负脉冲电晕放电NO脱除反应动力学过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用针—板电极负脉冲电晕放电实验系统,采用色散荧光发射光谱及时间分辨光谱方法,对电晕放电等离子体特性及大气压NO脱除反应动力学过程进行了实验研究,得到了有意义的研究结果。在对负脉冲电晕放电等离子体特性的研究中,根据跃迁谱线荧光强度正比于激发态粒子数的原理,通过测量不同激发态能级到同一低态能级跃迁谱线的相对荧光强度,就会得到等离子体电子温度和分子激发振动温度的有关信息。研究结果表明,当其它实验条件一定时,电晕放电等离子体的平均电子温度Te随着脉冲峰值电压或样品气压的改变而呈现出近线性的变化趋势。等离子体的分子激发振动温度Tv随着脉冲峰值电压的升高或样品气压的降低先升高至一极大值,而后随峰值电压的继续升高或样品气压的降低而下降。并且,在负电晕放电同一放电脉冲中,有效电子温度Te和分子激发振动温度Tv都随放电时间呈现先升高后下降的趋势,且两者在时间轴上都提前于放电电流的变化,原因就是放电区电场变化优先于电流变化。在上述研究的基础上,对大气压纯NO负脉冲电晕放电的荧光发射谱进行了实验测量,通过对其进行归属,确定了纯NO负脉冲电晕放电过程中产生的活性粒子的指纹特征跃迁谱线,进而对这些活性粒子的指纹特征跃迁荧光谱线进行了时间分辨测量,从而得到了它们在放电过程中的时间行为特性,以此分析了NO电晕放电脱除反应动力学过程。研究结果表明:由于NO特殊的电子壳层排布,在脉冲电晕放电过程中,NO分子首先与高能电子发生非弹性电离碰撞,变成NO+离子,随后NO+解离成N+和O;N+离子在向阴极运动过程中再与电子结合成激发态N原子,继而和其它的N原子结合成为激发态N2;而O原子则与其它O原子结合成为O2。这是最理想的NO脱除反应路径。此结果与人们对多组分气体中NO的电晕放电脱除过程的推断有很大不同,有待于对多组分气体中NO的脱除反应动力学过程进行深入的实验研究。本文所得结果对多组分气体脉冲电晕放电脱除NO的反应动力学研究及脱除效率的进一步提高具有重要的参考价值。
Plasma’s characteristics and chemical reaction kinetics of NO in pulse corona discharge with needle-plane electrode were studied by means of optical emission spectroscopy and time-resolved spectrum. The electron temperature and vibrational temperature are obtained by using the intensity ratio of two spectrum lines. The results show that, the electron temperature and the vibrational temperature in pulse corona discharge have different changing tendency. The former increases when increasing discharge voltage or decreasing sample pressure, yet the later goes up to a maximum and then fall with the increase of discharge voltage or decrease of sample pressure. The electron temperature and vibrational temperature both go up primely and then come down with the discharge time, and both of them change ahead of the change of discharge current, for which the reasonable explanation is that the change of electric field are ahead of the change of discharge current. Based on these results, the dactylogram spectrum of free radicals and gases, which are produced in the process of discharge are confirmed by analyzing the fluorescence spectrum of pure NO in negative pulse corona discharge at atmospheric pressure, and then time behaviors of these particles are studied by analyzing these dactylogram spectrum. The results show that, NO molecule turns to NO+ ion after colliding with a high-energy electron, and then the NO+ ion breakdown to N+ and O. Subsequently, the N+ ion turns to N atom after absorbing an electron and then combines with another N atom, the O atom turns to O2 molecule when combining with another O. This is an ideal way to removal NO. The chemical reaction kinetics of pure NO in pulse corona discharge is different to that of the system which has other components except NO, so it is expected to be investigated further. The results are believed to be of great importance for the study on the chemical reaction kinetics of several components system and the increasing of NO removal rate.
引文
[1]. 胡志强,甄汉生,施迎难,《气体电子学》,电子工业出版社,1985,P.124~126.
