新型噬菌体压电传感器快速检测结核分枝杆菌的机理及其药敏应用效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病是目前单因素引起发病率和死亡率最高的疾病。全球有三分之一的人群感染结核分枝杆菌,每年新增800万结核病人,有200万人死于结核病。世界卫生组织于1993年宣布:全球处于结核病紧急状态。引起结核病再次大流行的原因之一是不合理用药导致的耐药菌株的出现。为有效执行DOTS(Directly ObservedTreatment, Short-Course)策略,快速检测结核分枝杆菌和正确选择抗生素治疗成为防治结核病的关键。
     利用串联式压电石英传感器对环境电参数响应灵敏的特点,将其应用于微生物生长状态监测中,及早得到微生物的生长信息。用串联式压电传感器,分析培养基不同成分对微生物生长压电信号的影响;用单因素分析方法,分析不同成分对耻垢分枝杆菌和结核分枝杆菌生长曲线的影响。将M7H9培养基中成分的作用分为缓冲作用、合成代谢作用、生长促进因子作用,构建分枝杆菌压电检测体系。对压电频移曲线进行分类,将压电频移信号产生的物质基础分为分解代谢所分泌电导成分和合成代谢所吸收电导成分两种类型,分别产生向下的频移曲线和向上的频移曲线,提升对串联式压电微生物传感器频移信号的理论认识。
     用噬菌体成斑率为指标,研究噬菌体在环境中稳定的条件,保证噬菌体的感染效率;研究噬菌体最佳的灭活方法,减少实验过程出现假阳性。分析钙镁浓度对噬菌体吸附、顿挫感染的影响,得出最佳的钙离子浓度、杀毒剂硫酸亚铁胺浓度。用一步生长曲线研究噬菌体D29与耻垢分枝杆菌作用的特性,分析影响噬菌体生物放大作用的外部环境因素,优化出最适合结核分枝杆菌快速检测的培养基配方。综合考虑噬菌体的稳定条件、灭活条件、一步生长曲线的最优条件和耻垢分枝杆菌在M7H9培养基中压电信号的影响因素,选择适合构建噬菌体生物放大的压电传感器检测培养体系。
     结核分枝杆菌和耻垢分枝杆菌能被噬菌体D29感染,保护菌体内的噬菌体D29不被硫酸亚铁杀灭。样品中的结核分枝杆菌被作为载体,将加在样品处理液中的噬菌体D29转移到检测池。在检测池中,噬菌体D29裂解结核分枝杆菌释放子代噬菌体,子代噬菌体感染耻垢分枝杆菌,经历快速的感染、复制、裂解的循环过程。这个循环过程构成噬菌体链式生物放大反应,最终得到完全抑制耻垢分枝杆菌生长的结果。样品中结核分枝杆菌的浓度不同,转移到检测池中的噬菌体D29的也浓度不同,完全抑制耻垢分枝杆菌生长所需的循环次数不同,最终导致检测池中耻垢分枝杆菌生长程度不同。当样品中没有结核分枝杆菌充当噬菌体的载体时,则无噬菌体被转移到检测池中,耻垢分枝杆菌的生长不受噬菌体抑制。耻垢分枝杆菌在生长过程中,利用培养基中的电导成分,引起压电传感器产生频移响应信号。不同浓度的结核分枝杆菌引起不同强度的压电频移响应信号。
     在液体培养基中,充分发挥噬菌体的链式放大作用,提高检测方法灵敏度。应用压电传感器对电参数的灵敏响应,提高检测方法的灵敏度。通过噬菌体D29桥梁作用,将慢速生长的结核分枝杆菌检测,转换成快速生长的耻垢分枝杆菌的检测,大大提高检测速度。噬菌体对结核分枝杆菌的裂解作用,可降低实验风险,安全可靠。耻垢分枝杆菌检测所需要培养基和仪器要求低,成本低廉。用数学模型分析检出时间与溶液中噬菌体浓度的关系,得出检测时间与溶液中1-102pfu/mL噬菌体D29浓度成线性的结果。用双盲对照的原则研究样本处理对检测方法的影响,得出正确的样本处理方法,保证结果的准确度,避免假阳性和假阴性。该方法可以检测102cfu/mL的结核分枝杆菌,检测时间缩短到30小时,具有临床诊断实用价值。噬菌体放大多通道压电传感器法(PA-MSPQC)与Bactec MGIT960法的统计学比较结果,得出两者检测临床样本的灵敏度和特异度一致。但PA-MSPQC法检测时间只需30小时,优于培养法。PA-MSPQC法还可以通过提高噬菌体感染效率,进一步提高方法的灵敏度。
     防止耐药结核分枝杆菌的出现是控制结核病的关键措施,实现结核分枝杆菌菌株耐药的快速检测,对合理用药和防止耐药菌株的出现有非常重要的意义。我们根据噬菌体只能感染活的结核分枝杆菌的特点,将PA-MSPQC法应用于结核分枝杆菌耐药检测。建立PA-MSPQC法耐药结果的频移标准,根据实验条件和比例法耐药的判别标准,对利福平、异烟肼和乙胺丁醇三种药物,当耻垢分枝杆菌生长引起的频移小于121Hz时,认为菌株对药物耐受;对链霉素药物,当耻垢分枝杆菌引起的压电频移小于92Hz时,判定菌株对链霉素耐药。将双盲实验中,PA-MSPQC法所得的结果与MGIT960法所得结果进行统计学分析,得出PA-MSPQC法与MGIT960法没有统计学差异,能准确检测临床结核分枝杆菌菌株对利福平、异烟肼、乙胺丁醇和链霉素等一线抗结核药物的耐受情况。由于PA-MSPQC法能快速报告实验结果,可以替代传统的培养法用于临床结核分枝杆菌菌株的耐药实验。但是PA-MSPQC同样存在噬菌体感染效率的问题,有可能将未感染噬菌体的结核分枝杆菌当成耐药菌株,影响方法的准确度。因此,优化培养基成分是提高检测方法灵敏度,提高耐药实验准确度的关键。
     为建立微生物快速传感检测新方法,我们使用石墨烯新材料和核酸序列代替适配体进行初步实验。用化学气相沉积法在铜箔表面制备大面积石墨烯,用拉曼光谱分析在不同气体条件下形成石墨烯的质量,研究氢气流量、温度、基底材料对石墨烯质量的影响,直接制备出可用于电极分析的大面积单层石墨烯。用电化学阻抗谱和循环伏安法研究核酸序列在石墨烯电表面吸附和解离的条件,得出钠的浓度在100mmol/L、镁的浓度在5mmol/L,核酸序列通过π-π堆集作用而吸附,电极表面电子传递阻力增大;在钙、镁离子的存在条件下,吸附的核酸序列与互补序列作用解离,电极表面电子传递阻力减小;电极表面的电子传递阻力的拟合分析得出,电子传递阻力的改变与cDNA浓度成线性关系。适配体是与核酸序列同性质的DNA序列,石墨烯电极和适配体为目标分析物(如病原微生物)的快速传感检测提供可能。
Tuberculosis is the disease of the most morbidity and mortality caused by a singlefactor at present. One-third of worldwide people infected with Mycobacteriumtuberculosis, and there are an increasing of8million patient and2million patientdied from TB every year. World Health Organization declared that: the global state ofTB is in emergency. Some of reasons for TB pandemic again were irrational drugadministration and appearance of multi-resistance strains. In order to effectivelyimplement DORT(Directly Observed Treatment, Short-Course) strategy, it becomecritical for rapid detecting M.tb and correctly selecting antibiotic.
     The sensitive response characteristics of piezoelectric quartz crystal sensor toenvironmental electrical parameter were exploited, and be applied to monitor thestates of microbial growth to get the information of microorganism growth timely.The piezoelectric sensor was constructed for the detection of M.smegmatis. The effectof the culture ingredient on the microbial growth information was acquired by seriesmulti-channel piezoelectric quartz crystal sensor. The role of the components inM7H9on the growth curve of M.tuberculosis and M.smegmatis were analyzed byunivariate analysis. The function of the ingredients of M7H9was divided into buffer,anabolic composition and growth promoting factors. The piezoelectric frequency shiftcurves are classified as anabolic curve and catabolic curve. The reasons for anaboliccurve of piezoelectric signal were the adsorption of conductance ingredients in theprocessing of anabolism of M. smegatis in M7H9medium, which causes a frequencyshift upward curve. The reasons for catabolic curve were the secretions ofconductance ingredients in the catabolism of M.smegmatis, which causes a frequencyshift downward curve. The analysis of mechanism of piezoelectric signal will help toprepare the identified medium, and enhance the understanding of piezoelectric signalin theory.
     The conditions of phage stable in the medium were studied based on theefficiency of plating in the plate to enhance the infecting efficiency of phage D29toM.tuberculosis. To reduce the false results, the best method for the inactivating phageD29was studied. The suitable concentration of calcium and magnesium ions on theeffect of adsorption and abortive infection of phage D29to M.semgmatis were studiedto keep the phage D29active. Then, the biological characteristics of the phage D29 interaction with M.smegmatis were evaluated based on the one step growth curve ofthe phage D29in the M.smegmatis, and the effect of environmental factors on the onestep growth curve were analyzed to select the best medium for the detection of M.tuberculosis. In summary, the conditions of phage D29stable and inactivating inmedium, the factors of phage D29multiplication in M.smegmatis were considered toconstruct the phage-piezoelectric sensor.
     Accoding to the results of previous chapters, novel detection method for M.tuberculosis was constructed based on the phage amplified multichannel seriespiezoelectric crystal sensor. The phage inside M. tuberculosis was protected from theinactivating Ferrous Ammonium Sulfate, and was tranfered to the detection mediumby the carrier M. tuberculosis. Then, the progeny phage D29was released by thecreaking host cell M. tuberculosis in detection medium. The progeny phage D29undergos a rapid cycle process of infection, replication and lysis in M. smegmstis. Thecycles of phage D29constitute the biological chain amplification reaction, and causethe results of growth completely inhibition of M.smegmatis. The number of phageD29cycles completely inhibit the growth of the host cell is linear to the negativelogarithm of M. tuberculosis in the samples. So, the growth state of M.smegmatis isrelated to concentration of M. tuberculosis in the sample. The conductance ingredientsin M7H9medium are utilized by the growth of M.smegmatis, which cause theconductivity change in the medium. The curve of frequency shift against time isobtained by the response of phage-piezoelectric sensor to conductance of the medium.Therefore, the different curves of phage-piezoelectric signal are caused by thedifferent concentrations of M.tuberculosis in sample.
     The phage-piezoelectric method possesses the advantage of the rapid, sensitivity,security and economy. The biological chain amplification reaction of phage D29in aliquid medium are given a full play to improve the sensitivity of phage method, andthe sensitive response of a piezoelectric sensor to conductivity also enhances thesensitivity of the phage-piezoelectric method. The turnaround time is greatlyimproved by the transformation of detection of M.tuberculosis into that ofM.smegmatis, by phag D29was acting as a bridge. The risk of infection inexprement can be reduced by the phage lysising the M.tuberuclosis. The requirementsof the medium for the M.smegmatis culture is relatively low and the instrument for thedetection is cost-effective.
