College Publishing Company,1994.
    [1]Ullman S., High-level Vision:Object recognition and visual cognition, MIT press, 1996.
    [2]I.T. Jolliffe. Principal Component Analysis. Springer-Verlag,1986.
    [3]Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience,3(1):71-86,1991.
    [4]B. Moghaddam and A. Pentland, Probabilistic Visual Learning for Object representation, IEEE Trans. Pattern Anal. Mach. Intell,20(7):696-710,1997.
    [5]Belhumeur, P., Hespanha, J. and Kriegman, D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell.,19(7):711-720,1997
    [6]W. Zhao, R. Chellappa, and A.Krishnaswamy, Discriminant Analysis of Principal Components for Face Recognition, Proc. of Inter. Conf. Auto. Face and Gesture Recognition, pp.336-341,1998
    [7]X. He, S. Yan, Y. Hu, and etc., Face recognitionusing laplacianfaces, IEEE Trans. Pattern Anal. Mach. Intell.,27(3):328-340,2005.
    [8]J. Yang, D. Zhang, J.-Y. Yang, and etc., Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics, IEEE Trans. Pattern Anal. Mach. Intell.,29(4):650-664,2007.
    [9]X.Tan, S.Chen, Z.-H. Zhou, and etc., Face Recognition from a Single Image per Person:A Survey, Pattern Recognition,39(9):1725-1745.2006.
    [10]Martinez, A.C. Kak, PCA versus LDA, IEEE Trans. Pattern Anal. Mach. Intell. 23 (2):228-233,2001.
    [11]W. Zhao, R. Chellappa, P.J. Phillips, Subspace linear discriminant analysis for face recognition, Technical Report CAR-TR-914, Center for Automation Research, University of Maryland,1999.
    [12]J. Wu and Z.-H. Zhou. Face recognition with one training image per person. Pattern Recognition Letters,23(14):1711-1719,2002.
    [13]S. Chen, D. Zhang, and Z.-H. Zhou. Enhanced (PC)2A for face recognition with one training image per person. Pattern Recognition Letters,25(10):1173-1181,2004.
    [14]D.Q. Zhang, S.C. Chen, Z.-H. Zhou, A new face recognition method based on SVD perturbation for single example image per person, Appl. Math. Comp.163 (2): 895-907,2005.
    [14]J. Yang and D. Zhang, Two-dimensional PCA:A new approach to appearance-based face representation and recognition, IEEE Trans. Pattern Anal. Mach. Intell.,26(1):131-137,2004.
    [15]L. Wang, X. Wang, J. Feng, On Image Matrix Based Feature Extraction Algorithms, IEEE Trans. SMC-B,36(1):194-197,2006.
    [16]D. Zhang and Z.-H. Zhou. (2D)2PCA:2-directional 2-dimensional PCA for efficient face representation and recognition. Neurocomputing,69(1-3):224-231, 2005.
    [17]T. Ahonen, A. Hadid, and M. Pietikainen, Face Description with Local Binary Patterns:Application to Face Recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28(12):2037-2041,2006.
    [18]B. Zhang, S. Shan, X. Chen, and etc. Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition. IEEE Trans. on Image Processing,16(1):57-68,2006.
    [19]王科俊,段胜利,冯伟兴,单训练样本人脸识别技术综述,模式识别与人工智能,21(5):635-642,2008。
    [20]Y. Koren, L. Carmel, Robust linear dimensionality reduction, IEEE Trans. Visualization and Computer Graphics,10(4):459-470,2004.
    [21]J.B.Tenenbaum, V.de Silva and J.C.Langford, A Global Geometric framework forNonlinear Dimensionality Reduction, Science,290(5500):2319-2323,2000.
    [22]P. N. Mikhail Belkin, Laplacian eigenmaps and spectral techniques for embedding and clustering, Advances in Neural Information Processing System, vol. 14, pp.585-591,2001.
    [23]B. Scholkopf, A. Smola, K.-R.Muller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation,10(5):1299-1319,1998.
    [24]P.J.Phillips, H.Moon. The FERET Evaluation Methodology for face-Recognition Algorithms", IEEE Trans. Pattern Anal. Mach.,22(10):1090-1104,2000.
    [25]Daoqiang Zhang, Songcan Chen and Zhi-Hua Zhou. Recognizing face or object from a single image:Linear vs. kernel methods on 2D patterns. In:Proceedings of the Joint IAPR International Workshops on Structural and Syntactic Pattern Recognition and Statistical Techniques in Pattern Recognition (S+SSPR'06),2006.
    [26]X. Tan, S. Chen, Z.-H. Zhou, and etc. Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft kNN ensemble. IEEE Transactions on Neural Networks,16(4):875-886,2005.
    [27]A.M. Martinez, Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class, IEEE Trans. Pattern Anal. Mach. Intell.,25 (6):748-763,2002.
