广西大厂锢锌精矿无铁渣提取锢锌工艺和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用无铁渣湿法炼锌新工艺处理广西大厂铟锌精矿,不仅使铟、锌冶炼回收率大幅提高,而且取消除铁过程,消除铁渣对环境的危害,并将精矿中的铁直接加工成高价值的软磁铁氧体材料。本文研究了该方法部分主要过程的工艺和理论问题,得出了一些有意义的结果,对该工艺的完善和应用将具有重要作用。
     首先研究了锌焙砂中性浸出渣高温高酸浸出动力学;考察了浸出温度、浸出剂的初始浓度、中浸渣的初始粒度、搅拌强度及金属离子浓度对Zn浸出速率的影响。结果表明,其浸出过程可用收缩核动力学模型描述,该模型较好地说明了浸出机理。
     由于该中浸渣除含较多的ZnFe_2O_4外,还富含ZnO等其它锌物种,致使该浸出过程分为三个阶段。第一阶段(≤15min),主要为ZnSO_4及ZnO的溶解,浸出速度很快(浸出率>35%),第二阶段(15~60min)主要为ZnO等易溶锌物种的浸出,其表观活化能为51.792KJ/mol,属化学反应控制,H~+、Zn~(2+)及Fe~(3+)的反应级数分别为1.0771,-1.764和-1.391。第三阶段(60~300min)主要为ZnFe_2O_4及ZnS的溶出,其表观活化能为20.72KJ/mol,属混合控制,H~+、Zn~(2+)及Fe~(3+)的反应级数分别为0.3993,-0.3767及-0.4456。
     其次研究了硫化锌精矿作还原剂的中浸渣的还原浸出以及以软锰矿作锰源的氧化还原浸出过程,还原浸出优化条件为:硫化锌精矿
    
    为理论量的1.03倍,温度为368K,时间为5h,硫化锌精矿分四批加
    入,始酸酸度为2259/L,规模1009中浸渣/次。氧化浸出优化条件
    为:时间为sh,温度为368K,软锰矿加入量为259/次,始酸酸度)
    2509/L。在优化条件下锢、锌、铁的浸出率分别为96%、%.25%及
    86%,Fe3+的还原率)93%。对铁屑进一步还原Fe3+及置换除铜过程
    研究结果表明,除铜率为94.61%,产出品位高达74.20%的铜精矿。
    最后对萃取提锢过程进行了较详细的研究,在有机相组成分为30%
    PZO4+70%磺化煤油;萃取温度为室温(298K);萃取级数为3级;相
    比0/A=3:1;萃取时间为smin及反萃锢条件为:O/A二15:1,6mol.L一’
    HCI为反萃剂,三级反萃,室温,混合沉清分别为smin的条件下,
    锢的萃取率和反萃率都为99%。并用锌板置换锢,置换率为99%,
    从焙砂到海绵锢,锢的总回收率达93%以上,比常规过程提高20%。
A new hydrometallurgical process without ferric residue was proposed for treating zinc sulfide concentrate bearing indium from Dachang in Guangxi. Adopting this new process, the recovery ratios of indium and zinc increased greatly. At the same time, this process can also prevent the environmental pollution of ferric residue because of the cancellation of process removing iron. Iron in the zinc sulfide concentrate was used to produce high valuable soft magnetic ferrite materials dierctly. In this paper, the technologies and the theories of the main stages in the new process have been investigated, which is of great significance to the maturity of this new process and its practical application.
    The first kinetics of leaching the residues from the neutral leaching process of zinc calcine with sulphuric acid of high concentration at high temperature was investigated for examining the effects of reaction temperature, concentration of reagents, the residue granule size, agitation rate and concentration of metal ions on the leaching process. The results show that the leaching process can be simulated with a shrinking core model. Because the residue contains of not only zinc ferrite, but also zinc oxide and other zinc species, the leaching process is composed of three stages distinguished by the leaching time. During the first stage (
    
    
    15min),leaching is very fast for solving ZnSO4(s) and part of ZnO. During the second stage (15~60min), zinc oxide and other zinc species are soluted chiefly with the of 51.792KJ/mol. The leaching rate is controlled by the surface chemical reaction .The reaction progression of H+,Zn2+and Fe3+ is 1.0771,-1.764 and -1.391,respectively. While in the third stage (60~300min), zinc ferrite and zinc sulfide were mainly leached out slowly with the activation energy of 20.72KJ/mol, The leaching rate is controlled by the mixed surface chemical reaction and outside diffiision,the reaction progression of H+,Zn2+and Fe3+ is 0.3993, -0.3767,and -0.4456, respectively.
    On the other hand, The reductive leaching the residue from neutral leaching by using zinc sulfide concentrate as reductive agent has been experimented, to be followed by the oxidative leaching by using pyrolusite as oxidation agent and manganese source. The optimum conditions of the reductive leaching with the scale of 400 g/time are following: the amount of zinc sulfide concentrate to be 1.03 times of the theoretical amount by addition in four batches, temperature of 368K, time of 5 hours, and the begot acidic concentration being 225 g/L. That of the oxidative leaching with the scale of 100 g/time are as: the amount of pyrolusite being 25 g/time, the begot acidic concentration to be more than or equal to 250 g/L, temperature of 368K, and time of 5 hours. Under the optimum conditions, the recovery ratios of indium, zinc and iron were
    