     The detection limit of the proposed method is102cfu/mL of M.tuberculosis, andthe turnaround time is30h with practical value in clinical diagnosis. The mathmatical model was established to analyze the relationship among the turnaround time,M.tuberculosis and M.smegmatis, and obtained that there is a linear relationshipbetween the turnaround time and concentration of M.smegmatis at range of1-102pfu/mL. The effects of sample processing methods on the results are studied bydouble blind principle, so we can get the accurate results to avoid the false negativeand false positive. The comparasion with the statistic method indicates that there is nosignificant difference between the results of PA-MSPQC and MGIT. The sensitivityand specificity of the two methods are consistant with each other. However, theturnaround time of PA-MSPQC method is less than30h which is superior to110h ofMGIT.
     The detection of multi-resistant strains and rational administration are verycritical for the prevention of T.B epidemic. Considering the advantages ofphage-piezoelectic method and the characteristics of phage D29, it is ideal for thedrug susceptibility testing. Due to it only infects viable, not infects dead bacterium,novel method for rapid drug susceptibility testing of M. tuberculosis is constituted bycombining the phage-piezoelectric method with the drug treatment technology. Itsbasic idea is that the clinical isolates treated with drugs at a critical concentrationprescribled by CLSI, and the resistant strains can survive from the killing of drug andkeep alive, and the sensitive strains be inactivated. The resistant strains can be rapidlydetected by the previous mentioned method. The principle of the phage-piezoelectricmethod for the detection of resistant strains of M. tuberculosis is divided into5steps:First, the suspension of M. tuberculosis(105cfu/mL) were exposed to the environmentin the presence of the anti-mycobacterial agents for48h (a,a’). The resistant strainscan survive from the antibiotic killing and keep alive. Second, the viableM.tuberculosis can be infected by thephage D29, thus causing that phage D29isprotected from inactivation by FAS (b). Third, sample solution is transferred todetection medium after10-fold dilution to eliminate the role of FAS (c), and phageD29protected within viable resistant M.tuberculosis replicates and ultimately lysistheir host cells. Forth, the released phage infected the rapidly growing M.smegmatishost in which they undergo a rapid cycle process of infection, replication and lysis (d);Finally, the phage-piezoelectric signal of resistant strains was obtained because alarge number of phage D29was proliferated, and M.smegmatis growth was inhibited(e). On the contrary, the sensitive strains of M.tuberculosis are killed by antibiotic.Neither phage survived (b’), nor phage is transferred to the detection medium (c’). Nophage is amplified (d’), and therefore no phage-piezoelectric signal of sensitive isolates is detected (e’). The detection of resistant M.tuberculosis was transferred intothe detection of M.smegmatis by the resistant M. tuberculosis as carrier of phage D29.The turnaround time of drug susceptibility testing was sharply shortened by thePA-MSPQC method.
     To establish the rapid sensening detection method for microorganism, novelmethod was constructed based on the new type graphene and aptamers. The large-areaof high quality and uniform graphene films are synthsised on the copper foil by thechemistry vapor deposition. Then, the conditions of different gases on the quality ofgraphene were investigated by Raman spectroscopy, such as the effect of gas flow rate,temperature and substrate material on the quality. The large area single graphene wasprepared. The conditions of adsorption and dissociation of a nucleic acid sequence onthe surface of graphene are deterimined that: the nucleic acid sequences adsorbed onthe graphene surface by the π-π stacking in the presence of100mmol/L calcium ion,5mmol/L magnesium, which results in the increasing of electron transfer resistance onthe graphene surface; the nucleic acid sequence are dissociated from the graphenesurface causing by the complementary senquence which results in the reducing ofelectron transfer resistance on the graphene surface. The results of fitting analysis ofelectron transfer resistance on the surface are obtained that the changes of electrontransfer resistnace is linear to the concentration of complementary DNA. The natureof aptamer is similar to DNA senquence. So, the changes of aptamer of adsorption anddissociation on the graphene electrode offer the possibility for the rapid sensingdetection of microorganism.
引文
[1] Nakajima H. Tuberculosis: a global emergency. World Health1993:3-4
    [2] Stop T. An expanded DOTS framework for effective tuberculosis control.International Journal of Tuberculosis And Lung Disease,2002,6(5):378-388
    [3] Raviglione M C. The TB epidemic from1992to2002. Tuberculosis (Edinburgh,Scotland),2003,83(1-3):4-14
    [4] Farnia P, Mohammadi F, Zarifi Z, et al. Improving sensitivity of directmicroscopy for detection of acid-fast bacilli in sputum: use of chitin in mucusdigestion. Journal of Clinical Microbiology,2002,40(2):508-511
    [5] Pandey A, Madan M, Asthana A K, et al. Cold acid fast staining method:Efficacy in diagnosis of Mycobacterium tuberculosis. African Journal ofMicrobiology Research,2009,3(9):546-549
    [6] Selvakumar N, Gomathi M, Rehman F, et al. Evaluation of a two-reagent coldstaining method for detection of acid-fast bacilli. International Journal ofTuberculosis and Lung Disease,2002,6(8):728-731
    [7] Cuevas L E, Al-Sonboli N, Lawson L, et al. LED fluorescence microscopy forthe diagnosis of pulmonary tuberculosis: a multi-country cross-sectionalevaluation. PLoS medicine,2011,8(7): e1001057
    [8] McCarter Y S, Robinson A. Detection of acid-fast bacilli in concentratedprimary specimen smears stained with rhodamine-auramine at roomtemperature and at37degrees C. Journal of Clinical Microbiology,1994,32(10):2487-2489
    [9] Hasegawa N, Miura T, Ishizaka A, et al. Detection of Mycobacteria in patientswith pulmonary tuberculosis undergoing chemotherapy using MGIT andegg-based solid medium culture systems. International Journal of Tuberculosisand Lung Disease,2002,6(5):447-453
    [10] Middlebrook G, Cohn M L. Bacteriology of tuberculosis: laboratory methods.American Journal of Public Health and the Nations Health,1958,48(7):844-853
    [11] Kana B D, Mizrahi V. Resuscitation promoting factors in bacterial populationdynamics during TB infection. Drug Discovery Today: Disease Mechanisms,2010,7(1): e13-e18
    [12] Hett E C, Chao M C, Steyn A J, et al. A partner for the resuscitation-promotingfactors of Mycobacterium tuberculosis. Molecular Microbiology,2007,66(3):658-668
    [13] Tufariello J M, Jacobs W R, Chan J. Individual Mycobacterium tuberculosisresuscitation-promoting factor homologues are dispensable for growth in vitroand in vivo. Infection and Immunity,2004,72(1):515-526
    [14] Kidenya B R, Kabangila R, Peck R N, et al. Early and efficient detection ofMycobacterium tuberculosis in sputum by microscopic observation of brothcultures. PLoS One,2013,8(2): e57527
    [15] Somosk vi á, K dm n C, Lantos á, et al. Comparison of recoveries ofMycobacterium tuberculosis using the automated BACTEC MGIT960system,the BACTEC460TB system, and L wenstein-Jensen medium. Journal ofClinical Microbiology,2000,38(6):2395-2397
    [16] Whyte T, Cormican M, Hanahoe B, et al. Comparison of BACTEC MGIT960and BACTEC460for culture of Mycobacteria. Diagnostic Microbiology andInfectious Disease,2000,38(2):123-126
    [17] Gumber S, Whittington R J. Comparison of BACTEC460and MGIT960systems for the culture of Mycobacterium avium subsp paratuberculosis Sstrain and observations on the effect of inclusion of ampicillin in culture mediato reduce contamination. Veterinary Microbiology,2007,119(1):42-52
    [18] Hines N, Payeur J B, Hoffman L J. Comparison of the recovery ofMycobacterium bovis isolates using the BACTEC MGIT960system, BACTEC460system, and Middlebrook7H10and7H11solid media. Journal ofVeterinary Diagnostic Investigation,2006,18(3):243-250
    [19] Garcia F G, Angulo G P, Garcia F G, et al. Evaluation of the MB/BacTautomated Mycobacteria culture system versus culture on Lowenstein medium.Clinical Microbiology and Infection,1998,4(6):339-343
    [20] Garrigo M, Aragon L M, Alcaide F, et al. Multicenter laboratory evaluation ofthe MB/BacT Mycobacterium detection system and the BACTEC MGIT960system in comparison with the BACTEC460TB system for susceptibilitytesting of Mycobactetium tuberculosis. Journal of Clinical Microbiology,2007,45(6):1766-1770
    [21] Piersimoni C, Scarparo C, Callegaro A, et al. Comparison of MB/BacT ALERT3D system with radiometric BACTEC system and Lowenstein-Jensen mediumfor recovery and identification of Mycobacteria from clinical specimens: amulticenter study. Journal of Clinical Microbiology,2001,39(2):651-657
    [22] Tortoli E, Mattei R, Savarino A, et al. Comparison of Mycobacteriumtuberculosis susceptibility testing performed with BACTEC460TB (BectonDickinson) and MB/BacT (Organon Teknika) systems. DiagnosticMicrobiology and Infectious Disease,2000,38(2):83-86
    [23] Yan J J, Huang A H, Tsai S H, et al. Comparison of the MB/BacT and BACTECMGIT960system for recovery of Mycobacteria from clinical specimens.Diagnostic Microbiology and Infectious Disease,2000,37(1):25-30
    [24] Mukamolova G V, Turapov O A, Young D I, et al. A family of autocrine growthfactors in Mycobacterium tuberculosis. Molecular Microbiology,2002,46(3):623-635
    [25] Minion J, Leung E, Menzies D, et al. Microscopic-observation drugsusceptibility and thin layer agar assays for the detection of drug resistanttuberculosis: a systematic review and meta-analysis. Lancet InfectiousDiseases,2010,10(10):688-698
    [26] Piersimoni C, Olivieri A, Benacchio L, et al. Current perspectives on drugsusceptibility testing of Mycobacterium tuberculosis complex: the automatednonradiometric systems. Journal of Clinical Microbiology,2006,44(1):20-28
    [27] Cole S, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacteriumtuberculosis from the complete genome sequence. Nature,1998,393(6685):537-544
    [28] Hiriyanna K, Ramakrishnan T. Deoxyribonucleic acid replication time inMycobacterium tuberculosis H37Rv. Archives of Microbiology,1986,144(2):105-109
    [29] Dick T, Lee B H, Murugasu‐Oei B. Oxygen depletion induced dormancy inMycobacterium smegmatis. Fems Microbiology Letters,1998,163(2):159-164
    [30] Gill W P, Harik N S, Whiddon M R, et al. A replication clock forMycobacterium tuberculosis. Nature Medicine,2009,15(2):211-214
    [31] Khoo K H, Suzuki R, Dell A, et al. Chemistry of the lyxose-containingmycobacteriophage receptors of Mycobacterium phlei/Mycobacteriumsmegmatis. Biochemistry,1996,35(36):11812-11819
    [32] McNerney R, Wilson S, Sidhu A, et al. Inactivation of mycobacteriophage D29using ferrous ammonium sulphate as a tool for the detection of viableMycobacterium smegmatis and M. tuberculosis. Research in Microbiology,1998,149(7):487-495
    [33] Wilson S M, Al-Suwaidi Z, McNerney R, et al. Evaluation of a new rapidbacteriophage-based method for the drug susceptibility testing ofMycobacterium tuberculosis. Nature Medicine,1997,3(4):465-468
    [34] David H L, Clavel S, Clement F. Adsorption and growth of the bacteriophageD29in selected Mycobacteria, Annales de l'Institut Pasteur/Virologie,1980;131(2):167-184.