    [28]C. Liu, Gabor-based Kernel PCA with Fractional Power Polynomial Models for Face Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5):572-581,2004.
    [1]W. Deng, J. Guo, J. Hu, and H. Zhang, Comment on "100% accuracy in automatic face recognition", Science,321(5891):912,2008.
    [2]A. J. O'Toole, P. J. Phillips, F. Jiang, J. Ayyad, N. Penard, and H. Abdi, "Face recognition algorithms surpass humans matching faces over changes in illumination," IEEE Trans. Pattern Anal. Mach. Intell.,29(9):1642-1646,2007.
    [3]P. Phillips, H. Moon, P. Rizvi, and etc., "The feret evaluation method for face recognition algorithms," IEEE Trans. Pattern Anal. Mach. Intell.,22(10):0162-8828, 2000.
    [4]P. J. Phillips, P. J. Flynn, T. Scruggs, and etc., Preliminary face recognition grand challenge results, Proc. Seventh Intl Conf. Automatic Face and Gesture Recognition, pp.15-24,2006.
    [5]J. Daugman, Face and gesture recognition:Overview, IEEE Transactions on Pattern Analysis and Machine Intelligence,19(7):675-676,1997.
    [6]D.-Y. Tsao, W. A. Freiwald, R. B. H. Tootell, and etc., A cortical region consisting entirely of face-selective cells, Science, vol.311, pp.670-674,2006.
    [7]P. Sinha, B. Balas, Y. Ostrovsky, and etc., Face recognition by humans:19 results all computer vision researchers should know about, Proceedings of the IEEE,94(11): 1948-1962,2006.
    [8]C. Liu and H. Wechsler, Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition, IEEE Trans. Image Processing, 11(4):467-476,2002.
    [9]X. Wang and X. Tang, A unified framework for subspace face recognition, IEEE Trans. Pattern Anal. Mach. Intell.,26(9):1222-1228,2004.
    [10]C. Liu, Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance, IEEE Trans. Pattern Anal. Mach. Intell., 28(5):725-737,2006.
    [11]B. V. K. V. Kumar, M. Savvides, and C. Xie, Correlation pattern recognition for face recognition, Proceedings of the IEEE,94(11):1963-1976,2006.
    [12]X. He, S. Yan, Y. Hu, and etc. Face recognition using laplacianfaces, IEEE Trans. Pattern Anal. Mach. Intell.,27(3):328-340,2005.
    [13]D. Cai, X. He, J. Han, and etc. Orthogonal laplacianfaces for face recognition, IEEE Trans. Image Process.,15(11):3608-3614,2006.
    [14]W. Deng, J. Hu, J. Guo, and etc. Comments on "globally maximizing, locally minimizing:Unsupervised discriminant projection with applications to face and palm biometrics", IEEE Trans. Pattern Anal. Mach. Intell.,30(8):1503-1504,2008.
    [15]W. Deng, J. Hu, and J. Guo, Gabor-eigen-whiten-cosine:A robust scheme for face recognition, Lecture Notes in Computer Science, vol.3723,2005.
    [16]E. Meyers and L. Wolf, Using bilogically inspired features for face recognition, Int. J. Comput. Vis, vol.76, pp.93-104,2000.
    [17]Y. Adini, Y. Moses, and S. Ullman, Face recognition:The problem of compensating for changes in illumination direction, IEEE Trans. Pattern Anal. Mach. Intell.,19(7):721-732,1997.
    [18]S. Ullman, M. Vidal-Naquet, arid E. Sali, Visual features of intermediate complexity and their use in classification, Nature Neuroscience, vol.5, pp.68-687, 2002.
    [19]E. DeYoe and D. van Essen, Pattern-color separable pathways predict sensitivity to simple colored patterns. Vision Research,36(4):515-526,1996.
    [20]D. J. Field, What is the goal of sensory coding? Neural Computation, vol.6, pp. 559-601,1994.
    [21]L. Wiskott, J.-M. Fellous, N. Kruger, and etc., Face recognition by elastic bunch graph matching, IEEE Trans. Pattern Anal. Mach. Intell.,19(7):775-779,1997.
    [22]D. J. Jobson and Z.-u. Rahman, Properties and performance of a center/surround retinex, IEEE Trans. Image Processing,6(3):451-462,1997.
    [23]E. Land and J. McCann, Lightness and retinex theory, Journal of the Optical Scoiety of America,61(1):1-11,1971.
    [24]H. Wang, S. Z. Li, and Y. Wang, Generalized quotient image, Proc. IEEE Computer Vision and Pattern Recognition,2004.
    [25]P. Shih and C. Liu, Comparative Assessment of Content-Based Face Image Retrieval in Different Color Spaces, International Journal of Pattern Recognition and Artificial Intelligence,19(7):873-893,2005.
    [26]S. Palmer, Vision Science:Photons to Phenomenology. Cambridge, MA:MIT Press,1999.