    96%, 96.25%, and 86% respectively. The reductive ratio of ferric ions is more than 93%. The results obtained from the experiments of the reduction by iron powder and removing copper show that the removing ratio of copper is 94.61%, the content of copper concentrate produced is higher than 74.20% .
    At last, the extraction to recover indium was researched in detail. Under the optimum conditions such as the componnent of the organic phase being D2EHPA of 30% and kerosene 70%, extraction temperature of 298K, progressions of 3, ratio of O/A to be 3:1, and extraction time being 5 min, the extractive ratio of indium and its stripping ratio are 99% and 99% respectively. By using zinc plate to cement indium, the displament ratio is 99% . The total recovery ratio of indium is 95%, from zinc calcline to spongy indium, which increased by 25% compared to the routine process.
引文
[1] 梅光贵,王德润,周敬元,等.湿法炼锌学.长沙:中南大学出版社,2001.32~33.140~143
    [2] 彭容秋.有色金属提取冶手册 (锌镉铅铋).北京:冶金工业出版社,1992.1~115
    [3] 徐鑫,魏旭.锌冶金学.昆明:云南科技出版社,1994.8,1~35
    [4] 赵天从.重金属冶金学(下册).北京:冶金工业出版社,1981.1~105
    [5] 彭容秋.重金属冶金学.长沙:中南工业大学出版社,1998.277~308,355~360
    [6] 陈志强.论降低长沙锌厂竖罐渣含锌的主要途径.湖南有色金属,1999,15(1):26~29
    [7] 胡新.铅锌密闭鼓风炉熔炼技术 10年来的进展.有色冶炼,1994.(4):11~14
    [8] 蔡军林.韶冶铅锌密闭鼓风炉技术改造.有色冶炼,1998,(4):24~28
    [9] 李夏林.韶冶铅锌密闭鼓风炉 Ⅰ系统技术改造实践.有色冶炼,2001.(5) 12~15
    [10] 匡立春.锌焙砂中铁的浸出与利用.湖南有色金属,2000,(6):17~20
    [11] 李军旗,江声扬.高铁锌矿的湿法处理.贵州工学院学报,1996,25(1):48~52
    [12] 马荣骏.湿法炼锌中的除铁问题.湖南有色金属,1993,(3):161~164
    [13] 邱电云,马荣骏.热酸浸出湿法炼锌中铁矾渣的处理方法.湖南有色金属,1994.(3):158~162
    [14] 刘中清,唐谟堂.硫酸锌溶液低温锑盐除钴研究.湿法冶金,1999,(4);22~27
    [15] 刘志宏,唐朝波,张多默,等.锑盐除钴净化工艺研究.中南工业大学学报(自然科学版),2000.(3):225~227
    [16] 闵华阳,李冰.关于湿法炼锌净化工序几个问题的探讨.有色矿冶,2000,(2):26~28
    [17] Elgersma F. Witkamp G J. Van Rosmalen G. Simultaneous dissolution of zinc ferrite and precipitation of ammonium jarosite. hydrometallurgy. 1993. 34(1): 23~27
    [18] Dutrizac J E. Effectiveness of jarosite species for precipitating sodium jarosite. JOM. 1999. 51(12): 30~32
    [19] Seyer Sylvain. Chen Tzong T. Dutrizac John E. Jarofix: Addressing
    