    [2]. Leonard G,Mitchner M,Self S A,Particle transport in electrostatic precipitators,Atmospheric Environment,1980,Vol. 14,No. 11,1289-1299
    [3]. Xu D X,Li J,Wu Y,Wang L H,Sun D W,Liu Z Y,Zhang Y B,Discharge characteristics and applications for electrostatic precipitation of DC corona with spraying discharge electrodes,Journal of Electrostatics,2003,Vol. 57,No. 3-4,217-224
    [4]. Chen J H,Davidson J H,Ozone production in the positive DC corona discharge: Model and comparison to experiments,Plasma chemistry and Plasma processing,2002,Vol. 22,No. 4,495-522
    [5]. Thomas J. Manning,Jerry Hedden,Gas mixtures and ozone production in an electrical discharge,Ozone Science & Engineering,2001,Vol. 23,No. 2,95-103
    [6]. Eliasson B,Kogelschatz U,Nonequilibrium volume plasma chemical processing,IEEE Trans. on plasma Sci,1991,Vol. 19,No. 6,1063-1077
    [7]. Masuda S, Hosokawa S, Surface treatment of plastic material by pulse corona induced plasma chemical process-PPCP, IEEE Trans Ind Appl, 1994,Vol. 30,No. 2,377-380
    [8]. Galkimberti I, Impulse corona simulation for flue gas treatment, Pure & Appl Chem, 1988,Vol. 60,No. 5,663-674
    [9]. Masuda S, Control of NOX by positive and negative pulsed corona discharge, IEEE Trans Ind Appl, 1990,Vol. 26,No. 2,374-383
    [10]. Toshiaki Yamamoto, Chen-Lu Yang, Michael R. Beltran, Zhorzh Kravets, Plasma assisted chemical process for NOX control, IEEE Trans Ind Appl, 2000,Vol. 36,No. 3,923-927
    [11]. Shimizu K, Oda T, DeNOX process in flue gas combined with nonthermal plasma and catalyst, IEEE Trans Ind Appl, 1999,Vol. 35,No. 6,1311-1317
    [12]. Orlandini I, Riedel U, Chemical kinetics of NO removal by pulsed corona discharges, J. Phys. D: Appl. Phys., 2000,Vol. 33,No. 19,2467-2474
    [13]. S. Kanazawa, J. S. Chang, G. F. Round, G. Sheng, T. Ohkubo, Y. Nomoto, T. Adachi, Removal of NOxfrom Flue Gas by Corona Discharge Activated Methane Radical Showers, Journal of Electrostatics, 1997,Vol. 40-41,651-656
    [14]. Yan Keping, Kanazawa Seiji, Ohkubo Toshikazu, Nomoto Yukiharu, Chang Jen-Shih, Yamamoto Takashi, Control of flow stabilized positive corona discharge modes and NO removal characteristics in dry air by CO2 injections, Journal of Electrostatics, 1999,Vol. 46,No. 2,207-219
    [15]. A Gal, M Kurahashi, M Kuzumoto, Energy-consumption and byproduct-generation analysis of the discharge nonthermal plasma-chemical NO-reduction process, J. Phys. D: Appl. Phys., 1999,Vol. 32,No. 10,1163-1168
    [16]. A. J. de. Castro, J. Meneses, S. Briz, F. Lopez, Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles, Review of Scientific Instruments, 1999,Vol. 70,No. 7,3156-3159
    [17]. Peng W X, Marshall A, Singhal R P, Ledingham K W D, Urban air pollution monitoring: Laser-based procedure for the detection of NOX gases, The Analyst, 1995,Vol. 120,No. 10,2537-2542
    [18]. Lee S H, Hirokawa J, Kajii Y, Akimoto H, New method for measuring low NO concentrations using laser induced two photon ionization, Review of Scientific Instruments, 1997,Vol. 68,No. 7,2891-2897
    [19]. Shu J, Bar I, Rosenwakes S, The use of rovibrationally exited NO photofragments as trace nitrocompounds indicators, Applied physics. B, 2000,Vol. 70,No. 4,621-625