    [27]P. Shih and C. Liu, Improving the face recognition grand challenge baseline performance using color configurations across color spaces, Proc. IEEE International Conference on Image Processing,2006.
    [28]S. Edelman, Representation and Recognition in Vision. Cambridge, MA:MIT Press,1999.
    [29]E. Oja, A simplified neuron model as a principal component analyzer, J. Math. Biology, vol.15, pp.267-273,1982.
    [30]M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience,3(1):71-86,1991.
    [31]M. Meytlis and L. Sirovich, On the dimensionality of face space, IEEE Trans. Pattern Anal. Mach. Intell.,29(7):1262-1267,2007.
    [32]X. Geng, Z.-H. Zhou, and K. Smith-Miles, Automatic age estimation based on facial aging patterns, IEEE Trans. Pattern Anal. Mach. Intell.,29(12):2234-2240, 2007.
    [33]X. Tang and X. Wang, Face sketch recognition, IEEE Trans. Circuits and Systems for Video Technology,14(1):50-57,2004.
    [34]D. L. Swets and J. J. Weng, Using discriminant eigenfeatures for image retrieval, IEEE Trans. Pattern Anal. Mach. Intell.,18(8):831-836,1996.
    [35]P. N. Belhumeour, J. P. Hespanha, and D. J. Kriegman, Eigenfaces vs. fisherfaces: Recognition using class specific linear projection, IEEE Trans. Pattern Anal. Machine Intell.,19(7):711-720,1997.
    [36]M. J. Lyons, J. Budynek, and S. Akamatsu, Automatic classification of single facial images, IEEE Trans. Pattern Anal. Mach. Intell.,21(12):1357-1362,1999.
    [37]P. Sinha and T. Poggio, I think i know that face..., Nature,384(6608),1996.
    [38]I. Jarudi and P. Sinha, Relative roles of internal and external features in face recognition, MIT AI Memo 2003-004,2003.
    [39]D. Cox, E. Meyers, and P. Sinha, Contextually evoked object-specific responses in human visual cortex, Science, vol.304, pp.110-115,2004.
    [40]A. K. Jain, Fundamentals of digital image processing. Upper Saddle River, NJ, USA:Prentice-Hall, Inc.,1989.
    [41]A. Yip and P. Sinha, Role of color in face recognition, Perception, pp.995-1003, 2002.
    [42]K. Fukunaga, Introduction to Statistical Pattern Recognition,2nd ed. Academic Press,1990.
    [43]D. L. Swets and J. J. Weng, Using discriminant eigenfeatures for image retrieval, IEEE Trans. Pattern Anal. Mach. Intell.,18(8):831-836,1996.
    [44]J. Hu, W. Deng, and J. Guo, Robust discriminant analysis of latent semantic feature for text categorization, Lecture Notes in Artificial Intelligence, vol.4223, pp. 400-409,2006.
    [45]A. Levy and M. Lindenbaum, Sequential karhumen-loeve basis extraction and its application to images, IEEE Trans. Image Processing,9(5):1371-1374,2000.
    [46]J. Kittler, M. Hatef, R. P. Duin, and etc., On combining classifiers, IEEE Trans. Pattern Anal. Mach. Intell.,20(3):226-239,1998.
    [47]K. Nandakumar, Y. Chen, S. C. Dass, and etc., Likelihood ratio-based biometric score fusion, IEEE Trans. Pattern Anal. Mach. Intell.,30(2):342-347,2008.
    [48]C. Liu, The Bayes decision rule induced similarity measures, IEEE Trans. Pattern Anal. Mach. Intell.,29(6):1086-1090,2007.
    [49]J. Yang and C. Liu, Horizontal and vertical 2dpca-based discriminant analysis for face verification on a large-scale database, IEEE Trans. Information Forensics and Security,2(4):781-792,2007.
    [50]L.-F. Chen, H..-Y. M. Liao, J.-C. Lin, and etc., Why recognition in a statistics-based face recognition system should be based on the pure face portion:a probabilistic decision-based proof, Pattern Recognition,34(7):1393-1403,2001.
    [51]W. Hwang, G Park, and J. Lee, Multiple face model of hybrid fourier feature for large face image set, Proc. IEEE Computer Vision and Pattern Recognition,2006.
    [52]Y. Su, S. Shan, X. Chen, and etc., Hirarchical ensemble of global and local classifiers for face recognition, Proc. IEEE International Conference Computer Vision, 2007.
    [53]X. Tan and B. Triggs, Fusing gabor and lbp feature sets for kernel-based face recognition, Lecture Notes in Computer Science, vol.4778, pp.235-249,2007.
    [54]B. W. Mel, Seemore:combining color, shape, and texture histogramming in a neurally inspired approach to visual object recognition, Neural Computation, vol.9, pp.777-804,1997.
    [55]T. Maenpaa and M. Pietikainen, Classification with color and texture:jointly or separately? Pattern Recognition,37(8):1629-1640,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700