    [35] Bardarov S, Dou H, Eisenach K, et al. Detection and drug-susceptibility testingof M. tuberculosis from sputum samples using luciferase reporter phage:comparison with the Mycobacteria Growth Indicator Tube (MGIT) system.Diagnostic Microbiology and Infectious Disease,2003,45(1):53-61
    [36] Albay A, Kisa O, Baylan O, et al. The evaluation of FASTPlaque TB(TM) testfor the rapid diagnosis of tuberculosis. Diagnostic Microbiology and InfectiousDisease,2003,46(3):211-215
    [37] Marei A M, El-Behedy E M, Mohtady H A, et al. Evaluation of a rapidbacteriophage-based method for the detection of Mycobacterium tuberculosisin clinical samples. Journal of Medical Microbiology,2003,52(4):331-335
    [38] McNerney R, Kambashi B S, Kinkese J, et al. Development of a bacteriophagephage replication assay for diagnosis of pulmonary tuberculosis. Journal ofClinical Microbiology,2004,42(5):2115-2120
    [39] Orme I M, Andersen P, Boom W H. T cell response to Mycobacteriumtuberculosis. Journal of Infectious Diseases,1993,167(6):1481-1497
    [40] Xu J, Xu W H, Chen X, et al. Recombinant DNA vaccine of the early secretedantigen ESAT-6by Mycobacterium tuberculosis and Flt3ligand enhanced thecell-mediated immunity in mice. Vaccine,2008,26(35):4519-4525
    [41] Bentley-Hibbert S I, Quan X, Newman T, et al. Pathophysiology of antigen85in patients with active tuberculosis: antigen85circulates as complexes withfibronectin and immunoglobulin G. Infection and Immunity,1999,67(2):581-588
    [42] Wiker H G, Harboe M, Nagai S, et al. Quantitative and qualitative studies onthe major extracellular antigen of Mycobacterium tuberculosis H37Rv andMycobacterium bovis BCG. American Journal of Respiratory and Critical CareMedicine,1990,141(4):830-838
    [43] Devi K R U, Ramalingam B, Brennan P J, et al. Specific and early detection ofIgG, IgA and IgM antibodies to Mycobacterium tuberculosis38kDa antigen inpulmonary tuberculosis. Tuberculosis,2001,81(3):249-253
    [44] Selwyn P A, Hartel D, Lewis V A, et al. A prospective study of the risk oftuberculosis among intravenous drug users with human immunodeficiencyvirus infection. The New England journal of medicine,1989,320(9):545-550
    [45] Aagaard C, Govaerts M, Meikle V, et al. Optimizing antigen cocktails fordetection of Mycobacterium bovis in herds with different prevalences of bovinetuberculosis: ESAT6-CFP10mixture shows optimal sensitivity and specificity.Journal of Clinical Microbiology,2006,44(12):4326-4335
    [46] El-Seedy F R, Radwan I A, Hassan W H, et al. The correlation between M.bovis isolation and ELISA using PPD-B and ESAT6-CFP10mixture on the seraof tuberculin reactor cattle and buffaloes. Journal of Food Agriculture andEnvironment,2013,11(1):489-494
    [47] Lyashchenko K, Colangeli R, Houde M, et al. Heterogeneous antibodyresponses in tuberculosis. Infection and Immunity,1998,66(8):3936-3940
    [48] Kashyap R S, Dobos K M, Belisle J T, et al. Demonstration of components ofantigen85complex in cerebrospinal fluid of tuberculous meningitis patients.Clinical and Diagnostic Laboratory Immunology,2005,12(6):752-758
    [49] Houghton R L, Lodes M J, Dillon D C, et al. Use of multiepitope polyproteinsin serodiagnosis of active tuberculosis. Clinical and Diagnostic LaboratoryImmunology,2002,9(4):883-891
    [50] Raja A, Narayanan P, Jawahar M, et al. Evaluation of Mycobacteriumtuberculosis antigen6by enzyme linked immunosorbent assay (ELISA). IndianJournal of Tuberculosis,1994,41:245-251
    [51] Chan E D, Reves R, Belisle J T, et al. Diagnosis of tuberculosis by a visuallydetectable immunoassay for lipoarabinomannan. American Journal ofRespiratory and Critical Care Medicine,2000,161(5):1713-1719
    [52] Boddingius J, Dijkman H P. Immunogold labeling method for Mycobacteriumleprae-specific phenolic glycolipid in glutaraldehyde-osmium-fixed andAraldite-embedded leprosy lesions. Journal of Histochemistry andCytochemistry,1989,37(4):455-462
    [53] Antunes A l, Nina J, David S. Serological screening for tuberculosis in thecommunity: an evaluation of the Mycodot procedure in an African populationwith high HIV-2prevalence (Republic of Guinea-Bissau). Research inMicrobiology,2002,153(5):301-305
    [54] Saiki R K, Gelfand D H, Stoffel S, et al. Primer-directed enzymaticamplification of DNA with a thermostable DNA polymerase. Science,1988,239(4839):487-491
    [55] D'Amato R F, Wallman A A, Hochstein L H, et al. Rapid diagnosis ofpulmonary tuberculosis by using Roche AMPLICOR Mycobacteriumtuberculosis PCR test. Journal of Clinical Microbiology,1995,33(7):1832-1834
    [56] Warren R M, Gey van Pittius N C, Barnard M, et al. Differentiation ofMycobacterium tuberculosis complex by PCR amplification of genomic regionsof difference. International Journal of Tuberculosis and Lung Disease,2006,10(7):818-822
    [57] Mikhailovich V, Lapa S, Gryadunov D, et al. Identification ofrifampin-resistant Mycobacterium tuberculosis strains by hybridization, PCR,and ligase detection reaction on oligonucleotide microchips. Journal of ClinicalMicrobiology,2001,39(7):2531-2540
    [58] Suffys P, Palomino J C, Leao S C, et al. Evaluation of the polymerase chainreaction for the detection of Mycobacterium tuberculosis. International Journalof Tuberculosis and Lung Disease,2000,4(2):179-183
    [59] Lima J F D, Montenegro L M L, Montenegro R D, et al. Performance of nestedPCR in the specific detection of Mycobacterium tuberculosis complex in bloodsamples of pediatric patients. Jornal Brasileiro de Pneumologia,2009,35(7):690-697
    [60] Soo P C, Horng Y T, Hsueh P R, et al. Direct and simultaneous identification ofMycobacterium tuberculosis complex (MTBC) and Mycobacteriumtuberculosis (MTB) by rapid multiplex nested PCR-ICT assay. Journal ofmicrobiological methods,2006,66(3):440-448
    [61] Pai S R, Actor J K, Sepulveda E, et al. Identification of viable and non-viableMycobacterium tuberculosis in mouse organs by directed RT-PCR for antigen85B mRNA. Microbial Pathogenesis,2000,28(6):335-342
    [62] Hellyer T, DesJardin L, Teixeira L, et al. Detection of viable Mycobacteriumtuberculosis by reverse transcriptase-strand displacement amplification ofmRNA. Journal of Clinical Microbiology,1999,37(3):518-523
    [63] Jou N T, Yoshimori R B, Mason G R, et al. Single-tube, nested, reversetranscriptase PCR for detection of viable Mycobacterium tuberculosis. Journalof Clinical Microbiology,1997,35(5):1161-1165
    [64] Martin C, Butler L, Bronstein I. Quantitation of PCR products withchemiluminescence. Biotechniques,1995,18(5):908-913
    [65] Shrestha N K, Tuohy M J, Hall G S, et al. Detection and differentiation ofMycobacterium tuberculosis and nontuberculous mycobacterial isolates byreal-time PCR. Journal of Clinical Microbiology,2003,41(11):5121-5126
    [66] Doherty T M, Demissie A, Menzies D, et al. Effect of sample handling onanalysis of cytokine responses to Mycobacterium tuberculosis in clinicalsamples using ELISA, ELISPOT and quantitative PCR. Journal ofImmunological Methods,2005,298(1-2):129-141
    [67] Yam W C, Cheng V C C, Hui W T, et al. Direct detection of Mycobacteriumtuberculosis in clinical specimens using single-tube biotinylated nestedpolymerase chain reaction-enzyme linked immunoassay (PCR-ELISA).Diagnostic Microbiology and Infectious Disease,2004,48(4):271-275
    [68] El-Hajj H H, Marras S A E, Tyagi S, et al. Detection of rifampin resistance inMycobacterium tuberculosis in a single tube with molecular beacons. Journalof Clinical Microbiology,2001,39(11):4131-4137
    [69] Piatek A S, Telenti A, Murray M R, et al. Genotypic analysis of Mycobacteriumtuberculosis in two distinct populations using molecular beacons: Implicationsfor rapid susceptibility testing. Antimicrobial Agents and Chemotherapy,2000,44(1):103-110
    [70] Mathuria J P, Sharma P, Prakash P, et al. Role of spoligotyping andIS6110-RFLP in assessing genetic diversity of Mycobacterium tuberculosis inIndia. Infection Genetics and Evolution,2008,8(3):346-351
    [71] Neimark H, Baig M A, Carleton S. Direct identification and typing ofMycobacterium tuberculosis by PCR. Journal of Clinical Microbiology,1996,34(10):2454-2459
    [72] Montoro E, Valdivia J, Le o S C. Molecular Fingerprinting of MycobacteriumtuberculosisIsolates Obtained in Havana, Cuba, by IS6110RestrictionFragment Length Polymorphism Analysis and by theDouble-Repetitive-Element PCR Method. Journal of Clinical Microbiology,1998,36(10):3099-3102
    [73] Goulding J N, Stanley J, Saunders N, et al. Genome-sequence-basedfluorescent amplified-fragment length polymorphism analysis ofMycobacterium tuberculosis. Journal of Clinical Microbiology,2000,38(3):1121-1126
    [74] Merritt A J, Keehner T, O'Reilly L C, et al. Multiplex amplified nominaltandem-repeat analysis (MANTRA), a rapid method for genotypingMycobacterium tuberculosis by use of multiplex PCR and a microfluidiclaboratory chip. Journal of Clinical Microbiology,2010,48(10):3758-3761
    [75] Mikhailovich V, Lapa S, Gryadunov D, et al. Detection of rifampicin-resistantMycobacterium tuberculosis strains by hybridization and polymerase chainreaction on a specialized TB-microchip. Bulletin Of Experimental Biology andMedicine,2001,131(1):94-98
    [76] Gryadunov D, Mikhailovieh V, Lapa S. Identification of strains ofMycobacterium tuberculosis with simultaneous determination of their drugresistance by the method of hybridization on oligonucleotide microchips.Molecular Genetic Microbiology Virology,2003,6:13-17
    [77] Morgan M, Kalantri S, Flores L, et al. A commercial line probe assay for therapid detection of rifampicin resistance in Mycobacterium tuberculosis: asystematic review and meta-analysis. BMC infectious diseases,2005,5:
