冷轧带钢表面缺陷图像检测关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷轧带钢表面缺陷检测技术是钢铁企业提高产品市场竞争力,改进生产工艺的关键技术之一。目前,传统的表面缺陷检测技术正逐渐被淘汰,取而代之的是基于机器视觉的表面缺陷检测技术,该技术已经成为带钢表面缺陷检测的主流技术。在20世纪末,欧美一些发达国家相继研究成功了基于机器视觉的表面缺陷检测系统。我国对这项技术的研究由于受到表面缺陷检测速度、图像处理速度等方面因素的制约,到目前为止尚无成功应用的系统,这在一定程度上影响了我国冷轧带钢产品的市场竞争力,不利于提高带钢产品的附加值。
     在机器视觉表面缺陷检测技术中图像处理算法繁多且复杂,而且当采用专用ASIC芯片或通用微处理器实现图像处理系统时,存在着灵活性和处理效率相互制约的问题。采用专用ASIC电路可以高速、可靠的实现图像处理,但是这种专用电路灵活性差,开发周期长,芯片设计比较复杂。通用微处理器(如计算机、DSP等)可以灵活的实现不同的图像处理算法,但是这种实现方法受到其处理器架构的制约,在实时性要求高的应用中,多采用并行处理器阵列来实现,使得系统庞大、价格昂贵、维护复杂。针对这些问题,本文研究了基于FPGA硬件平台的动态可重构技术,以及多IP核的图像并行处理技术,使得系统以较少的硬件资源实现比较复杂的功能,在提高系统执行速度的同时降低成本。
     分析了表面缺陷图像噪声来源及类型,在研究了基于偏微分方程图像去噪模型的基础上,选择了能够满足对比不变性和仿射不变性条件的AMSS(Affine Morphological Scale Space)方程对表面缺陷图像进行滤波处理,有效地去除缺陷图像中的噪声信息。采用有限差分法求解AMSS方程,并且分析了迭代步长和尺度参数对滤波效果的影响,改进了对称交叉熵的定义形式,提出了基于改进对称交叉熵的迭代停止准则,避免了依靠人为观察滤波结果,选择滤波尺度参数的问题,拓宽了基于AMSS方程图像滤波方法的应用领域,改善了表面缺陷图像预处理的效果。
     冷轧带钢表面缺陷由于受到带钢材质以及缺陷形成机理的影响,在缺陷与正常带钢之间普遍存在着过渡区域,同时该区域有助于识别带钢表面缺陷的类型,因而提出了基于过渡区的局部阈值图像分割方法。该方法充分利用了缺陷的过渡区信息,克服了局部阈值分割方法中子图像大小影响图像分割效果的问题,提高了缺陷分割的准确性和完整性。提取了缺陷的灰度特征、基于灰度共生矩阵的纹理特征和不变矩特征,采用核主成分分析的方法对缺陷同种特征进行抽取,降低了缺陷同种特征之间的相关性。基于信息融合理论,将缺陷特征组合,采用偏最小二乘法分析组合特征,降低组合特征中相同缺陷不同种类特征之间的相关性,使得组合特征能够更加准确、有效的描述缺陷。
     研究了支持向量机分类理论,分析了基于支持向量机的多类分类方法,将一类支持向量机多类分类的方法与不确定性理论相结合,设计了缺陷分类器并进行了分类实验,在有限样本的情况下,采用不同特征组合,使分类的准确率最高达到95%。研制了可重构图像并行处理系统,并且在系统中实现了表面缺陷图像的预处理和分割算法,提高了图像处理算法的运算速度,使得图像处理系统的实时处理速度可以达到39帧/秒。
     本文通过对表面缺陷图像检测技术理论和实验研究,研制了基于可重构技术和并行处理技术的表面缺陷图像处理系统,提出了表面缺陷图像处理及分类识别方法,在所研制的图像处理系统中实现了缺陷图像算法的软件硬件化,降低了图像处理系统的复杂度,提高了图像处理的执行效率,改善了表面缺陷检测系统的实时性。
The cold rolling strip surface defect inspection technology is one of key technology, which could enhance the product market competitive strength of steel enterprise and improve the production engineering. The traditional surface defect inspection technology is being weeded out gradually, the surface defect inspection technology based on machine vision has replaced it and become the main trend of strip surface defect inspection technology. In 20 century’s ends, some developed countries in European and America have designed successfully the surface defect inspection systems based on machine vision. In our country the research on this technology is limited by surface defect inspection speed, image processing speed and so on, so far no successful system has been used on-line. This situation impacts the market competitive strength of our country’s cold rolling strip product partly and makes against for improving the strip product add-value.
