上转换发光基质-NaYF_4纳米粒子的反转胶束法合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的小尺寸效应、量子尺寸效应等特性使其在光、热、电、磁学性质等方面呈现出与常规材料不同的特性,近年来已开始应用于许多高科技领域。随着高科技领域生物芯片技术的崛起,上转换荧光纳米材料应用于制作该技术使用的荧光探针已逐渐成为新的研究热点。迄今为止,六方晶型NaYF_4为基质,Yb,Er共掺杂的NaYF_4;Yb,Er材料是发光效率最高的上转换荧光材料。
     目前,立方晶型NaYF_4的制备方法主要有水相共沉淀法、固液两相法等,已经可以得到分散良好的NaYF_4纳米级荧光材料。然而,六方晶型NaYF_4的合成条件还非常苛刻,已有报道的最低合成温度为160℃。
     本课题采用反转胶束法进行NaYF_4纳米晶的合成,以NaYF_4基准样的选择与制备为基础展开,着重研究了反应时间、反应温度、表面活性剂的浓度等影响因素对NaYF_4晶型的影响。本课题还通过ICP-AES元素分析测试,研究了反应开始之后水相中钇元素浓度的变化,并且结合产品的XRD图谱比对研究,取得了一些新的、很有意义的成果;(1)用反转胶束法高产量地制备出了粒径小、大小均一、分散良好的NaYF_4材料,合成出的最小NaYF_4纳米晶直径仅为约7纳米。(2)研究了各种影响因素对NaYF_4产品晶型的影响,并对反转胶束法合成NaYF_4的合成原理做了深入探究;
     (a)反应时间长短的变化不会造成NaYF_4产品晶型的明显变化;
     (b)反应温度远大于(高于20℃)油酸熔点(16.3℃)且低于油相有机溶剂的沸点时,反应温度不会对NaYF_4产品的晶型产生质的影响;而当反应温度略高于16.3℃时(低于20℃),产品NaYF_4可以被控制在立方晶型;但当反应温度明显低于16.3℃时,产品为无定形态;
     (c)温度大于16.3℃时,且该温度不影响油酸钠/油酸在油相中溶解度的前提下,NaYF_4产品中六方晶型与立方晶型量的比值随着油酸钠浓度的增加而增加;当油酸钠的浓度大于0.4mol/L时,在常温下,可以制备出纯六方晶型的NaYF_4纳米晶;
     (d)不同的油相有机溶剂具有不同的极性,极性不同使得它们对油酸钠/油酸的溶解能力不同,甲苯、环己烷、正己烷在不同温度下对油酸钠不同的溶解能力使得NaYF_4产品的晶型有所不同;
     (e)油相中的产品经过高温高压处理用后,NaYF_4颗粒的分散性仍然很好,大小仍然非常均一,且晶型没有改变的趋势;
     (f)高氯酸钇pH值的改变对NaYF_4产品的晶型没有明显影响;
     (g)另一种阴离子表面活性剂琥珀酸二异辛酯磺酸钠(AOT)无法起到与油酸钠相同的作用;
     (h)水相中离子强度的改变会影响表面活性剂的功能;
     (i)反胶束法制备的荧光材料依然具有很好的荧光特性。(3)对反转胶束法合成NaYF_4的反应原理进行了深入探讨;
     (a)油酸钠、油相、水相一起构成的反应物周围的微环境,这一微环境使得NaYF_4的生成速度相对水相合成变得缓慢得多;
     (b)基于ICP测试结果和对应的XRD图谱,对反转胶束法制备NaYF_4的反应原理进行了推测和论证。
     与常规的反胶束法相比,利用本方法制备出的基质材料除了具有大小均匀、分散良好、颗粒大小可控制等优点外,还具有产量高、产品晶型可控制等优点,这是传统反胶束法所不能达到的。
The properties of nanoparticles, such as small size effect, quantum size effect, etc., have equipped the nanomaterials with many unique features that make them quite different from the routine materials in optics, calorifics, electricity and magnetics, etc. Based on their special properties, nanoparticles have been applied in many high-tech fields recently.
     With the development of biochips, up-conversion fluorescent materials have gradually become a new research focus because of their potential applications as biochips. Until now, ytterbium and erbium co-doped hexagonal sodium yttrium fluoride (NaYF_4: Yb, Er) is among the most efficient up-conversion phosphors. Its potential applications in biological and medical fields have attracted many scientists.
     Up to now, the main methods to synthesize cubical type NaYF_4 are coprecipitation method, solid-liquid biphase method, etc. Well-dispersed cubical NaYF_4 nanocrystals have been achieved successfully. But the reaction conditions needed to gain hexagonal NaYF_4 nanocrystals are still tough, the lowest temperature needed is about 160℃.