    iron disposal in the zinc industry. JOK 2001. 53(12): 32~35
    [20] J E Dutrizac. The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite. Hydrometallurgy. 1996. 42(3): 293~312
    [21] 王顺才,张豫.热酸浸出黄钾铁矾工艺的生产实践.有色冶炼,2001,(2):19~22
    [22] 李夏湘,何醒民.论常舰法与热酸浸出黄钾铁矾法炼锌工艺流程的选择.湖南有色金属,2000,(6):15~16
    [23] 金忠.浸出热酸黄钾铁矾工艺的改进与实践.有色冶炼,2002,(1):9~11
    [24] Mario Pelino, Carlo Cantalini, Carlo Abbruzzese, et al. Treatment and recycling of goethite waste arising from the hydrometallurgy of zinc, Hydrometallurgy, 1996, 40(1-2): 25~35
    [25] Gord A R. Pickering R W. Improved leaching technology in the electrolytic zinc industry. Metallurgical Transactions B(process Metallurgy). 1975, 6B(1): 43~53
    [26] 林书英.仲针铁矿法在温州冶炼厂锌技改工程中的应用.有色金属(冶炼部分),1996,(5):4~6
    [27] 张元福,陈家蓉,黄光裕,等.针铁矿法从氧化锌烟尘浸出液中除氟氯的研究.湿法冶金,1999,(2):36~40
    [28] 章燕萍.锌高温焙砂热酸浸出-锌精矿还原-针铁矿法沉铁的湿法炼锌工艺研究.湖南有色金属,1990,(5):38~42
    [29] Cheng T C-M, Demopoulos G P. Analysis of the hematite precipitation process from a crystallization point of view Author Affiliation. TMS Annual Meeting, 1997. 599~617
    [30] Dutrizac J E. Physical chemistry of iron precipitation in the zinc industry. IEEE International Conference on Acoustics. 1979 Metall Soc AIDE. 1980. 532~564
    [31] Jankola W A. Zinc pressure leaching at Cominco. Hydrometallurgy, 1995. 39(1-3): 63~70
    [32] B D Krysa. Zinc pressure leaching at HBMS. Hydrometallurgy, 1995. 39(1-3): 71~77
    [33] Ozberk E. Jankola W A. vecchiarelli M. et al. Commercial operations of the Sherritt zinc pressure leach process. Hydrometallurgy,
    
    1995. 39(1-3): 49~52
    [34] Ozberk E. Collins M J. Makwana M. et al. Zinc pressure leaching at the Ruhr-Zinc Refinery. Hydrometallurgy, 1995. 39(1-3): 53~62
    [35] 杨大锦,廖元双,徐亚飞,等.锌冶金工艺概述.云南冶金,2002,31(6):22~24
    [36] 高云岁,刘德祥.锌工业的良机.世界有色金属,1997,(11):15~19
    [37] 傅作健,王辉.方兴未艾的中国铅锌工业.有色金属(冶炼部分),1996,(1):4~10
    [38] 张乐如.我国炼锌能耗与余热利用.有色金属(冶炼部分),1996,(3):6~10
    [39] 王子谦.新型火法冶法—等离子熔炼法.国外矿冶,1984,(1):30~34
    [40] 罗少连.炼锌技术发展动向述评.第一届有色金属冶炼年评报告会议论文集,1987.28~42
    [41] SCANDUST粉尘冶炼厂,上海冶金情报,1997,(5):51~53
    [42] Terome Feiman,刘述临,金估民译.等离子体在冶金中的应用.北京:北京工业大学出版社,1989.314~319
    [43] 竺培显,等.锌工业的发展与等离子炼锌.昆明理工大学学报,1998,23(5):108~113
    [44] Gray P M J. Warner zinc process Source. Proceeding of the International Symposium on zinc. Publish by Australasian Inst of mining and Metallurgy. 1993: 483
    [45] Gray Phillip. Warner process. Mining Magazine. 1992. 166(1): 14
    [46] 石西昌,赵瑞荣.Zn~(2+)-Cl-NH_3-CO_3~(2-)-H_2O 系的热力学分析.中南工业大学学报,1997,(29):193~196
    [47] 杨新生.氨浸过程浅析.有色矿冶,1993,(1):34~38
    [48] 柯家骏,陈劲松.湿法冶金中金属-氨络合物体系平衡的研究.有色金属(冶炼部分),1983,(4):40~46
    [49] 江培海.络合物体系电解制锌粉.有色金属 (冶炼部分),1998,(6):14~17
    [50] 唐谟堂,鲁君乐.Zn(Ⅱ)-NH_3-(NH_4)_2SO_4-H_2O 系的络合平衡.中南矿冶学院学报,1994,25(6):701~705
    [51] 唐谟堂,欧阳民.硫铵法制取等级氧化锌.中国有色金属学报,1998,8(1):118~121
    [52] 杨声海.Zn(Ⅱ)-NH_3-NH_4Cl-H_2O 体系制备高纯锌理论及应用:[博士学位
    