     The image processing algorithm is various and complex in surface defect inspection technology based on machine vision. At the same time the image processing system has the interacting problem between flexibility and processing efficiency, which is realized by using specialized ASIC chips or general purpose MPU. The specialized ASIC chips could realize high-speed image processing reliably, but lacking flexibility and being unable to be modified once designed for certain algorithm function, also having long development cycle and complex chip-design. The general purpose MPU (such as computer, DSP and so on) could realize different image processing algorithms flexible, but limited by the processor’s architecture. The parallel processor array is used in the application with high processing speed demand, which makes hugeous system, expensive price and complex maintenance. Aiming at these problems, the dynamic reconfigurable technology based on FPGA hardware platform and the image parallel processing technology based on multi-IP core are researched in this paper, which make system realize more complex function with less hardware resource, improve the system execution speed and also reduce the cost.
     The source and types of surface defect image noise are analyzing. Based on researching on PDE image processing model, the AMSS equation meeting contrast invariance and affine invariance condition is selected for surface defect image smoothing processing, which removing the noise information of defect image effectively. The finite difference method is used to solve AMSS equation, also the iteration step length and dimension parameter’s impact on smoothing effect is analyzing. The definition format of symmetry cross entropy is improved. The iteration stop standard is brought forward based on improved symmetry cross entropy, avoiding the smoothing dimension parameter selection problem of depending on artificial observation of smoothing result and widening the application field of image smoothing method based on AMSS equation.
     The cold rolling strip surface defect is affected by strip material and defect forming mechanism, so transitional region exists between defect and normal strip widely. The transitional region information is helpful for the types identification of strip surface defect, so the local threshold value image segmentation method based on transitional region is brought forward. This method makes use of the transitional region information sufficiently, overcomes the problem that son image size could affect image segmentation effect in local threshold value method, enhances the accurateness and integrality of defect segmentation. Extracting the defects’gradation characteristics, veins characteristic and invariant moment characteristic based on gradation accrete matrix, the same defect characteristics are extracted using kernel PCA method, which reduces the interdependency among the same defect characteristics. Combinating defect characteristics based on information amalgamation theory and reducing the redundance among different defect characteristics in combination characteristic by using PLS to analyse combination characteristic, these make the combination characteristic describe the defect more precise and effective.
     The SVM classification theory is researched, the multi-class classification method based on SVM is analyzing. Combining a kind of SVM multi-class classification method with nondeterminacy theory, the defect classifier is designed and the classification experiment is done. On the situation of limited samples, the highest classification accurate ratio gets up to 95%, using different characteristics combination. The reconfigurable image parallel process system is developed, realizing surface defect image preprocessing and segmentation algorithm in the system, enhancing the mathematical operation speed of image processing algorithm. The real-time process speed of image processing system reaches to 39 frames per second.
     Through the theory and experiment research on surface defect inspection technology, the realization plan of reconfigurable parallel image processing system and the method of surface defect image processing and classification identification are proposed. The algorithm of defect image preprocessing and segmentation is realized in developed image processing system, reducing the complicacy of image processing system, enhancing the execution efficiency of image processing, improving the real-time ability of surface defect inspection system.