    [78] Traore H, Fissette K, Bastian I, et al. Detection of rifampicin resistance inMycobacterium tuberculosis isolates from diverse countries by a commercialline probe assay as an initial indicator of multidrug resistance. InternationalJournal of Tuberculosis and Lung Disease,2000,4(5):481-484
    [79] Folkvardsen D B, Svensson E, Thomsen V O, et al. Can molecular methodsdetect1%isoniazid resistance in Mycobacterium tuberculosis? Journal ofClinical Microbiology,2013,51(5):1596-1599
    [80] Lu W, Chen C, Shao Y, et al. Evaluation of biochip system in determiningisoniazid and rifampicin resistances of Mycobacterium Tuberculosis in sputumsamples. PLoS One,2012,7(12): e52935
    [81] van Soolingen D, de Haas P E W, van Doorn H R, et al. Mutations at aminoacid position315of the katG gene are associated with high-level resistance toisoniazid, other drug resistance, and successful transmission of Mycobacteriumtuberculosis in The Netherlands. Journal of Infectious Diseases,2000,182(6):1788-1790
    [82] Ramaswamy S V, Reich R, Dou S J, et al. Single nucleotide polymorphisms ingenes associated with isoniazid resistance in Mycobacterium tuberculosis.Antimicrobial Agents and Chemotherapy,2003,47(4):1241-1250
    [83] Heym B, Zhang Y, Poulet S, et al. Characterization of the katG gene encoding acatalase-peroxidase required for the isoniazid susceptibility of Mycobacteriumtuberculosis. Journal of Bacteriology,1993,175(13):4255-4259
    [84] Costa E R D, Ribeiro M O, Silva M S N, et al. Correlations of mutations inkatG, oxyR-ahpC and inhA genes and in vitro susceptibility in Mycobacteriumtuberculosis clinical strains segregated by spoligotype families fromtuberculosis prevalent countries in South America. BMC Microbiology,2009,9(39):1-11
    [85] Ramaswamy S V, Amin A G, Goksel S, et al. Molecular genetic analysis ofnucleotide polymorphisms associated with ethambutol resistance in humanisolates of Mycobacterium tuberculosis. Antimicrobial Agents andChemotherapy,2000,44(2):326-336
    [86] Hillemann D, Ruesch-Gerdes S, Richter E. Feasibility of the geno typeMTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutolresistance testing of Mycobacterium tuberculosis strains and clinical specimens.Journal of Clinical Microbiology,2009,47(6):1767-1772
    [87] Salgado-Moran G, Ramirez-Tagle R, Glossman-Mitnik D, et al. Dockingstudies of binding of ethambutol to the C-Terminal domain of thearabinosyltransferase from Mycobacterium tuberculosis. Journal of Chemistry,2013,2013:1-5
    [88] Guerrero E, Lemus D, Yzquierdo S, et al. Association between embB mutationsand ethambutol resistance in Mycobacterium tuberculosis isolates from Cubaand the Dominican Republic: reproducible patterns and problems. RevistaArgentina de Microbiologia,2013,45(1):21-26
    [89] Cheng A F B, Yew W W, Chan E W C, et al. Multiplex PCR amplimerconformation analysis for rapid detection of gyrA mutations influoroquinolone-resistant Mycobacterium tuberculosis clinical isolates.Antimicrobial Agents and Chemotherapy,2004,48(2):596-601
    [90] Hegde S S, Vetting M W, Roderick S L, et al. A fluoroquinolone resistanceprotein from Mycobacterium tuberculosis that mimics DNA. Science,2005,308(5727):1480-1483
    [91] Devasia R, Blackman A, Eden S, et al. High proportion offluoroquinolone-resistant Mycobacterium tuberculosis isolates with novelgyrase polymorphisms and a gyrA region associated with fluoroquinolonesusceptibility. Journal of Clinical Microbiology,2012,50(8):2842-2842
    [92] Tracevska T, Jansone I, Nodieva A, et al. Characterisation of rpsL, rrs andembB mutations associated with streptomycin and ethambutol resistance inMycobacterium tuberculosis. Research in Microbiology,2004,155(10):830-834
    [93] Cuevas-Cordoba B, Cuellar-Sanchez A, Pasissi-Crivelli A, et al. Rrs and rpsLmutations in streptomycin-resistant isolates of Mycobacterium tuberculosisfrom Mexico. Journal of Microbiology Immunology and Infection,2013,46(1):30-34
    [94] Alexander D C, Ma J H, Guthrie J L, et al. Gene Sequencing for routineverification of pyrazinamide resistance in Mycobacterium tuberculosis: a rolefor pncA but not rpsA. Journal of Clinical Microbiology,2012,50(11):3726-3728
    [95] Zimhony O, Cox J S, Welch J T, et al. Pyrazinamide inhibits the eukaryotic-likefatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature Medicine,2000,6(9):1043-1047
    [96] Somoskovi A, Parsons L M, Salfinger M. The molecular basis of resistance toisoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis.Respiratory Research,2001,2(3):164-168
    [97] Ahmad S, Mokaddas E, Jaber A. Rapid detection of ethambutol-resistantMycobacterium tuberculosis strains by PCR-RFLP targeting embB codons306and497and iniA codon501mutations. Molecular and Cellular Probes,2004,18(5):299-306
    [98] Leung E T-Y, Kam K-M, Chiu A, et al. Detection of katG Ser315Thrsubstitution in respiratory specimens from patients with isoniazid-resistantMycobacterium tuberculosis using PCR-RFLP. Journal of MedicalMicrobiology,2003,52(11):999-1003
    [99] Patnaik M, Liegmann K, Peter J B. Rapid detection of smear-negativeMycobacterium tuberculosis by PCR and sequencing for rifampin resistancewith DNA extracted directly from slides. Journal of Clinical Microbiology,2001,39(1):51-52
    [100]Shi R, Zhang J, Li C, et al. Detection of streptomycin resistance inMycobacterium tuberculosis clinical isolates from China as determined bydenaturing HPLC analysis and DNA sequencing. Microbes and Infection,2007,9(14):1538-1544
    [101]Mani C, Selvakumar N, Kumar V, et al. Comparison of DNA sequencing,PCR-SSCP and PhaB assays with indirect sensitivity testing for detection ofrifampicin resistance in Mycobacterium tuberculosis. International Journal ofTuberculosis and Lung Disease,2003,7(7):652-659
    [102]Cheng X, Zhang J, Yang L, et al. A new Multi-PCR-SSCP assay forsimultaneous detection of isoniazid and rifampin resistance in Mycobacteriumtuberculosis. Journal of Microbiological Methods,2007,70(2):301-305
    [103]Aragón L M, Navarro F, Heiser V, et al. Rapid detection of specific genemutations associated with isoniazid or rifampicin resistance in Mycobacteriumtuberculosis clinical isolates using non-fluorescent low-density DNAmicroarrays. Journal of Antimicrobial Chemotherapy,2006,57(5):825-831
    [104]Brossier F, Veziris N, Truffot-Pernot C, et al. Performance of the genotypeMTBDR line probe assay for detection of resistance to rifampin and isoniazidin strains of Mycobacterium tuberculosis with low-and high-level resistance.Journal of Clinical Microbiology,2006,44(10):3659-3664
    [105]Park H, Song E J, Song E S, et al. Comparison of a conventional antimicrobialsusceptibility assay to an oligonucleotide chip system for detection of drugresistance in Mycobacterium tuberculosis isolates. Journal of ClinicalMicrobiology,2006,44(5):1619-1624
    [106]Bang D, Andersen B, Thomsen V. Rapid genotypic detection ofrifampin-and isoniazid-resistant Mycobacterium tuberculosis directly inclinical specimens. Journal of Clinical Microbiology,2006,44(7):2605-2608
    [107]Steinlein L M, Crawford J T. Reverse dot blot assay (insertion site typing) forprecise detection of sites of IS6110insertion in the Mycobacteriumtuberculosis genome. Journal of Clinical Microbiology,2001,39(3):871-878
    [108]Wu X, Zhang J, Chao L, et al. Identification of rifampin-resistant genotypes inMycobacterium tuberculosis by PCR-reverse dot blot hybridization. MolecularBiotechnology,2009,41(1):1-7
    [109]Cavusoglu C, Hilmioglu S, Guneri S, et al. Characterization of rpoB mutationsin rifampin-resistant clinical isolates of Mycobacterium tuberculosis fromturkey by DNA sequencing and line probe assay. Journal of ClinicalMicrobiology,2002,40(12):4435-4438
    [110]Piatek A, Tyagi S, Pol A, et al. Molecular beacon sequence analysis fordetecting drug resistance in Mycobacterium tuberculosis. Nature Biotechnology,1998,16(4):359-363
    [111] Chakravorty S, Aladegbami B, Thoms K, et al. Rapid Detection offluoroquinolone-resistant and heteroresistant Mycobacterium tuberculosis byuse of sloppy molecular beacons and dual melting-temperature codes in areal-time PCR assay. Journal of Clinical Microbiology,2011,49(3):932-940
    [112]Nair J, Rouse D A, Bai G H, et al. The rpsL gene and streptomycin resistance insingle and multiple drug‐resistant strains of Mycobacterium tuberculosis.Molecular Microbiology,1993,10(3):521-527
    [113]Siddiqi N, Shamim M, Jain N, et al. Molecular genetic analysis of multi-drugresistance in Indian isolates of Mycobacterium tuberculosis. Memorias doInstituto Oswaldo Cruz,1998,93(5):589-594
    [114]Davies A, Billington O, Bannister B, et al. Comparison of fitness of twoisolates of Mycobacterium tuberculosis, one of which had developedmulti-drug resistance during the course of treatment. Journal of Infection,2000,41(2):184-187
    [115]Riska P, Jacobs Jr W, Alland D. Molecular determinants of drug resistance intuberculosis. The International Journal of Tuberculosis and Lung Disease,2000,4(2): S4-S10
    [116]Steingrube V A, Wilson R W, Brown B A, et al. Rapid identification ofclinically significant species and taxa of aerobic actinomycetes, includingActinomadura, Gordona, Nocardia, Rhodococcus, Streptomyces, andTsukamurella isolates, by DNA amplification and restriction endonucleaseanalysis. Journal of Clinical Microbiology,1997,35(4):817-822
    [117]Saubolle M A, Sussland D. Nocardiosis review of clinical and laboratoryexperience. Journal of Clinical Microbiology,2003,41(10):4497-4501
    [118]Tortoli E, Benedetti M, Fontanelli A, et al. Evaluation of automated BACTECMGIT960system for testing susceptibility of Mycobacterium tuberculosis tofour major antituberculous drugs: comparison with the radiometric BACTEC460TB method and the agar plate method of proportion. Journal of ClinicalMicrobiology,2002,40(2):607-610
    [119]Kim S J. Drug-susceptibility testing in tuberculosis: Methods and reliability ofresults. European Respiratory Journal,2005,25(3):564-569