     A special reverse micelle synthesis method is adopted in this paper to synthesize NaYF_4 nanocrystals. Our research begin with a well-chosen benchmark sample, and then makes extensive studies about the influences of reaction time, reaction temperature, surfactant's concentration, etc. on the NaYF_4's crystalline types. ICP-AES elementary analysis is also used to test the Y element's concentration variance. Together with XRD patterns' analysis, a lot of novel and meaningful achievements are gained:
     (1) Well-dispersed, homogeneous NaYF_4 fluorescent matrix nanocrystals have been synthesized by the special reverse micelle method with high yield. The smallest diameter achieved is only around 7 nm.
     (2) Many influence factors's effects on NaYF_4's crystalline type are investigated, and the outcome goes as follows:
     (a) The variance of reaction time will not affect NaYF_4's crystalline type obviously.
     (b) When the reaction temperature is between 20℃and certain organic solvent's boiling point, it will not affect NaYF_4's crystalline essentially; when the reaction temperature is a little bit higher then 16.3℃, NaYF_4's crystalline can be controlled at cubical form; but when the temperature is below 16.3℃, the product is in an amorphous state.
     (c) When the reaction temperature is above 16.3℃, and when, at this temperature, sodium oleate/oleic acid's solubility in oil is not affected, the ratio of hexagonal type to cubical type of NaYF_4 increases with the rise of sodium oleate's concentration. When sodium oleate's concentration is above 0.4 mol/L, under normal temperature, pure hexagonal nanocrystals are achieved.
     (d) Different organic solvents have different polarities, the differences cause their different solubilities to sodium oleate/oleic acid, and the differences cause different crystalline types.
     (e) When the products dispersed in oil phase are collected for high-temperature, high-pressure treatment, NaYF_4 nanoparticles are still well-dispersed and homogeneous, with crystalline type unchanged.
     (f) Y(ClO_4)_3's pH value variations won't affect NaYF_4's crystalline type.
     (g) Another anionic surfactant AOT can't take sodium oleate's place to achieve similar experimental outcomes.
     (h) Ionic strength in water phase will affect the surfactant's function. (i) Fluorescent materials synthesized by this special reverse micelle methed still have good up-conversion luminescence properties.
     (3) The reaction principles to synthesize NaYF_4 is discussed:
     (a) The microenvironments formed by oil, water and surfactant have made the formation of NaYF_4 nanoparticles much slower, compared with the ones formed in aqueous solution.
     (b) The reaction mechanisms are also demonstrated according to the ICP testing results and corresponding XRD patterns.
     By this special reverse micelle method, not only well-dispersed, homogeneous and size-variable nanocrystals can be processed like the normal reverse micelle method. Controllable crystalline type and high-yield can also be achieved under normal temperature.
引文