引文
1吴平川,路同俊,王炎.钢板表面缺陷的无损检测技术与应用.无损检测. 2000, 22(7): 312-315
    2史文,孟猛.浅谈冷轧带钢表面缺陷. 2007年河北省轧钢技术与学术年会论文集. 2007,:234-237
    3杨水山,何永辉,王振龙,等.带钢视觉检测系统的研究现状及展望.冶金自动化. 2008, 32(2):5-9
    4吴平川,路同俊,王炎.带钢表面自动检测系统研究现状与展望.钢铁. 2000, 35(6):70-75
    5廖水碧,肖明富.金属制品表面质量缺陷无损检测的研究现状与展望.中国冶金. 2007, 17(3): 48-50
    6徐科,徐金梧.基于图像处理的冷轧带钢表面缺陷在线检测系统.钢铁. 2002, 37(12): 61-64
    7让·路易斯·萨隆,吉兰·于贝尔,安德烈·克兰.用安装在火焰切割设备前的涡流探测器检验热连铸板坯表面质量.无损探伤. 1994, 19(1): 15-22
    8 W. A. Tony. Automated Inspection of Metal Products Not Quite Ready for Prime Time. Iron and Steel Maker. 1992,19(1): 14-19
    9 Y. Storm. Automatic Surface Inspection of Continuously Cast Billets. Iron and Steel Engineer. 1992, 69(5): 29-33
    10宋瑞祥.冷轧05板的生产和最新检测系统.上海宝钢集团公司钢铁研究所科技信息中心. 1995: 21-26
    11 H. Maki, Y. Tsunozaki, Y. Matsufuji. Magnetic On-line Defect Inspection system for strip steel. Iron and Steel Engineer. 1993, 70(1):56-59
    12相泽均,周源译.冷轧钢板缺陷检测系统.世界钢铁. 1994, 21(2): 66-73
    13 F.Treiber. On-line Automatic Defect Detection and Surface Roughness Measurement of Steel Strip. Iron and Steel Engineer. 1989,66(9): 26-33
    14 G. Rosati, G. Boschetti, A. Biondi, et al. Real-time Defect Detection on Highly reflective Curved Surface. Optics and Lasers in Engineering. 2009, 47(3-4): 379-384
    15 G.P. Moreda, J. Ortiz-Canavate, F.J. Garcia-Ramos, et al. Non-Destructive Technologies for Fruit and Vegetable Size Determiantion– a Review. 2009, 92(2): 119-136
    16 G.Byrne, C. Sheahan. Inline Color Vision for Specific Electroplating Defect Identification. Journal of Manufacturing Processes. 2006, 8(2): 133-143
    17 Hong-Dar Lin. Computer-aided Visual Inspection of Surface Defects in Ceramic Capacitor Chips. Journal of Materials Processing Technology. 2007, 189(1-3): 19-25
    18徐科,杨朝霖,周鹏.热轧带钢表面缺陷在线检测的方法与工业应用.机械工程学报. 2009, 45(4): 111-114
    19王志成,吴壮志,冯路,等.钢板表面缺陷检测系统的设计与实现.计算机工程与科学. 2009, 31(1): 61-65
    20 B. R. Suresh. A Real-time Automated Visual Inspection System for Hot Steel Slabs. IEEE Trans. Pattern Analysis Mach. Intell. 1983, PAMI-5(6): 563-572
    21 T. F. Porter, R. A. Sylvester, T. W. Bouyoucas, et al. Automatic Strip Surface Defect Detection System. Iron and Steel Engineer. 1988, 65(12): 17-20
    22戴卫东,安百光. Parsytec自动表面缺陷检查系统在冷轧连续退火线上的应用.冶金自动化. 2009, 33(3): 47-51
    23 J. Jouet. Defect Classification in Surface Inspection of Strip Steel. Steel Times. 1992, 16(5): 214-216
    24 D. G. Park, M. P. Levoi, A. I. Haneghem. Practical Application of On-Line Hot Strip Inspection System an Hoogovens. Iron and Steel Engineer. 1995, 72(7): 40-43
    25 C. A. Carisetti, T. Y. Fong, C. Fromm. Ilearn Self-learning Defect Classifier. Iron and Steel Engineer. 1998, 75(8): 50-53
    26 T. J. Rodrick. Software Controlled On-line Surface Inspection. Steel Times International. 1998, 22(3): 30-35
    27 G. Canella, R. Falessi. Surface Inspection and Classification Plant for Stainless Steel Strip. Non-Destructive Testing. 1992, 12(12): 1185-1189