    [120]Chedore P, Bertucci L, Wolfe J, et al. Potential for erroneous results indicatingresistance when using the bactec MGIT960system for testing susceptibility ofMycobacterium tuberculosis to Pyrazinamide. Journal of Clinical Microbiology,2010,48(1):300-301
    [121]Piersimoni C, Mustazzolu A, Giannoni F, et al. Prevention of false resistanceresults obtained in testing the susceptibility of Mycobacterium tuberculosis toPyrazinamide with the Bactec MGIT960system using a reduced inoculum.Journal of Clinical Microbiology,2013,51(1):291-294
    [122]Ahmad S, Mokaddas E. Recent advances in the diagnosis and treatment ofmultidrug-resistant tuberculosis. Respiratory Medicine,2009,103(12):1777-1790
    [123]Kalantri S, Pai M, Pascopella L, et al. Bacteriophage-based tests for thedetection of Mycobacterium tuberculosis in clinical specimens: a systematicreview and meta-analysis. BMC infectious diseases,2005,5(1):59-62
    [124]Albert H, Heydenrych A, Mole R, et al. Evaluation of FASTPlaqueTB-RIF, arapid, manual test for the determination of rifampicin resistance fromMycobacterium tuberculosis cultures. The International Journal of Tuberculosisand Lung Disease,2001,5(10):906-911
    [125]Albert H, Trollip A, Mole R, et al. Rapid indication of multidrug-resistanttuberculosis from liquid cultures using FASTPlaqueTB-RIF, a manualphage-based test. The International Journal of Tuberculosis and Lung Disease,2002,6(6):523-528
    [126]Hazbón M H, Guarín N, Ferro B E, et al. Photographic and luminometricdetection of luciferase reporter phages for drug susceptibility testing of clinicalMycobacterium tuberculosis isolates. Journal of Clinical Microbiology,2003,41(10):4865-4869
    [127]Carriere C, Riska P F, Zimhony O, et al. Conditionally replicating luciferasereporter phages: improved sensitivity for rapid detection and assessment ofdrug susceptibility of Mycobacterium tuberculosis. Journal of ClinicalMicrobiology,1997,35(12):3232-3239
    [128]Brown K L, Sarkis G J, Wadsworth C, et al. Transcriptional silencing by themycobacteriophage L5repressor. The EMBO journal,1997,16(19):5914-5921
    [129]Riska P F, Jacobs Jr W R, The use of luciferase-reporter phage forantibiotic-susceptibility testing of Mycobacteria. In Mycobacteria Protocols,Parish, T, Ed. Springer: London,1998; pp431-455.
    [130]Chihota V, Grant A, Fielding K, et al. Liquid vs. solid culture for tuberculosis:performance and cost in a resource-constrained setting. The InternationalJournal of Tuberculosis and Lung Disease,2010,14(8):1024-1031
    [131]Dhillon J, Lowrie D B, Mitchison D A. Mycobacterium tuberculosis fromchronic murine infections that grows in liquid but not on solid medium. BMCinfectious diseases,2004,4(1):51-52
    [132]Ang C, Cajucom M, Kim Y, et al. Evaluation of a rapid assay for identifi cationof Mycobacterium tuberculosis grown in solid and liquid media. TheInternational Journal of Tuberculosis and Lung Disease,2011,15(11):1475-1478
    [133]Shen D Z, Zhu W, Nie L H, et al. Behaviour of a series piezoelectric sensor inelectrolyte solution: Part I. Theory. Analytica Chimica Acta,1993,276(1):87-97
    [134]He F J, Zhang X Q, Zhou J, et al. A new MSPQC system for rapid detection ofpathogens in clinical samples. Journal of Microbiological Methods,2006,66(1):56-62
    [135]Mi X, He F, Xiang M, et al. Novel phage amplified multichannel seriespiezoelectric quartz crystal sensor for rapid and sensitive detection ofMycobacterium tuberculosis. Analytical Chemistry,2011,84(2):939-946
    [136]Saubrey G. Use of quartz vibrator for weighting thin films on a microbalanlce.Zeitschrift fur Physik,1959,155(3):206-212
    [137]Leonard P, Hearty S, Brennan J, et al. Advances in biosensors for detection ofpathogens in food and water. Enzyme and Microbial Technology,2003,32(1):3-13
    [138]Lu C S, Lewis O. Investigation of film‐thickness determination by oscillatingquartz resonators with large mass load. Journal of Applied Physics,1972,43(11):4385-4390
    [139]Keiji Kanazawa K, Gordon II J G. The oscillation frequency of a quartzresonator in contact with liquid. Analytica Chimica Acta,1985,175:99-105
    [140]Yao S Z, Zhou T A. Dependence of the oscillation frequency of a piezoelectriccrystal on the physical parameters of liquids. Analytica Chimica Acta,1988,212:61-72
    [141]Zhou T, Nie L, Yao S. On equivalent circuits of piezoelectric quartz crystals ina liquid and liquid properties, Part I, Theoretical derivation of the equivalentcircuit and effects of density and viscosity of liquids. Journal ofElectroanalytical Chemistry,1990,293:1-18
    [142]Schneider T W, Martin S J. Influence of compressional wave generation onthickness-shear mode resonator response in a fluid. Analytical Chemistry,1995,67(18):3324-3335
    [143]Thompson M, Arthur C L, Dhaliwal G K. Liquid-phase piezoelectric andacoustic transmission studies of interfacial immunochemistry. AnalyticalChemistry,1986,58(6):1206-1209
    [144]Duncan-Hewitt W C, Thompson M. Four-layer theory for the acoustic shearwave sensor in liquids incorporating interfacial slip and liquid structure.Analytical Chemistry,1992,64(1):94-105
    [145]Yang M, Thompson M. Acoustic network analysis and equivalent circuitsimulation of the thickness-shear mode acoustic wave sensor in the liquidphase. Analytica Chimica Acta,1993,282(3):505-515
    [146]Shana Z A, Josse F. Quartz crystal resonators as sensors in liquids using theacoustoelectric effect. Analytical Chemistry,1994,66(13):1955-1964
    [147]Minunni M, Tombelli S, Fonti J, et al. Detection of fragmented genomic DNAby PCR-Free piezoelectric sensing using a denaturation approach. Journal ofthe American Chemical Society,2005,127(22):7966-7967
    [148]Yau H C M, Chan H L, Yang M S. Determination of mode of interactionsbetween novel drugs and calf thymus DNA by using quartz crystal resonator.Sensors And Actuators B: chemical,2002,81(2-3):283-288
    [149]Fawcett N C, Evans J A, Chien L C, et al. Nucleic acid hybridization detectedby piezoelectric resonance. Analytical Letters,1988,21(7):1099-1114
    [150]Tombelli S, Mascini M, Turner A P F. Improved procedures for immobilisationof oligonucleotides on gold-coated piezoelectric quartz crystals. Biosensorsand Bioelectronics,2002,17(11-12):929-936
    [151]Wang J, Jiang M, Nilsen T W, et al. Dendritic nucleic acid probes for DNAbiosensors. Journal of the American Chemical Society,1998,120(32):8281-8282
    [152]Matsuno H, Niikura K, Okahata Y. Direct monitoring kinetic studies of DNApolymerase reactions on a DNA‐immobilized quartz‐crystal microbalance.Chemistry-a European Journal,2001,7(15):3305-3312
    [153]Hao R Z, Wang D B, Zhang X E, et al. Rapid detection of Bacillus anthracisusing monoclonal antibody functionalized QCM sensor. Biosensors andBioelectronics,2009,24(5):1330-1335
    [154]Prusak-Sochaczewski E, Luong J, Guilbault G. Development of a piezoelectricimmunosensor for the detection of Salmonella typhimurium. Enzyme andMicrobial Technology,1990,12(3):173-177
    [155]Carter R, Mekalanos J, Jacobs M, et al. Quartz crystal microbalance detectionof Vibrio cholerae O139serotype. Journal of Immunological Methods,1995,187(1):121-125
    [156]Ben-Dov I, Willner I, Zisman E. Piezoelectric immunosensors for urinespecimens of Chlamydia trachomatis employing quartz crystal microbalancemicrogravimetric analyses. Analytical Chemistry,1997,69(17):3506-3512
    [157]Plomer M, Guilbault G G, Hock B. Development of a piezoelectricimmunosensor for the detection of enterobacteria. Enzyme And MicrobialTechnology,1992,14(3):230-235
    [158]Anzai J-i, Takeshita H, Kobayashi Y, et al. Layer-by-layer construction ofenzyme multilayers on an electrode for the preparation of glucose and lactatesensors: elimination of ascorbate interference by means of an ascorbate oxidasemultilayer. Analytical Chemistry,1998,70(4):811-817
    [159]Ho W O, Krause S, McNeil C J, et al. Electrochemical sensor for measurementof urea and creatinine in serum based on ac impedance measurement ofenzyme-catalyzed polymer transformation. Analytical Chemistry,1999,71(10):1940-1946
    [160]Liu D, Ge K, Chen K, et al. Clinical analysis of urea in human blood bycoupling a surface acoustic wave sensor with urease extracted from pumpkinseeds. Analytica Chimica Acta,1995,307(1):61-69
    [161]He D, Bao L, Long Y, et al. A new study of the enzymatic hydrolysis ofcarboxymethyl cellulose with a bulk acoustic wave sensor. Talanta,2000,50(6):1267-1273
    [162]Bao L, Xie Q, Xu Y, et al. A new method for determination of α-amylase with abulk acoustic wave sensor. Analytical Letters,1999,32(5):885-899
    [163]Cai Q, Wang R, Wu L, et al. Surface acoustic wave enzyme sensor applied tothe kinetic assay of acid phosphatase. Analyst,1995,120(12):2833-2836
    [164]Ebersole R C, Ward M D. Amplified mass immunosorbent assay with a quartzcrystal microbalance. Journal of the American Chemical Society,1988,110(26):8623-8628
    [165]Nivens D E, Chambers J Q, Anderson T R, et al. Long-term, on-line monitoringof microbial biofilms using a quartz crystal microbalance. AnalyticalChemistry,1993,65(1):65-69
    [166]Bao L, Nie L, Yao S, et al. A rapid method for determination of Proteusvulgaris with a piezoelectric quartz crystal sensor coated with a thin liquid film.Biosensors and Bioelectronics,1996,11(12):1193-1198
    [167]Chen K, Le D, Zhang H, et al. Model of quartz crystal microbe growth sensorand its application to estimation of microbial populations in mineral waters.Analytica Chimica Acta,1996,329(1):83-89
    [168]Zhang J, Wei W, Mao Y, et al. Monitoring of bio-oxidation process of ferrousion by using piezoelectric impedance analysis. Current Microbiology,2001,43(2):83-88