    论文].长沙:中南大学,2003.70~80
    [53] Olper Oarco, Fracchia Pier Luigi, Maccagni Massimo. Process for recovering zinc and lead from flue dusts from electrical steel worksand for recycling said purified metals to the furnace, and installation for implementing said process. EPO551155Al, 1993
    [54] Olper M. EZINEX process. TMS Annual Meeting. TMS. Published by Minerals, Metals & Materials Society(TMS): 1994, 513
    [55] Olper M. EZINEX process: A new and advanced way for electrowinning zinc from a chloride solution. Proceedings of the International Symposium on Zinc. Publish by Australasian Inst of Mining & Metallurgy. 1993: 491
    [56] Olper M, Maccagni M. Electrolytic zinc production from crude zinc oxides with the Ezincx Process. 2000 TMS Fall Extraction & Processing, Pittsburgh, 2000
    [57] 邓良勋,吴保庆.络合物电解制锌.有色金属(冶炼部分),1996,(3):16~18
    [58] 邓良勋,吴保庆.络合物电解制锌.ZL93104303.4,1997
    [59] Figueiredo J. M. etal. Zinc and lead, 1995: 151~160
    [60] J. st-pierre, Dominique. Journal of Applied Electrochemistry, 1986, (16): 447~456
    [61] J. st-pierre, Dominique. Journal of Applied Electrochemistry, 1990, (20): 163~165
    [62] 夏光祥,方兆珩.高铁硫化锌精矿直接浸出新工艺研究.有色金属(冶炼部分),2001,(3):8~10
    [63] 赵中伟,赵天从,李洪桂,等.机械活化对硫化锌精矿浸出动力学的影响.有色金属,1995,47(2):81~83,107
    [64] palercia PI. Dutrizac JE. Hydrometallurgy, 1991, 26 (2): 211~232
    [65] Blaz P, Ebert 5. Hydrometallurgy, 1991, 27(2): 141~150
    [66] 杨显万,等.冶金溶液热力学数据计算手册.北京:冶金工业出版社,1979
    [67] 李军旗.硫化锌精矿和软锰矿同时浸出机理.有色金属,1996,48(2):90~93
    [68] 李军旗.几种因素对硫化锌精矿、软锰矿同时浸出的影响.贵州工业大学学报(自然科学版),2000,29(3):10~14
    [69] 莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987,208
    [70] 朱炳辰.化学反应工程.北京:化学工业出版社,1998,228~230
    [71] 李绍芬.化学反应工程.北京:化学工业出版社,2000,319~321
    
    
    [72] 傅崇说.有色冶金原理.北京:冶金工业出版社,1993,193~197
    [73] 陈世倌.置换过程的电化学和工艺分析.上海有色金属,1996,17(1):36~41
    [74] 王光龙,P.OZIL.Cu/Zn 系统电化学置换过程的动力学研究及放大.化学反应工程与工艺,2003,19(1):83~88
    [75] 宫春田.从置换过程中提高粗铟质量的途径.有色矿冶,1994(3):22~27
    [76] 刘祥萱,杨文斌,杨绪杰,等.酸性含磷萃取剂萃铟机理及性能规律研究.有色金属(冶炼部分),1998,(4):33~36
    [77] 戴学瑜.某冶炼厂铟系统设计.稀有金属与硬质合金,2000,142(9):26~30
    [78] 王令明.来冶铟系统技改设计思路浅述.湖南有色金属,2002,18(2):17~33
    [79] 薛红,刘兴芝,宋玉林,等.二(2—乙基己基) 单硫代膦酸在硫酸体系萃取铟.广东有色金属学报,1994,4(1):45~48
    [80] 王作森.铟萃取原液净化工艺研究.稀有金属,1995,19(6):416~419
    [81] 马荣骏.热酸浸出针铁矿除铁湿法炼锌中萃取法回收铟.湿法冶金,1997,62(2):58~61
    [82] 马荣骏.溶剂萃取在湿法冶金中的应用.冶金工业出版社,1979,164~225.35~125
    [83] 范元俊.铟萃取工艺条件的探讨.株冶科技,2001,29 (1):18~13
    [84] 刘兴芝,杨家振,康艳红,等.金属铟的溶剂萃取热力学研究.辽宁大学学报(自然科学版),1993,20 (2):51~57
    [85] 沈奕林,覃庶宏,熊志军.铁矾渣的处理及萃取提铟新工艺研究.有色金属(冶炼部分) 2001,(4):33~35
    [86] 肖金娥,范元俊.我厂铟锗回收工艺的改进.株冶科技,1999,27 (2):4~7
    [87] 烟伟,蔡万玲.混酸浸出混合铜矿的动力学研究.湿法冶金,1999,(4):49~53
    [88] 烟伟,蔡万玲.混合铜矿酸浸动力学实验与计算.化工冶金,2000,21 (3):298~301
    [89] 杨保俊,于少明,单承湘.蛇文石硫酸浸出过程动力学研究.硅酸盐学报,1999,27(1):65~70
    [90] 胡天觉,曾光明,袁兴中.湿法炼锌废渣中硫脲浸出银的动力学.中国有色金属学报,2001,11(5):933~937
    
    
    [91] 张斌,姜涛,陈启元,等.银锰矿一步浸出动力学探讨.矿产保护与利用,2001,(2):43~46
    [92] 张成刚,郑少华,杜长山,等.钛铁矿硫酸浸出动力学研究.化学反应工程与工艺,2000,16(4):319~325
    [93] 李洪桂.湿法冶金学.长沙:中南大学出版社,2002.69~95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700