    28罗志勇,刘栋玉,江涛,等.新型冷轧带钢表面缺陷在线检测系统.华中理工大学学报. 1996, 24(1): 75-78
    29王斌,罗志勇,刘栋玉,等.带钢边缘缺陷实时图像识别与宽度测量算法.无损检测. 1997, 19(7): 188-190
    30王斌,罗志勇,刘栋玉,等.带钢表面重皮缺陷在线图像识别算法研究.华中理工大学学报. 1996, 24(8): 35-37
    31吴平川,路同俊,王炎.机器视觉与钢板表面缺陷的无损检测.钢铁. 2000, 22(1): 70-75
    32徐科,徐金梧,陈雨来.冷轧带钢表面缺陷在线监测系统.北京科技大学学报. 2002, 24(3): 329-332
    33 Sun Hao, Xu Ke, Xu Jinwu. Online Application of Automatic Surface Quality Inspection System to Finishing Line of Cold Rolled Strips. Journal of University of Science and Technology of Beijing. 2003, 10(4): 38-41
    34吴桂芳,徐科,徐金梧.基于LVQ神经网络的冷轧带钢表面缺陷分类方法.北京科技大学学报. 2005, 27(6): 732-735
    35徐科,李文峰,杨朝霖.基于幅值谱与不变矩的特征提取方法及应用.自动化学报. 2006, 32(3): 470-474
    36宋强,徐科,徐金梧.基于结构谱的中厚板表面缺陷识别方法.北京科技大学学报. 2007, 29(3): 342-345
    37张洪涛,段发阶,丁克勤,等.带钢表面缺陷视觉检测系统关键技术研究.计量学报. 2007, 28(3): 216-219
    38胡亮,段发阶,丁克勤,等.钢板表面缺陷计算机视觉在线检检测系统的研制.钢铁. 2005, 40(2): 59-61
    39吴艳萍,颜云辉,王永慧,等.模糊互补矩阵法在带钢表面质量评价中的应用.钢铁研究学报. 2008, 20(8): 28-30
    40李骏,颜云辉,张尧.板带钢表面质量实时监测体系研究.计算机工程与设计. 2008, 29(10): 5368-5371
    41何永辉,王康健,石桂芬.基于机器视觉的高速带钢孔洞检测系统.应用光学. 2007, 28(3): 345-349
    42何永辉,黄胜彪,石桂芬.冷轧带钢表面缺陷在线检测系统应用研究. 2007年中国钢铁年会.四川. 2007: 37-38
    43刘红冰,康戈文.基于神经网络的冷轧带钢表面缺陷检测.中国图象图形学报. 2005, 10(10): 1310-1313
    44李晓东,康戈文.基于数字滤波器的镀锌板缺陷分割.电子科技大学学报. 2005, 34(3): 389-391
    45章毓晋.图像处理.清华大学出版社. 2006: 5-6
    46苏光大.图像并行处理技术.清华大学出版社. 2002: 26-31
    47席剑辉,韩敏,孙燕楠.改进非线性局部平均算法的混沌去噪研究.系统工程与电子技术. 2005, 27(5): 799-802
    48 Yu Jinhua, Wang Yuanyaun, Shen Yuzhong. Noise Reduction and Edge Detection Via Kernel Anisotropic Diffusion. Pattern Recognition Letters. 2008, 29(10): 1496-1503
    49戴芳,薛建儒,郑南宁.嵌入固有模态函数的各项异性扩散方程用于图像去噪.电子与信息学报. 2008, 30(3): 509-513
    50 L. Laurent, S. Pierre, B. Dominique. Adaptive and Global Optimization Methods for Weighted Vector Median Filters. Signal Processing: Image Communication. 2002, 17(7): 509-524
    51 R. Lukac, B. Smolka, K. N. Plataniotis. Sharpening vector median filters. Signal Processing. 2007, 87(9): 2085-2099
    52章毓晋.图像处理和分析技术基础.高等教育出版社. 2002: 111-117
    53 D.Lazzaro, L. B. Monefusco. Edge-preserving Wavelet Thresholding for Image Denoising. Journal of Computational and Applied Mathematics. 2007, 210(1-2): 222-231
    54 B. D. Steve, P. Aleksandra, H. Bruno, et al. Denoising of Multicomponent Image Using Wavelet Least-Squares Estimators. Image and Vision Computing. 2008, 26(7): 1038-1051
    55 C. J. Emmanuel, D. L. David. Continuous Curvelet Transform: 1. Resolution of the Wavefront Set. Applied and Computational Harmonic Analysis. 2005, 19(2): 162-197
    56冯鹏,米德伶,潘英俊,等.改进的Curvelet变换图像降噪方法.光电工程. 2005, 32(9): 67-70
    57 Lian Qiusheng, Chen Shuzhen. The Translation Invariant Contourlet-Like Transform for Image Denoising. Acta Automatica Sinica. 2009, 35(5): 505-508
    58 Dai Shaowei, Sun Yankui, Tian Xiaolin, et al. Image Denoising Based on Complex Contourlet Transform. Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recogniton, Beijing, China, 2007: 1742-1747