[1]江祖成,蔡汝秀,张华山,稀土元素分析化学,第二版,北京,科学出版社,2000,1-2
    [2]F.C.Pallila,A.K.Levine,YVO4;Eu;a highly efficient red-emitting phosphor for high pressure mercury lamps,Appl.Optics,1966,5;1467-1468
    [3]倪嘉绩,洪广言,稀土新材料及新流程进展,第一版,北京;科学出版社,1998年,178-184
    [4]苏勉曾,化工百科全书,第四卷,北京,化学工业出版社,1993,1-39
    [5]M.Tanaka,Y.Nishisu,M.Kobaysshi,et al.J.Non-crystal.Solids,2003,318;174-185
    [6]李强,高镰,严东生,稀土化合物纳米荧光材料研究的新进展,无机材料学报,2001,16(1);17-22
    [7]高界铭,张喜燕,周红平等,稀土化合物纳米粉的研究进展,材料导报,2002,16(11);39-41
    [8]刘行仁,我国稀土发光材料科学技术发展回顾与展望,世界科技研究与发展,2003,25(1);79-83
    [9]A.K.Levine,F.C.Pallila,A new highly efficient red-emitting cathodoluminescent phosphor(YVO_4;Eu)for color television,Appl.Phys.Letters,1964,5;118-120
    [10]G Blasse,B.C.Grabmaier,Luminescent materials,Spring-Verlag Berlin Heidelberg,1994
    [11]郝志然,稀土在无机晶体中的发光,发光与显示,1976,(4);8-29
    [12]朱邦芬,黄昆对物理学的贡献,发光学报,2003,24(1);1-7
    [13]孙家跃,杜海燕,胡文祥,固体发光材料,北京,化学工业出版社,2003,155
    [14]G Blasse,Luminescence of inorganic solids;From isolated centers to concentrated systems.Prog.Solid.State.Chem.,1988,18;79-171
    [15]P.A.M.Berdowski and G Blasse,Luminescence and energy transfer migration in a two-dimensional system;NaEuTiO_4,J.Lumin.,1984,29;24 3-260
    [16]Fu Wen Tian,G Fouassier and P.Hagenmuller,Influence of energy migration on the luminescence of Li_6Eu(BO_3)_3,a material with predominant one-dimensional interactions,J.Phys.Chem.Sol.,1987,48(3);245-248
    [17]M.Buijs,J.I.Vree and G Blasse,Energy migration in one-dimensional Li_6Eu(BO_3)_3,Chem.Phys.Let.,1987,137(4);381-385
    [18]F.Kellendonk and G Blasse,Luminescence and energy transfer in EuA_(13)B_4O_(12),J.Chem.Phys,1981,75(2);561-571
    [19]C.C.Toradi,C.Page,L.H.Brixner,et al.Structure and luminescence of some CsLnW_2O_8,J.Solid State Chem.,1987,69(1);171-178
    [20]M.Buijs,A.Meijerink and G.Glasse,Energy transfer between Eu3+ ions in a lattice with two different crystallographic sites;Y_2O_3;Eu~(3+),Gd_2O_3;EU~(3+)and Eu_2O_3,J.Lumin.1987,37;9-20
    [21]M.Buijs,G Blasse and L.H.Brixner,Nonresonant energy transfer in a system Rev.B,1986,34(12),8815-8821
    [22]Van Vliet J P M,van der Voort D,G Blasse,Luminescence and energy migration in Eu~(3+)- containing scheelites with diferent anions.J.Lumin.1989,42;305-316
    [23]Smit W M A,G Biasse,Luminescence and energy migration in the garent Gd_3Li_3Te_2O_(12)doped with several rare earths and uranium,J.Solid.State.Chem.,1986,63(2);308-315
    [24]GBlasge,H.S.Kiliaan,A.J.de Vries.Study of the energy transfer process in sensitized gadolinium phosphors.J.Less-Common Met.,1986,126;139-146
    [25]A.J.De Vries,B.P.Minks,G Blasse.Evaluation of the energy migration in GdAl_(31)B_4O_(12).J.Lumin.1988,39(3);153-160
    [26]张林,张俊英,张中太,“量子切割”一种实现高效下转换的新途径,液晶与显示,2003,18(1);21-25
    [27]魏亚光,施朝淑,戚泽明等,Gd_2O_3(Ce_(3+),Eu_(3+))微晶中稀土离子间的级联能量传递,发光学报,2001,22(3);243-247
    [28]G.Wakefield,H.(?).Keron,P.J.Dobson,et al.Synthesis and properties of sub-50nm europium oxide nanoparticles,J.Coloid Interface Sci.,1999,215;179-182
    [29]张思远,晶体中f6组态的荧光和点对称性,发光与显示,1983,3;31-39
    [30]李建宇编,稀土发光材料及其应用,第一版,北京二化学工业出版社,2003,14-16
    [31]徐东勇,减竞存,上转换激光和上转换发光材料的研究进展,人工晶体学报,2001,30(2);203-10.