    [20]. Kawamara K, Hirasawa A, Pilot Plant Experiment of NOX and SO2 Removal from Exhaust Gases by Electron Beam Irradiation, Radiate Phys. Chem., 1979,Vol. 13,No. 1,5-12
    [21]. Tokunaga O, Suzuki N, Radiation Chemical Reactions in NOX and SO2 Removals from Flue Gas, Radiate Phys. Chem., 1984,Vol. 24,No. 1,145-165
    [22]. Matzing H, Chemical Kinetics of flue gas cleaning by irradiation with electrons, Advances in Chemical Physics, 1991,Vol. 80,315-402
    [23]. A G Chmelewski, Yongxia Sun, Z Zimek, S Bulka, J Licki, Mechanism of NOx removal by electron beam process in the presence of scavengers, Radiation Physics and Chemistry, 2002,Vol. 65,No. 4/5,397-403
    [24]. Yan keping et al, Removal of NOX and SO2 by bipolar corona, In: Proc of 4th Int Conf on Electrostatic precipitations, 1990,Beijing, 635-649
    [25]. Masuda S, Pulse corona induced plasma chemical process: a horizon of new plasma chemical technologies, Pure& Appl. Chem, 1988,Vol. 60,No. 5,727-731
    [26]. Masuda S, Tu X, Wang Z, Hosokawa S, Novel Plasma chemical technologies – PPCP and SPCP for control of gaseous pollutants and air toxics, Journal of Electrostatics, 1995,Vol. 34,No. 4,415-438
    [27]. R. Hacham, H. Akiyama, Air pollution control by electrical discharges, IEEE Transactions on Dielectrics and Electrical Insulation, 2000,Vol. 7,No. 5,654-683
    [28]. Carlos M. Nunez, Geddes H. Ramsey, Wade H. Poder, James H. Abbott, Larry E. Hammel, Peter H. Kariher, Corona Destruction: An Innovative Control Technology for VOCs and Air Toxics, Air & Waste Management Association, 1993,Vol. 43,No. 2,242-247
    [29]. Clements J S, Sato M, Davis R H, Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high voltage discharge in water, IEEE Trans Ind Appl, 1987,Vol. IA-23,No. 2,224-235
    [30]. 朱益民,孔祥鹏,张卓然,张曼霞,郑丛龙,针阵列对板电晕放电对副流感病毒灭活的研究,北京理工大学学报,2005,Vol. 25,165-168
    [31]. Masuda S, Wu Yan, et al, Pulse corona induced plasma chemical process for De-NOX, De-SOX and mercury vapor control of combustion gas, Third Int. Conf. Electrostatics Precipitation, M. Rea. Ed, 1987),667-676
    [32]. Mizuno A, Clements J S, Davis R H, . Combined Treatment of SO2 and High Resistivity Fly Ash Using a Pulse Energized Electron Reactor, Proc. Int. Ind. Conf, Electrostatic precipitation, Tokyo, Japan, 1984,879-885
    [33]. M. B. Chang, J. H. Balbach, M. J. Rood, M. J. Kushner, Removal of SO2 from gas streams using a dielectric barrier discharge and combined plasma photolysis, J. Appl. Phys, 1991,Vol. 68,No. 8,4409-4417
    [34]. 宁成,李劲,周文俊,韩才元,正脉冲电晕和氨水对 SO2、NO 脱除的实验研究,环境科学,1994,Vol. 15,No. 1,15-18
    [35]. J. S. Chang, Energetic electron induced plasma processes for a reduction of acid and greenhouse gases in a combustion flue gas, Non-Thermal Plasma Techniques for Pollution Control, 1993
    [36]. Ruinian Li, Heterogeneous reaction in removal of SO2 by corona discharge, 10th Particular Control ofSymp. & 5th Int. Conf. Electrostatic Precipitation, Washington D. C., 1993
    [37]. J. S. Chang, The role of H2O and NH3 on the formation of NH4NO3 aerosol particles and DeNOX under the corona discharge treatment of combustion flue gases, J. Aerosol. Sci., 1989,Vol. 20,No. 8,1087-1090