    59 B. Salim, S. B. Amine. Shock Filter Coupled to Curvature Diffusion for Image Denoising and Sharpening. Image and Vision Computing. 2008, 26(11): 1481-1489
    60于舒春,阎继宏,赵杰,等.立体视觉的四阶段预处理方法.吉林大学学报(工学版). 2007, 37(3): 651-654
    61郑健峰.带钢表面缺陷检测方法研究.西安建筑科技大学硕士论文. 2006: 26-31
    62刘伟嵬,颜云辉,孙宏伟,等.基于邻域评价法的带钢表面缺陷图像脉冲噪声去除.仪器仪表学报. 2008. 29(9): 1846-1850
    63刘伟嵬,颜云辉,李瞻宇,等.带钢表面缺陷在线检测系统的图像滤波算法.东北大学学报(自然科学版). 2009, 30(3): 430-433
    64 Z. Peter, V. Bousson, C. Bergot, et al. A Constrained Region Growing Approach Based on Watershed for the Segmentation of Low Contrast Structures in Bone Micro-CT images. Pattern Recognition. 2008, 41(7): 2358-2368
    65 D. Guillaume, R. Patrick. Split-and-Merge Algorithms Defined on Topological Maps for 3D Image Segmentation. Graphical Models. 2003, 65(1-3): 149-167
    66 Chung Kuoliang, Yang Weijen, Yan Wenming. Efficient Edge-Preserving Algorithm for Color Contrast Enhancement with Application to Color Image Segmentation. Journal of Visual Communication and Image Representation. 2008, 19(5): 299-310
    67 S. Beucher, C. Lantuejoul. Use of Watersheds in Contour Detection. Proceedings of the International Workshop on Image Processing: Real-Time Edge and Motion Detection/Estimation, Rennes, France, 1979, 2: 1-12
    68 L. Vincent, P Soille. Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991, 13(6): 583-598
    69 J. B. Kim, H. J. Kim. Multiresolution-based Watersheds for Efficient Image Segmentation. Pattern Recognition Letters. 2003, 24(1-3): 473-488
    70 C. R. Jung. Multiscale Image Segmentation Using Wavelets and Watersheds. Proceedings of the XVI Brazilian Symposium on Computer Graphics and Image Processing, Brazil, 2003: 278-287
    71 Laligant, F. Truchetet, A. Dupasquier. Edge Enhancement by Local Deconvolution. Pattern Recognition. 2005, 38(5): 661-672
    72 G. Kuntal, B. Kamales, S. Sandip. Retinomorphic Image Processing. Progress in Brain Research. 2007, 168: 175-191
    73严国萍,戴若愚,潘晴,等.基于LOG算子的自适应图像边缘检测方法.华中科技大学学报. 2008, 36(3): 85-87
    74 H. Dusan, Z. Damjan. Combined Edge Detection Using Wavelet Transform and Signal Registration. Image and Vision Computing. 2007, 25(5): 652-662
    75章毓晋.中国图像工程:2007.中国图象图形学报. 2008, 13(5): 827-852
    76 Wu Yong, He Yuanjun, Cai Hongming. Optimal Threshold Selection Algorithm in Edge Detection Based on Wavelet Transform. Image and Vision Computing. 2005, 23(13): 1103-1112
    77 J. Schmeelk. Wavelet Transforms and Edge Detectors on Digital Images. Mathematical and Computer Modelling. 2005, 41(13): 1469-1478
    78 O. V. Villegas, R. P. Elias, P. R. Villela, et al. Edge-Preserving Lossy Image Compression with Wavelets and Contourlets. Proceedings-Electronics, Robotics and Automotive Mechanics Conference, Cuernavaca Mexico, Inst. of Elec. and Elec. Eng. Computer Society. 2006, 1: 3-8
    79 Li Jing, Huang Peikang, Wang Xiaohu, et al. Image Edge Detection Based on Beamlet Transform. Journal of Systems Engineering and Electronics. 2009, 20(1): 1-5