    [169]Bovenizer J, Jacobs M, O'sullivan C, et al. The detection of Pseudomonasaeruginosa using the quartz crystal microbalance. Analytical Letters,1998,31(8):1287-1295
    [170]Xie Q, Zhang Y, Xu M, et al. Combined quartz crystal impedance andelectrochemical impedance measurements during adsorption of bovine serumalbumin onto bare and cysteine-or thiophenol-modified gold electrodes.Journal of Electroanalytical Chemistry,1999,478(1):1-8
    [171]Li Y, Liu M, Xiang C, et al. Electrochemical quartz crystal microbalance studyon growth and property of the polymer deposit at gold electrodes duringoxidation of dopamine in aqueous solutions. Thin Solid Films,2006,497(1):270-278
    [172]He H, Xie Q, Zhang Y, et al. A simultaneous electrochemical impedance andquartz crystal microbalance study on antihuman immunoglobulin g adsorptionand human immunoglobulin G reaction. Journal of Biochemical andBiophysical Methods,2005,62(3):191-205
    [173]Xie Q, Xiang C, Yang X, et al. Simultaneous impedance measurements of twoone-face sealed resonating piezoelectric quartz crystals for in situ monitoringof electrochemical processes and solution properties. Analytica Chimica Acta,2005,533(2):213-224
    [174]Fung Y S, Wong C C W, Choy J T S, et al. Determination of sulphate in waterby flow-injection analysis with electrode-separated piezoelectric quartz crystalsensor. Sensors and Actuators B: chemical,2008,130(1):551-560
    [175]Liu Y C, Wang C M, Hsiung K P. Comparison of different proteinimmobilization methods on quartz crystal microbalance surface in flowinjection immunoassay. Analytical Biochemistry,2001,299(2):130-135
    [176]Zhang Q D, Huang Y Y, Zhao R, et al. Determining binding sites of drugs onhuman serum albumin using FIA-QCM. Biosensors and Bioelectronics,2008,24(1):48-54
    [177]Harteveld J, Nieuwenhuizen M, Wils E. Detection of staphylococcalenterotoxin B employing a piezoelectric crystal immunosensor. Biosensors andBioelectronics,1997,12(7):661-667
    [178]Lu H C, Chen H M, Lin Y S, et al. A reusable and specific protein a‐coatedpiezoelectric biosensor for flow injection immunoassay. BiotechnologyProgress,2000,16(1):116-124
    [179]Zhang H, Zhao R, Chen Z, et al. QCM–FIA with PGMA coating for dynamicinteraction study of heparin and antithrombin III. Biosensors andBioelectronics,2005,21(1):121-127
    [180]Dazhong S, Lihua N, Shouzhuo Y. A new type of piezoelectric detector inliquid: Part2. Computation of the equivalent circuit parameters of apiezoelectric crystal with a separated electrode and of series piezoelectricsensors in a non-electrolyte solution. Journal of Electroanalytical Chemistry,1993,360(1):71-87
    [181]Dazhong S, Yuanjin X, Lihua N, et al. An impedance analyzer method tosimulate the oscillating characteristic of a series piezoelectric sensor inoscillators with zero or non-zero phases. Talanta,1994,41(11):1993-1998
    [182]Shen D, Kang Q, Liu Z, et al. Oscillation condition for a series piezoelectricsensor. Application to the determination of urease activity in plant seeds.Analytica Chimica Acta,1997,340(1):55-60
    [183]He F, zhu W, Geng Q, et al. Rapid detection of Escherichia coli form using aseries electrode piezoelectric crystal sensor. Analytical Letters,1994,27(4):655-669
    [184]Zhang J, Bao L, Yao S, et al. A series piezoelectric quartz crystal microbialsensing technique used for biochemical oxygen demand assay in environmentalmonitoring. Microchemical Journal,1999,62(3):405-412
    [185]Bao L, Deng L, Nie L, et al. Determination of microorganisms with a quartzcrystal microbalance sensor. Analytica Chimica Acta,1996,319(1):97-101
    [186]Zhang J, Wei W, Zhou A, et al. Monitoring of mutagenic process withpiezoelectric quartz crystal impedance analysis. Talanta,2000,53(3):525-533
    [187]Bao L, Tan H, Duan Q, et al. A rapid method for determination ofStaphylococcus aureus based on milk coagulation by using a seriespiezoelectric quartz crystal sensor. Analytica Chimica Acta,1998,369(1):139-145
    [188]Qu X, Bao L, Su X, et al. Rapid detection of Escherichia coliform with a bulkacoustic wave sensor based on the gelation of Tachypleus amebocyte lysate.Talanta,1998,47(2):285-290
    [189]Ren J, He F, Yi S, et al. A new MSPQC for rapid growth and detection ofMycobacterium tuberculosis Biosensors and Bioelectronics,2008,24(3):403-409
    [190]Shen D Z, Zhu W, Nie L H, et al. Behaviour of a series piezoelectric sensor inelectrolyte solution: Part I. Theory. Analytica Chimica Acta,1993,276(1):87-97
    [191]Shen D Z, Li Z Y, Nie L H, et al. Behaviour of series piezoelectric sensor inelectrolyte solution: Part II. Applications in titrimetry. Analytica Chimica Acta,1993,280(2):209-216
    [192]Bowles J A, Segal W. Kinetics of utilization of organic compounds in thegrowth of Mycobacterium tuberculosis. Jouranl of Bacterioloty,1965,90(1):157-163
    [193]Mu oz-Elías E J, McKinney J D. Mycobacterium tuberculosis isocitrate lyases1and2are jointly required for in vivo growth and virulence. Nature Medicine,2005,11(6):638-644
    [194]Piddington D L, Kashkouli A, Buchmeier N A. Growth of Mycobacteriumtuberculosis in a defined medium is very restricted by acid pH and Mg2+levels.Infection and Immunity,2000,68(8):4518-4522
    [195]James B, Williams A, Marsh P. The physiology and pathogenicity ofMycobacterium tuberculosis grown under controlled conditions in a definedmedium. Journal of Applied Microbiology,2001,88(4):669-677
    [196]Powell E. Growth rate and generation time of bacteria, with special referenceto continuous culture. Journal of general microbiology,1956,15(3):492-511
    [197]Ott J L. Asparaginase from Mycobacteria. Journal of Bacteriology,1960,80(3):355-361
    [198]Brettschneider O, Thiele R, Faber R, et al. Experimental investigation andsimulation of the chemical absorption in a packed column for the systemNH3–CO2–H2S–NaOH–H2O. Separation and Purification Technology,2004,39(3):139-159
    [199]Jayaram H, Ramakrishnan T, Vaidyanathan C. l-asparaginases fromMycobacterium tuberculosis strains H37Rv and H37Ra. Archives ofBiochemistry and Biophysics,1968,126(1):165-174
    [200]Halpern Y, Grossowicz N. Hydrolysis of amides by extracts from Mycobacteria.Biochemical Journal,1957,65(4):716-720
    [201]Mukhopadhyay B, Purwantini E. Pyruvate carboxylase from Mycobacteriumsmegmatis: stabilization, rapid purification, molecular and biochemicalcharacterization and regulation of the cellular level. Biochimica et BiophysicaActa (BBA)-General Subjects,2000,1475(3):191-206
    [202]Owen C A, Karlson A G, Zeller E A. Enzymology of tubercle bacilli and otherMycobacteria V. influence of streptomycin and other basic substances on thediamine oxidase of various bacteria. Journal of Bacteriology,1951,62(1):53-62
    [203]Nakagami K. Studies on the shunt pathway of TCA cycle in avian type oftubercle bacillus. I. Citrate degradation. Kekkaku:[Tuberculosis],1957,32(10):547-550
    [204]Tokunaga T, Sellers M I. Infection of Mycobacterium smegmatis with D29phage DNA. The Journal of experimental medicine,1964,119(1):139-149
    [205]Arockiasamy A, Aggarwal A, Savva C G, et al. Crystal structure of calciumdodecin (Rv0379), from Mycobacterium tuberculosis with a uniquecalcium-binding site. Protein Science,2011,20(5):827-833
    [206]Mu oz‐Elías E J, McKinney J D. Carbon metabolism of intracellular bacteria.Cellular Microbiology,2005,8(1):10-22
    [207]Messenger A, Ratledge C. Iron transport in Mycobacterium smegmatis: Uptakeof iron from ferric citrate. Journal of Bacteriology,1982,149(1):131-135
    [208]Rybniker J, Kramme S, Small P L. Host range of14mycobacteriophages inMycobacterium ulcerans and seven other Mycobacteria includingMycobacterium tuberculosis–application for identification and susceptibilitytesting. Journal of Medical Microbiology,2006,55(1):37-42
    [209]Froman S, Will D W, Bogen E. Bacteriophage active against virulentMycobacterium tuberculosis—I. isolation and activity. American Journal ofPublic Health and the Nations Health,1954,44(10):1326-1333
    [210]Sellers M I, Baxter W L, Runnals H. Growth characteristics ofmycobacteriophages D28and D29. Canadian Journal of Microbiology,1962,8(3):389-399
    [211]Williams-Bouyer N, Yorke R, Lee H I, et al. Comparison of the BACTECMGIT960and ESP culture system II for growth and detection of Mycobacteria.Journal of Clinical Microbiology,2000,38(11):4167-4170
    [212]Gordon R E, Smith M M. Rapidly growing, acid fast bacteria I. Speciesdescriptions of Mycobacterium phlei lehmann and neumann andMycobacterium smegmatis (Trevisan) lehmann and neumann. Journal ofBacteriology,1953,66(1):41-48
    [213]Ripp S. Bacteriophage-based pathogen detection. Whole Cell Sensing SystemII,2010,118:65-83
    [214]Park D, Drobniewski F, Meyer A, et al. Use of a phage-based assay forphenotypic detection of Mycobacteria directly from sputum. Journal of ClinicalMicrobiology,2003,41(2):680-688
    [215]Ellis E L, Delbrück M. The growth of bacteriophage. The Journal of GeneralPhysiology,1939,22(3):365-384
    [216]Emond E, Dion E, Walker S A, et al. AbiQ, an abortive infection mechanismfrom lactococcus lactis. Applied and Environmental Microbiology,1998,64(12):4748-4756
    [217]Romero D A, Klaenhammer T R. Abortive phage infection and restrictionmodification activities directed by pTR2030determinants are enhanced byrecombination with conjugal elements in lactococci. Journal of generalmicrobiology,1990,136(9):1817-1824
    [218]Bayer M. Adsorption of bacteriophages to adhesions between wall andmembrane of Escherichia coli. Journal of virology,1968,2(4):346-356
    [219]Sanders M E, Klaenhammer T R. Phage resistance in a phage-insensitive strainof Streptococcus lactis: temperature-dependent phage development andhost-controlled phage replication. Applied and Environmental Microbiology,1984,47(5):979-985