    [38]. T. H. Teich, M. Jacob, Optical diagnostics and some results of gas treatment by way of non-thermal electrical discharge, Pulsed Power’96, IEE Colloquium on, 1996,34/1-34/4
    [39]. 杨津基,《气体放电》,科学出版社,1983,P113
    [40]. J. S. Chang, P. A. Lawless, T. Yamamoto, Corona discharge process, IEEE Trans. Plasma Sci., 1991,Vol. 19,No. 6,1152-1166
    [41]. 徐学基,诸定昌,《气体放电物理》,复旦大学出版社,1996,P243-261
    [42]. Kuffel E, Zaengl W S, High voltage engineering-fundamentals, Pergamon Press, P378, P375 (1992)
    [43]. Trichel G W, The mechanism of the negative point to plane corona onset, Physical Review, 1938,Vol. 54,No. 12-15,1078-1084
    [44]. C. E. 德列斯文,《低温等离子体物理与技术》
    [45]. Kang Z D, Pu Y K, Molecular nitrogen Vibrational Temperature in an Inductively coupled plasma, Chin. Phys. Lett., 2002,Vol. 19,No. 2,211-213
    [46]. B. Y. Man, Particle velocity, electron temperature, and density profiles of pulsed laser-induced plasmas in air at different ambient pressures, Appl. Phys. B, 1998,Vol. 67,No. 2,241-245
    [47]. 杨孝安,李国珍,等离子体光源中的电子激发温度的测量,锦州师范学院学报(自然科学版),1998,Vol. 2,26-30
    [48]. G. 赫兹堡, 《分子光谱与分子结构》第一卷, 科学出版社,1983
    [49]. 魏恩宗,高翔,骆仲泱,倪明江,岑可法,电晕放电烟气脱销机理探讨,电站系统工程,2003,Vol. 19,No. 5,1-3
    [50], Zeng B Q, Wang R Y, Li X C, Experimental study of reaction mechanism of NOX removal by impulse high voltage discharges, Bulletin, 1997,Vol. 42,No. 3,218-222
    [51]. J. Mizeraczyk, The effect of ammonia concentration on the reduction of NOX in a dry combustion gas by a flow stabilized corona discharge reactor, Acta Physica Universitatis Comenianae, 1994,Vol. 35,No. 1,89-94
    [52]. Moore C E., Atomic Energy Levels, Vol. 1, Reprint of NBS circular 467, Washington D.C., 1973,P77-78
    [53] Inatsugu S, Holmes J R, Transition Probabilities for the 5s'[1/2]1-3p Transitions of Ne I , Phys. Rev. A, 1973,Vol. 8,No. 4,1678-1687
    [54]. 钟立晨,丁海曙,《分子光谱及激光》,电子工业出版社,1987
    [55]. 林兆祥,李小银,程学武,李发泉,龚顺生,激光大气等离子体时间演化特性的光谱研究,光谱学与光谱分析,1973,Vol. 23,No. 3,421-425
    [56]. 朱林繁,凤任飞,刘小井 等,高分辨快电子能量损失谱仪的改进,核技术,2001,Vol. 24,No. 8,663-667
    [57]. Klisch E, Belov S P, Schieder R, et al, Transition between Hund’s coupling cases for the X 2Π state of NO, Mole. Phys., 1999,Vol. 97,No. 1/2,65-79
    [58]. Kirmse B, Delon A and Jost R, The NO2 vibronic levels near the X(2)A(1)-A(2)B(2), conical intersection observed by laser induced dispersed fluorescence, J. Chem. Phys., 1998,Vol. 108,No. 16,6638-6651
    [59]. 宁利新,程平,王鸿梅,曹德兆,储焰南,大气氧谱带的实验研究,化学物理学报,2001,Vol. 14,No. 2,141-146
    [60]. Horvath M, Ozone, Amsterdam, the Netherlands: Elsevier Science, 1980
    [61]. Maezono I, J. S. Chang, Reduction of CO2 from Combustion Gases by dc corona Torches, IEEE Trans Ind Appl, 1990,Vol. 26,No. 4,651-655
    [62]. Namba H, Aoki Y, Tokunaga O, Experimental evidence of N2 formation from NO in simulated coal-fired flue gas by electron beam irradiation, Chemistry letters, 1988,1465-1468
    [63]. Matzing H, The kinetics of O atoms in the radiation treatment of waste gases, Radiat. Phys. Chem, 1989,Vol. 33,No. 1,81-84
    [64]. Matzing H, Namba H, Tokunaga O, Experimental evidence of nitrous acid formation in the electron beam treatment of flue gas, Radiat. Phys. Chem, 1994,Vol. 43,No. 3,215-220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700