    80 J. Florence, C. Frederic, S. Olivier. Fuzzy Edge Detection for Omnidirectional Images. Fuzzy Sets and System. 2008, 159(15): 1991-2010
    81焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报. 2003, 31(12A): 1975-1981
    82 S. Y. Frank, Zhang Kai. Locating Object Contours in Complex Background Using Improved Snakes. Computer Vision and Image Understanding. 2007, 105(2): 93-98
    83 M. G. Cabezas, A. Bateni, J. M. Montanero, et al. A New Method of Image Processing in the Analysis of Axisymmetric Drop Shapes. Colloids and Surface A: Physicochemical and Engineering Aspects. 2005, 255(1-3): 193-200
    84韩思奇,王蕾.图像分割的阈值法综述.系统工程与电子技术. 2002, 24(6):
    91-94
    85洪继光.灰度-梯度共生矩阵纹理分析方法.自动化学报. 1984, 10(1): 22-25
    86 J. Kittiler, J. Illingworth. Minimum Error Thresholding. Pattern Recognition. 1986, 19(1): 41-47
    87 N. Otsu. A Threshold Selection Method from Gray-level Histograms. IEEE Transactions on System, Man, and Cybernetic. 1979, 9(1): 62-66
    88 Rosenfeld, P. Torre. Histogram Concavity Analysis as an Aid in Threshold Selection. IEEE Transactions on System, Man, and Cybernetics. 1983. 13(2): 231-235
    89 J. C. Yen, F. J. Chang, S. Chang. A New Critertion for Automatic Multilevel Thresholding. IEEE Transactions on Image Processing. 1995, 4(3): 370-378
    90 S. Wu, A. Amin. Automatic Thresholding of Gray-level Using Multistage Approach. Proceedings of IEEE International Conference on Document Analysis and Recognition. 2003: 1238-1242
    91 Zhang Xiaoping, M. D. Desai. Wavelet Based Automatic Thresholding for Image Segmentation. Image Processing, 1997. Proceedings International Conference on. Santa Barbara CA, IEEE Cornp Soc,1997,1: 224-227
    92田捷,韩博闻,王岩,等.模糊C-类均值聚类算法在医学图像分析中的应用.软件学报. 2001, 12(11): 1623-1629
    93 J. Kapur, P. Sahoo, A. Wong. A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram. Computer Vision, Graphics, and Image Processing. 1985, 29(3): 273-285
    94 F. Ferri, E. Vidal. Color Image Segmentation and Labeling Through Multi-edit Condensing. Pattern Recognition Letters. 1992, 13(8): 561-568
    95闫成新,桑农,张天序.基于图论的图像分割研究进展.计算机工程与应用. 2006, 5: 11-14
    96林开颜,吴军辉,徐立鸿.彩色图像分割方法综述.中国图象图形学报. 2005, 10(1): 1-10
    97 H. Choi, R. G. Baraniuk. Multiscale Image Segmentation Using Wavelet-Domain Hidden Markov Models. IEEE Transactions on Image Processing. 2001, 10(9): 1309-1321
    98陈黎,黄心汉,王敏,等.带钢缺陷图像的自动阈值分割研究.计算机工程与应用. 2002, 7: 244-246
    99孟祥迪,陈升来,郭静寰.基于图像边缘信息和Fisher准则的钢板表面缺陷分割研究.光学技术. 2007, 32(5): 382-385
    100赵青松.带钢表面孔洞实时检测系统及相关技术研究.华中科技大学硕士论文. 2005: 18-26
    101 L. S. Dais. Polarograms: A New Tool for Image Texture Analysis. Pattern Recognition. 1981, 13(3): 219-223
    102赵锋,赵荣椿.纹理分割及特征提取方法综述.中国体视学与图像分析. 1998, 3(4): 238-246
    103 M.R. Chandraratne, D. Kulasiri, S. Samarasinghe. Classification of Lamb Carcass Using Machine Vision: Comparison of Statistical and Neural Network analyses. Journal of Food Engineering. 2007, 82(1): 26-34