    [220]Puck T, Tolmach L. The mechanism of virus attachment to host cells. IV.Physicochemical studies on virus and cell surface groups. Archives ofBiochemistry and Biophysics,1954,51(1):229-245
    [221]Sjogren J C, Sierka R A. Inactivation of phage MS2by iron-aided titaniumdioxide photocatalysis. Applied and Environmental Microbiology,1994,60(1):344-347
    [222]Doolittle M M, Cooney J J. Inactivation of bacteriophage T4by organic andinorganic tin compounds. Journal Of Industrial Microbiology andBiotechnology,1992,10(3):221-228
    [223]Delbrück M. The burst size distribution in the growth of bacterial viruses(bacteriophages). Journal of Bacteriology,1945,50(2):131-135
    [224]Adams M H, Wassermann F E. Frequency distribution of phage release in theone-step growth experiment. Virology,1956,2(1):96-108
    [225]Scafer R, Huber U, Franklin R M. Chemical and physical properties ofmycobacteriophage D29. European Journal of Biochemistry,2008,73(1):239-246
    [226]Imaeda T, San Blas F. Adsorption of mycobacteriophage on cell-wallcomponents. Journal of General Virology,1969,5(4):493-498
    [227]Alderwick L, Birch H, Mishra A, et al. Structure, function and biosynthesis ofthe Mycobacterium tuberculosis cell wall: arabinogalactan andlipoarabinomannan assembly with a view to discovering new drug targets.Biochemical Society Transactions,2007,35:1325-1328
    [228]Wietzerbin‐Falszpan J, Das B C, Gros C, et al. The amino acids of the cell wallof Mycobacterium tuberculosis var. bovis, strain BCG. European Journal ofBiochemistry,1973,32(3):525-532
    [229]Gold W, Watson D W. Study on the bacteriophage infection cycle II.: Phageinfection and lysis of clostridium madisonii, a function of pH1. Journal ofBacteriology,1950,59(1):17-27
    [230]Neilands J. The ironic function of bacteriophage receptors. Trends inBiochemical Sciences,1979,4(5):115-118
    [231]Anderson T F. The role of tryptophane in the adsorption of two bacterialviruses on their host, E. coli. Journal of Cellular and Comparative Physiology,1945,25(1):17-26
    [232]Rifkind D, Pickett M. Bacteriophage studies on the hemorrhagic septicemiaPasteurellae. Journal of Bacteriology,1954,67(2):243-246
    [233]White A, Knight V. Effect of tween80and serum on the interaction ofmycobacteriophage D-29with certain mycobacterial species. American reviewof tuberculosis,1958,77(1):134
    [234]Kazama F. Viral inactivation by potassium ferrate. Water Science andTechnology,1995,31(5):165-168
    [235]Organization W H, Stop TB partnership.2009Update tuberculosis facts.2010.
    [236]Dye C, Williams B G. Criteria for the control of drug-resistant tuberculosis.Proceedings of the National Academy of Sciences,2000,97(14):8180-8185
    [237]Cuevas L E, Yassin M A, Al-Sonboli N, et al. A multi-country non-inferioritycluster randomized trial of frontloaded smear microscopy for the diagnosis ofpulmonary tuberculosis. PLoS medicine,2011,8(7): e1000443
    [238]Mejia G, Castrillon L, Trujillo H, et al. Microcolony detection in7H11thinlayer culture is an alternative for rapid diagnosis of Mycobacteriumtuberculosis infection. The International Journal of Tuberculosis and LungDisease,1999,3(2):138-142
    [239]Anargyros P, Astill D, Lim I. Comparison of improved BACTEC andLowenstein-Jensen media for culture of Mycobacteria from clinical specimens.Journal of Clinical Microbiology,1990,28(6):1288-1291
    [240]Hanna B A, Ebrahimzadeh A, Elliott L B, et al. Multicenter evaluation of theBACTEC MGIT960system for recovery of Mycobacteria. Journal of ClinicalMicrobiology,1999,37(3):748-752
    [241]Imaz M S, Comini M A, Zerbini E, et al. Evaluation of commercialenzyme-linked immunosorbent assay kits for detection of tuberculosis inArgentinean population. Journal of Clinical Microbiology,2004,42(2):884-887
    [242]Burton-MacLeod J A, Kane E M, Beard R S, et al. Evaluation and comparisonof two commercial enzyme-linked immunosorbent assay kits for detection ofantigenically diverse human noroviruses in stool samples. Journal of ClinicalMicrobiology,2004,42(6):2587-2595
    [243]Lebrun L, Mathieu D, Saulnier C, et al. Limits of commercial molecular testsfor diagnosis of pulmonary tuberculosis. European Respiratory Journal,1997,10(8):1874-1876
    [244]Moure R, Mu oz L, Torres M, et al. Rapid detection of Mycobacteriumtuberculosis complex and rifampin resistance in smear-negative clinicalsamples by use of an integrated real-time PCR method. Journal of ClinicalMicrobiology,2011,49(3):1137-1139
    [245]Rüsch-Gerdes S, Richter E. Clinical evaluation of the semiautomated BDProbeTec ET system for the detection of Mycobacterium tuberculosis inrespiratory and nonrespiratory specimens. Diagnostic Microbiology andInfectious Disease,2004,48(4):265-271
    [246]De Beenhouwer H, Lhiang Z, Jannes G a, et al. Rapid detection of rifampicinresistance in sputum and biopsy specimens from tuberculosis patients by PCRand line probe assay. Tubercle and Lung Disease,1995,76(5):425-430
    [247]Thorne N, Evans J, Smith E, et al. An IS6110‐targeting fluorescent amplifiedfragment length polymorphism alternative to IS6110restriction fragmentlength polymorphism analysis for Mycobacterium tuberculosis DNAfingerprinting. Clinical Microbiology and Infection,2007,13(10):964-970
    [248]Chang H, Huang M, Yeh C, et al. Rapid diagnosis of tuberculosis directly fromclinical specimens using a gene chip. Clinical Microbiology and Infection,2010,16(8):1090-1096
    [249]He F J, Ren J L, Liu Z. The study and application of a new IDE–PQC sensor.Sensors and Actuators B: Chemical,2007,123(2):1057-1063
    [250]He F, Zhong M. New MSPQC-PLS method for the early clinic identification ofcommonly encountered Candida species. Talanta,2010,80(3):1210-1215
    [251]He F J, Li T, Zhang L, et al. New MSPQC method for rapid identification andquantification of Pseudomonas aeruginosa. Analytical Letters,2009,42(1):58-67
    [252]He F J, Zhang L L. Rapid diagnosis of M. tuberculosis using a piezoelectricimmunosensor. Analytical Sciences,2002,18(4):397-401
    [253]Wu M, Kempaiah R, Huang P J, et al. Adsorption and desorption of DNA ongraphene oxide studied by fluorescently labeled oligonucleotides. Langmuir,2011,27(6):2731-2738
    [254]Jones C M, Niederweis M. Role of porins in iron uptake by Mycobacteriumsmegmatis. Journal of Bacteriology,2010,192(24):6411-6417
    [255]Gadagkar R, Gopinathan K. Growth of Mycobacterium smegmatis in minimaland complete media. Journal of Biosciences,1980,2(4):337-348
    [256]Smeulders M J, Keer J, Speight R A, et al. Adaptation of Mycobacteriumsmegmatis to stationary phase. Journal of Bacteriology,1999,181(1):270-283
    [257]Yuan Y, Crane D D, Barry C r. Stationary phase-associated protein expressionin Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallinhomolog. Journal of Bacteriology,1996,178(15):4484-4492
    [258]Grange J, Zumla A. The global emergency of tuberculosis: what is the cause.The Journal of the Royal Society for the Promotion of Health,2002,122(2):78-81
    [259]Cooksey R C, Morlock G P, Glickman S, et al. Evaluation of a line probe assaykit for characterization of rpoB mutations in rifampin-resistant Mycobacteriumtuberculosis isolates from New York City. Journal of Clinical Microbiology,1997,35(5):1281-1283
    [260]Kapur V, Li L L, Iordanescu S, et al. Characterization by automated DNAsequencing of mutations in the gene (rpoB) encoding the RNA polymerase betasubunit in rifampin-resistant Mycobacterium tuberculosis strains from NewYork City and Texas. Journal of Clinical Microbiology,1994,32(4):1095-1098
    [261]Heep M, Brandst tter B, Rieger U, et al. Frequency of rpoB mutations insideand outside the cluster I region in rifampin-resistant clinical Mycobacteriumtuberculosis isolates. Journal of Clinical Microbiology,2001,39(1):107-110
    [262]Banerjee A, Dubnau E, Quemard A, et al. InhA, a gene encoding a target forisoniazid and ethionamide in Mycobacterium tuberculosis. Science,1994,263(5144):227-230
    [263]Musser J M, Kapur V, Williams D L, et al. Characterization of the catalaseperoxidase gene (katG) and inhA locus in isoniazid-resistant and-susceptiblestrains of Mycobacterium tuberculosis by automated DNA sequencing:restricted array of mutations associated with drug resistance. Journal ofInfectious Diseases,1996,173(1):196-202
    [264]Rozwarski D A, Grant G A, Barton D H, et al. Modification of the NADH ofthe isoniazid target (InhA) from Mycobacterium tuberculosis. Science,1998,279(5347):98-102
    [265]Parikh S L, Xiao G, Tonge P J. Inhibition of InhA, the enoyl reductase fromMycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry,2000,39(26):7645-7650
    [266]Sreevatsan S, Stockbauer K E, Pan X, et al. Ethambutol resistance inMycobacterium tuberculosis: critical role of embB mutations. AntimicrobialAgents and Chemotherapy,1997,41(8):1677-1681
    [267]Hazbón M H, del Valle M B, Guerrero M I, et al. Role of embB codon306mutations in Mycobacterium tuberculosis revisited: a novel association withbroad drug resistance and IS6110clustering rather than ethambutol resistance.Antimicrobial Agents and Chemotherapy,2005,49(9):3794-3802
    [268]Safi H, Sayers B, Hazbón M H, et al. Transfer of embB codon306mutationsinto clinical Mycobacterium tuberculosis strains alters susceptibility toethambutol, isoniazid, and rifampin. Antimicrobial Agents and Chemotherapy,2008,52(6):2027-2034
    [269]Wang J Y, Lee L N, Lai H C, et al. Fluoroquinolone resistance inMycobacterium tuberculosis isolates: associated genetic mutations andrelationship to antimicrobial exposure. Journal of Antimicrobial Chemotherapy,2007,59(5):860-865
    [270]Bergval I, Vijzelaar R, Dalla Costa E, et al. Development of multiplex assay forrapid characterization of Mycobacterium tuberculosis. Journal of ClinicalMicrobiology,2008,46(2):689-699