    [32]杨建虎,戴世勋,姜中宏,稀土离子的上转换发光及研究进展,物理学进展,2003,23(3);284-298
    [33]F.Heine,E.Heumann,T.Danger,et al.Green upconversion continuous wave Er~(3+);LiYF_4 laser at room temperature.Appl.Phys.Lett.,1994,65;383-384
    [34]谭浩,宋峰,苏静等,Er3+,Em3+共掺的NaY(WO4)2晶体的光谱分析和上转 换发光,物理学报,2004,53(2);631-635
    [35]陈晓波,刘凯,庄健等,在ErYb;Y_2O_3的上转换发光研究,物理学报,2002,
    [36]J.Silver,M.T.Martinez-Rubio,T.G Ireland,et al.The Effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and yterbium co-doped yttrium oxide phosphors,J.Phys.Chem.B,2001,105;948-953
    [37]Kewal K Jain,et al.Post-genomic applications of lab-on-a-chip and microarrays.TRENDS in Biotechnology,2002,20(5);
    [38]Ann E Grow,Laurie L Wood,et al.New biochip technology for label-free detection of pathogens and their toxins.Journal of Microbiological Methods,2003,53;221
    [39]徐东勇,臧竞存,上转换激光和上转换发光材料的研究进展.人工晶体学报,2001,30(2);
    [40]Heine F,Heumann E,Danger T,et al.Green Up-conversion Continuous Wave Er~(3+);LiYF_4 Laser at Room Temperature.Appl Phys Lett,1994,65(4);383
    [41]Patel D N,Reddy R B,Nash-Stevenson S K.Diodepumped Violet Energy Up-conversion in BaF_2;Er~(3+).Appl Opt,1998,37(33);7805
    [42]Guang-Shun Yi,Gan-Moog Chow,Water-Soluble NaYF_4;Yb,Er(Tm)/NaYF_4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence,Chem.Mater.2007,19,341-343
    [43]Fujiwara H,Sasaki K.Up-conversion Lasing of a Thulium-ion-doped Fluorozirconate Class Microsphere.J Appl Phys,1999,85(5);2385
    [44]Grubb S G,Bennett K,WmCannon R S,et al.CW room-temperature blue Up-conversion Fiber Laser.Electronics Lett,1992,28;1243
    [45]陈小波,李美仙.966nm半导体激光激发下ErYb;ZBLAN玻璃的上转换特征饱和现象.光谱学与光谱分析,2001,21(3);271
    [46]袁放成,阳效良,刘政威.氟氧化物玻璃中稀土ErYb与HoYb能量上转换特性研究.光谱学与光谱分析,2001,21(6);755
    [47]曹玉琳.红外上转换材料在防伪技术中的应用.激光与红外,2001,31(6);
    [48]陈述春,戴凤妹.电子俘获材料的光学性质及光存储机制研究.光学学报,1995,6;749
    [49]Frans van de Rijke,Henry Zijlmans,Shang Li,et al.Upconverting Phosphor Reporters for Nucleic Acid Microarrays.Nature Publishing Group,2001
    [50]Zarling D A,et al.Up-converting reporters for biological and other assays using laser excitation techniques.US,1997,5;674
    [51]Zijlmans H J M A A,et al.Detection of cell and tissue surface antigens using up-converting phosphors;a new reporter technology.Anal Biochem,1999,267;30
    [52]Tuan Vo-Dinh,et al.Development of a DNAbiochip;principle and applications.Sensors and Actuators B,1998,51;52
    [53]马立人,蒋中华.生物芯片.北京;化学工业出版社,2000
    [54]蒋中华,张津辉,等.生物分子固定化技术及应用.北京;化学工业出版社,1998
    [55]Ratna Tantra,Jonathan Cooper,et al.Imaging of protein arrays and gradients using softlithography and biochip technology.Sensors and Actuators B,2002,82;233
    [56]Tuan Vo-Dinh,Guy Griffin,et al.Multi-functional biochip for medical diagnostics and pathogen detection.Sensors and Actuators B,2003,90;104
    [57]Mikhail Soloviev,Oxford GlycoSciences,et al.EuroBiochips;spot the difference.DDT,2001,6
    [58]Satomi Kato,Gabriella Lindergard,et al.Utility of the Cryptosporidium oocyst wall protein(COWP)gene in a nested PCR approach for detection infection in cattle.Veterinary Parasitoloty,2003,111;153
    [59]Patra G,Sylvester P,et al.TEMS Immunol Med Microbiol,1996,15;223
    [60]Vo-Dinh T,Isola N R,et al.Development of a multiarray biosensor for DNA diagnostics.Instrum Sci Tech,1998
    [61]Tuan Vo-Dinh,et al.Development of a DNA biochip;principle and applications.Sensors and Actuators B,1998,51;52
    [62]Mehta D S,Lee C Y,et al.Multipoint parallel excitation and CCD-based imaging system for high-throughput fluorescence detection of biochip micro-arrays.Optics Communications,2001,190;59
    [63]Steemers F J,Ferguson J A,Walt D R,et al.Nature Biotechnol,2000,18;91
    [64]Walt D R,et al.Science,2000,287;451
    [65]衣光舜等.上转换荧光纳米探针的合成及用于生物分析.广西师范大学学报(自然科学版),2003.10,21(4);250-251.
    [66]Yang Wei,Fengqi Lu,Xinrong Zhang,and Depu Chen* Synthesis of Oil-Dispersible Hexagonal-Phase and Hexagonal-Shaped NaYF_4;Yb,Er Nanoplates,Chem.Mater.2006,18;5733-5737
    [67]Leyu Wang; Yadong Li,Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals. Chem. Mater. 2007, 19, 727-734
    [68]A.Kasuya, R. Sivamohan, I. Dmitruk, V. Romanyuk, et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Materials 2004,3 (2):99-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700