    104 H. O. Yacov, C. T. Patrick. Common Framework for Steerability, Motion Estimation, and Invariant Feature Detection. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems. Monterey, California, USA. IEEE, New York, 1998, 5: 337-340
    105刘艳,李宏东. DCT域图像处理和特征提取技术.中国图象图形学报. 2003. 8(2): 121-128
    106罗敏,朱晓岷,李小红,等.基于径向小波变换的图像特征提取算法.武汉大学学报(信息科学版). 2008, 33(1): 29-31
    107 Z. Hong. Algebraic Feature Extraction of Image for Recognition. PatternRecognition. 1991, 24(3): 211-219
    108 P. N. Azariadis, N. A. Aspragathos. On Using Planar Developments to Perform Texture Mapping on Arbitrarily Curved Surfaces. Computers&Graphics. 2000,24(4): 539-554
    109王娟,慈林林,姚康泽.特征选择方法综述.计算机工程与科学. 2005, 27(12): 68-71
    110 D. Manoranjan, L. Huan. Feature Selection for Classification. Intelligent Data Analysis. 1997, 1(3): 131-156
    111 J. Bell, T. J. Sejonwski. The Independent Components of Natural Scenes are Edge Filters. Vision Research. 1996, 37: 3327-3338
    112边肇祺,张学工.模式识别.清华大学出版社. 2000: 176-207
    113杨健,杨静宇. Fisher线性鉴别分析理论研究及其应用.自动化学报. 2003, 29(4): 491-493
    114 B. Scholkopf, A. Smoda, K. R. Muller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation. 1998, 10(5): 1299-1319
    115 M. Barker, W. S. Rayens. Partial Least Squares for Discrimination. Journal of Chemometrics. 2003, 17(3): 166-173
    116 K. Parthasarathy, H. L. Jay, S. Victor, et al. Partial Least Squares (PLS) Based Monitoring and Control of Batch Digesters. Journal of Process Control. 2000, 10(2): 229-236
    117孙权森,曾生根,王平安,等.典型相关分析的理论及其在特征融合中的应用.计算机学报. 2005, 28(9): 1524-1533
    118张媛,程万胜,赵杰.不变矩法分类识别带钢表面缺陷.光电工程. 2008, 35(7): 90-94
    119佟强.基于遗传算法的带钢表面缺陷特征选择的研究与实现.北京科技大学硕士论文. 2004, 1-20
    120韩琦,康戈文.基于小波变换的带钢表面缺陷分形特征研究.自动化技术与应用. 2006, 25(3): 4-5
    121王雪梅.基于神经网络的冷轧带钢表面缺陷识别分类技术研究.电子科技大学硕士论文. 2006: 30-34
    122李炜,黄心汉,陈曦,等.一种改进的基于模糊似然函数的特征选择算法.信号处理. 2005, 21(5): 447-450
    123 Duda著,李宏东等译.模式分类(第2版).机械工业出版社. 2003: 16-130
    124李晓黎,刘继敏,史忠值.基于支持向量机与无监督聚类相结合的中文网页分类器.计算机学报. 2001, 24(1): 62-68
    125 M. T. Musavi, W. Ahmed, K. H. Chan, et al. On the Training of Radial Basis Fnction Classifiers. Neural Neworks. 1992, 5(4): 595-603
    126 J. Weston, C. Watkins. Support Vector Machines for Multi-class Pattern Recognition. Proceedings of the Seventh ESANN. D. Facto Press. Brusseis Belgium. 1999: 219-224
    127邓乃扬,田英杰.数据挖掘中的新方法:支持向量机.科学出版社. 2004: 214-219
    128李静蕊,王刚,周运金,等.基于ART2神经网络的机械零件模式识别.哈尔滨工业大学学报. 2009, 41(3): 117-120
    129柴治,陶青川,余艳梅,等.一种快速实用的车牌字符识别方法.四川大学学报(自然科学版). 2002, 39(3): 465-468
    130胡广寰.基于内容图像检索中图像语义分类技术研究.浙江大学博士论文. 2005: 29-46
    131甘胜丰,孙林,曹阳,等.多级图像分类系统在硅钢冷轧表面缺陷检测中的应用.冶金自动化. 2009, 33(2): 63-65
    132刘红冰,康戈文.基于神经网络的冷轧带钢表面缺陷检测.中国图象图形学报. 2005, 10(10): 1310-1313
    133魏天宇.板带材表面缺陷组合特征的降维聚类识别算法研究.东北大学硕士论文. 2006: 52-66
    134王成明,颜云辉,陈世礼,等.基于改进支持向量机冷轧带钢表面缺陷分类识别.东北大学学报(自然科学版): 2007, 28(3): 410-413