    [271]Sreevatsan S, Pan X, Stockbauer K E, et al. Characterization of rpsL and rrsmutations in streptomycin-resistant Mycobacterium tuberculosis isolates fromdiverse geographic localities. Antimicrobial Agents and Chemotherapy,1996,40(4):1024-1026
    [272]Tracevska T, Jansone I, Nodieva A, et al. Characterisation of rpsL, rrs andembB mutations associated with streptomycin and ethambutol resistance inMycobacterium tuberculosis. Research in Microbiology,2004,155(10):830-834
    [273]Katsukawa C, Tamaru A, Miyata Y, et al. Characterization of the rpsL and rrsgenes of streptomycin‐resistant clinical isolates of Mycobacterium tuberculosisin Japan. Journal of Applied Microbiology,1997,83(5):634-640
    [274]Scorpio A, Lindholm-Levy P, Heifets L, et al. Characterization of pncAmutations in pyrazinamide-resistant Mycobacterium tuberculosis.Antimicrobial Agents and Chemotherapy,1997,41(3):540-543
    [275]Sreevatsan S, Pan X, Zhang Y, et al. Mutations associated with pyrazinamideresistance in pncA of Mycobacterium tuberculosis complex organisms.Antimicrobial Agents and Chemotherapy,1997,41(3):636-640
    [276]Hirano K, Takahashi M, Kazumi Y, et al. Mutation in pncA is a majormechanism of pyrazinamide resistance in Mycobacterium tuberculosis Tubercleand Lung Disease,1998,78(2):117-122
    [277]Lin S Y G, Probert W, Lo M, et al. Rapid detection of isoniazid and rifampinresistance mutations in Mycobacterium tuberculosis complex from cultures orsmear-positive sputa by use of molecular beacons. Journal of ClinicalMicrobiology,2004,42(9):4204-4208
    [278]Palomino J C, Martin A, Von Groll A, et al. Rapid culture-based methods fordrug-resistance detection in Mycobacterium tuberculosis Journal ofMicrobiological Methods,2008,75(2):161-166
    [279]Bardarov J S, Dou H, Eisenach K, et al. Detection and drug-susceptibilitytesting of M. tuberculosis from sputum samples using luciferase reporter phage:comparison with the Mycobacteria Growth Indicator Tube (MGIT) system.Diagnostic Microbiology and Infectious Disease,2003,45(1):53-61
    [280]Shen D, Zhu W, Nie L, et al. Behaviour of a series piezoelectric sensor inelectrolyte solution: Part I. Theory. Analytica Chimica Acta,1993,276(1):87-97
    [281]Reller L B, Weinstein M P, Woods G L. Susceptibility testing for Mycobacteria.Clinical Infectious Diseases,2000,31(5):1209-1215
    [282]Woods G L, Brown-Elliott B, Desmond E P, et al. Susceptibility testing ofMycobacteria, nocardiae, and other aerobic actinomycetes: approved standard.Wayne: NCCLS,2003; Vol.23.
    [283]Novoselov K, Geim A K, Morozov S, et al. Electric field effect in atomicallythin carbon films. Science,2004,306(5696):666-669
    [284]Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based compositematerials. Nature,2006,442(7100):282-286
    [285]Geng X, Niu L, Xing Z, et al. Aqueous‐processable noncovalent chemicallyconverted graphene–quantum dot composites for flexible and transparentoptoelectronic films. Advanced Materials,2010,22(5):638-642
    [286]Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphenenanosheet families for use in rechargeable lithium ion batteries. Nano Letters,2008,8(8):2277-2282
    [287]Bao Q, Zhang H, Yang J x, et al. Graphene–polymer nanofiber membrane forultrafast photonics. Advanced Functional Materials,2010,20(5):782-791
    [288]Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase andbiosensing for glucose based on graphene. Analytical Chemistry,2009,81(6):2378-2382
    [289]Tan L, Zhou K G, Zhang Y H, et al. Nanomolar detection of dopamine in thepresence of ascorbic acid at β-cyclodextrin/graphene nanocomposite platform.Electrochemistry Communications,2010,12(4):557-560
    [290]Wang Q H, Hersam M C. Nanofabrication of heteromolecular organicnanostructures on epitaxial graphene via room temperature feedback-controlledlithography. Nano Letters,2010,11(2):589-593
    [291]Wang X, Tabakman S M, Dai H. Atomic layer deposition of metal oxides onpristine and functionalized graphene. Journal of the American ChemicalSociety,2008,130(26):8152-8153
    [292]Xu Y, Zhao L, Bai H, et al. Chemically converted graphene induced molecularflattening of5,10,15,20-tetrakis (1-methyl-4-pyridinio) porphyrin and itsapplication for optical detection of cadmium (II) ions. Journal of the AmericanChemical Society,2009,131(37):13490-13497
    [293]Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reducedgraphene oxide as a transparent and flexible electronic material. Naturenanotechnology,2008,3(5):270-274
    [294]Yu A, Ramesh P, Itkis M E, et al. Graphite nanoplatelet-epoxy compositethermal interface materials. The Journal of Physical Chemistry C,2007,111(21):7565-7569
    [295]Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets andLangmuir–Blodgett films. Nature nanotechnology,2008,3(9):538-542
    [296]Berger C, Song Z, Li X, et al. Electronic confinement and coherence inpatterned epitaxial graphene. Science,2006,312(5777):1191-1196
    [297]Lim C X, Hoh H Y, Ang P K, et al. Direct voltammetric detection of DNA andpH sensing on epitaxial graphene: an insight into the role of oxygenated defects.Analytical Chemistry,2010,82(17):7387-7393
    [298]Campos-Delgado J, Romo-Herrera J M, Jia X, et al. Bulk production of a newform of sp2carbon: Crystalline graphene nanoribbons. Nano Letters,2008,8(9):2773-2778
    [299]Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene filmsfor stretchable transparent electrodes. Nature,2009,457(7230):706-710
    [300]Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrarysubstrates by chemical vapor deposition. Nano Letters,2008,9(1):30-35
    [301]Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniformgraphene films on copper foils. Science,2009,324(5932):1312-1314
    [302]Li X, Magnuson C W, Venugopal A, et al. Large-area graphene single crystalsgrown by low-pressure chemical vapor deposition of methane on copper.Journal of the American Chemical Society,2011,133(9):2816-2819
    [303]Gao L B, Ren W C, Zhao J, et al. Efficient growth of high-quality graphenefilms on Cu foils by ambient pressure chemical vapor deposition. AppliedPhysics Letters,2010,97(18):183109-183109-3
    [304]Liu M, Zhang Q, Zhao H, et al. Controllable oxidative DNAcleavage-dependent regulation of graphene/DNA interaction. ChemicalCommunications,2011,47(14):4084-4086
    [305]Liu J. Imparting polymeric properties to praphene panosheets by surfacemodification via π-π stacking. Australian Journal of Chemistry,2011,64(10):1414-1414
    [306]Bjo rk J, Hanke F, Palma C-A, et al. Adsorption of aromatic and anti-aromaticsystems on graphene through π π stacking. The Journal of Physical ChemistryLetters,2010,1(23):3407-3412
    [307]Akca S, Foroughi A, Frochtzwajg D, et al. Competing interactions in DNAassembly on graphene. PLoS One,2011,6(4): e18442
    [308]Mohanty N, Berry V. Graphene-based single-bacterium resolution biodeviceand DNA transistor: interfacing graphene derivatives with nanoscale andmicroscale biocomponents. Nano Letters,2008,8(12):4469-4476
    [309]Yang L, Li Y, Erf G F. Interdigitated array microelectrode-basedelectrochemical impedance immunosensor for detection of Escherichia c oliO157: H7. Analytical Chemistry,2004,76(4):1107-1113
    [310]Li A, Yang F, Ma Y, et al. Electrochemical impedance detection of DNAhybridization based on dendrimer modified electrode. Biosensors andBioelectronics,2007,22(8):1716-1722
    [311]Pan S, Rothberg L. Chemical control of electrode functionalization fordetection of DNA hybridization by electrochemical impedance spectroscopy.Langmuir,2005,21(3):1022-1027
    [312]Chen S H, Chuang Y C, Lu Y C, et al. A method of layer-by-layer goldnanoparticle hybridization in a quartz crystal microbalance DNA sensingsystem used to detect dengue virus. Nanotechnology,2009,20(21):215501
    [313]Kobori A, Horie S, Suda H, et al. The SPR sensor detecting cytosine-cytosinemismatches. Journal Of The American Chemical Society,2004,126(2):557-562
    [314]Fawcett N C, Craven R D, Zhang P, et al. QCM response to solvated, tetheredmacromolecules. Analytical Chemistry,1998,70(14):2876-2880
    [315]Feng K, Li J, Jiang J H, et al. QCM detection of DNA targets with single-basemutation based on DNA ligase reaction and biocatalyzed depositionamplification. Biosensors and Bioelectronics,2007,22(8):1651-1657
    [316]Chen Y, Nguyen A, Niu L, et al. Fabrication of DNA microarrays with poly(L-glutamic acid) monolayers on gold substrates for SPR imagingmeasurements. Langmuir,2009,25(9):5054-5060
    [317]Li X, Cai W, Colombo L, et al. Evolution of graphene growth on Ni and Cu bycarbon isotope labeling. Nano Letters,2009,9(12):4268-4272
    [318]Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electronphonon coupling, doping and nonadiabatic effects. Solid State Communications,2007,143(1–2):47-57
    [319]Gao L, Ren W, Li F, et al. Total color difference for rapid and accurateidentification of graphene. ACS nano,2008,2(8):1625-1633
    [320]Janek R P, Fawcett W R, Ulman A. Impedance spectroscopy of self-assembledmonolayers on Au (111): sodium ferrocyanide charge transfer at modifiedelectrodes. Langmuir,1998,14(11):3011-3018
    [321]Bard A J, Faulkner L R. Electrochemical methods: fundamentals andapplications.2nd Edition ed. New York: Wiley New York,1980; Vol.2.
    [322]Laviron E. General expression of the linear potential sweep voltammogram inthe case of diffusionless electrochemical systems. Journal of ElectroanalyticalChemistry and Interfacial Electrochemistry,1979,101(1):19-28
    [323]Yang R, Jin J, Chen Y, et al. Carbon nanotube-quenched fluorescentoligonucleotides: probes that fluoresce upon hybridization. Journal of theAmerican Chemical Society,2008,130(26):8351-8358
    [324]Varghese N, Mogera U, Govindaraj A, et al. Binding of DNA nucleobases andnucleosides with graphene. Chemphyschem,2009,10(1):206-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700