    135 T. Todman, G. Constatinides, S. Wilton, et al. Reconfigurable Computing: Architectures and Design Methods. Computers and Digital Techniques. 2005, 152(2): 193-207
    136 K. Compton, S. Hauck. Reconfigurable Computing: a Survey of Systems and Software. ACM Computing Surveys. 2002, 34(2): 171-210
    137李仁发,周祖德,陈幼平,等.可重构计算的硬件结构.计算机研究与发展. 2003, 40(3): 500-506
    138孟李林. FPGA和ASIC设计特点及应用探讨.半导体技术, 2006, 31(7): 526-529
    139 B. Hutchings, M. J. Wirthlin. Implementation Approaches for Reconfigurable Logic Applications. International Workshop on Field-Programmable Logic and Applications. Oxford, England. Springer, Berlin. 1995: 419-428
    140 F. X. Standaert, G. Piret, G. Rouvroy, et al. FPGA Implementations of the ICEBERG Block Cipher. Integration, the VLSI Journal. 2007, 40(1): 20-27
    141 E.Bourennane, C. Milan, M. Paindavoine, et al. Real Time Image Rotation Using Dynamic Reconfiguration. Real-Time Imaging. 2002, 8(4): 277-289
    142李开宇,张焕春,经亚枝.基于FPGA动态可重构的高速、高质量的图像放大.中国图象图形学报. 2005, 10(1): 69-74
    143 M. J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans. Computers. 1972, 21(9): 948-960
    144兰旭光,郑南宁,梅魁志,等. Jpeg2000并行阵列式小波滤波器的VLSI结构设计.电子学报. 2004, 32(11): 1806-1809
    145陆重阳,卢东华. FPGA技术及其发展趋势.微电子技术. 2003, 31(1): 5-7
    146曾繁泰,李冰,李晓林. EDA工程概论.清华大学出版社. 2002: 61-68
    147覃祥菊,朱明程,张太镒,等. FPGA动态可重构技术原理及实现方法分析.电子器件. 2004, 27(2): 277-282
    148 E. Martyn, G. Peter. Run-time Support for Dynamically Reconfigurable Computing Systems. Journal of Systems Architecture. 2003, 49(4-6): 267-281
    149佟首峰,阮锦,郝志航. CCD图像传感器降噪技术的研究.光学精密工程. 2000, 8(2): 140-145
    150曾晓洋,郝志航. CCD应用中数据取样技术的研究.半导体光电. 1999, 20(4):
    273-276
    151王大凯,侯榆青,彭进业.图像处理的偏微分分方程方法.科学技术出版社. 2008: 49-80
    152张覃,陈刚.基于偏微分方程的图像处理.高等教育出版社. 2004: 87-117
    153 P. Perona, J. Malik. Scale Space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990, 12(7): 629-639
    154 L. I. Rudin, S. Osher, E. Fatemi. Nonlinear Total Variation Based Noise Removal Algorithms. Physica D. 1992, 60: 259-268
    155 L. Alvarez, F. Guichard, P. L. Lions, et al. Axioms and Fundamental Equations of Image Processing. Archive for Rational Mechanics and Analysis. 1993, 16(9): 200-257
    156钱惠敏,茅耀武,王执铨.基于各向异性扩散的几种平滑算法比较及改进.南京理工大学学报. 2007, 31(5): 605-611
    157 L. Alvarez, P. L. Lions, J. M. Morel. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion.II. SIAM Journal on Numerical Analsis, 1992, 29(3): 845-866
    158章毓晋.图像分析.清华大学出版社. 2005: 125-128
    159刘锁兰,杨静宇.过渡区提取方法综述.中国工程科学. 2007, 9(9): 89-96
    160德国钢铁协会,中国金属学会编译.热轧、冷轧、热镀、电镀金属板带的表面缺陷图谱. 2000: 39-84
    161 J. Shawe-Taylor, N. Cristianini著,赵玲玲等译.模式分析的核方法.机械工业出版社. 2006: 15-51
    162 B. Scoholkopf, J. C. Platt, J. Shawe-Taylor, et al. Estimating the Support of a High-Dimensional Distribution. Neural Computation. 2001, 13(7): 1443-1471
    163 D. M. J. Tax, R. P. W. Duin. Support Vector Data Description. Machine Learning. 2004, 54(1): 45-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700