脉冲流光放电脱除SO_2的光谱诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SO2作为重要的大气污染气体,主要来自于燃煤锅炉的排放。伴随其排放含量较高的气体是氮气和水蒸气,此外还有CO和CO2,所以研究脉冲放电脱除SO2的动力学过程,必须考虑氮气和水蒸气的影响。除此之外,脉冲放电等离子体特性也直接关系着SO2的脱除效率。本文采用荧光发射光谱方法,研究了脉冲放电的特性参数、水分子的激发解离,以及SO2的激发过程,得到了创新性研究成果。
     本文首先对掺有痕量Ar的大气压N2气脉冲放电等离子体特性进行了实验研究。依据荧光谱线强度正比于粒子数分布原理,借助于Ar不同激发电子态跃迁荧光强度,采用谱线相对荧光强度比值法和玻尔兹曼曲线斜率法,对脉冲流光放电和介质阻挡放电(DBD)等离子体的电子激发温度、电子密度进行了实验测量。结果表明:由玻尔兹曼斜率法所得脉冲流光放电和DBD放电等离子体的电子激发温度分别为(7474±500)K和(4041±400)K,均高于相对荧光强度比值法所得电子激发温度(6725K±1500K和3887K±1500K);两种放电等离子体的电子密度分别为15.76175×1015cm-3和10.35165×1015cm-3;两参数的空间分辨测量结果与气体放电理论推测很好的符合。
     其次对标准大气压下H2O分子脉冲放电等离子体激发解离动力学过程进行了实验研究。得到了H2O的脉冲流光和DBD放电荧光发射谱,将强荧光谱线归属为N2(C3Πu→B3Πg)、OH(A2Σ+→X2Π)、Hα辐射跃迁,最大区别是DBD放电中没有出现Hα辐射;对脉冲流光中N2337.2nm、OH308.4nm、H656.5nm荧光谱线时间分辨测量结果表明,OH*和H*荧光信号分别滞后N2*7.4ns和17.6ns,推断H2O的主要激发解离通道为:H2O与高能电子发生非弹性碰撞激发,解离成激发态OH和基态的H;空间分辨测量表明,在距负电极0.5mm附近活性粒子浓度最高,正好对应流光放电的负辉区。
     通过分析SO2脉冲流光放电荧光发射光谱,将237.3nm和330nm、370nm、430nm处光谱弥散包络分别归属为SO自由基A3Π→X3Σ和SO2分子B1B1→X1A1、A1A2→X1A1、α3B1→X1A1的荧光辐射跃迁;少量氧气条件下SO2脱除包括氧化和还原两种通道,产物分别是SO3和S原子。其中SO自由基是SO2脱除过程中的重要中间产物,主要是通过高能电子将SO2分子直接离解或激发至高电子激发态后离解生成。
As a significant atmosphere pollutant, SO2 mainly come from exhaust of burning coal boiler. Besides CO and CO2, N2 and H2O are also high content gas produced in this process. So the study of kinetics process of removal SO2 by pulsed streamer discharge must take the influence of N2 and H2O into account. Besides, the characteristic of pulsed streamer discharge plasma directly concern the removal efficiency. The methods of the fluorescence emission spectrum are used to study the characteristic parameter of pulsed streamer discharge、the excitated and dissociation process of H2O and the dissociation process of SO2. Through the experiment, we find some innovative production.
     First, N2 plasma characteristics in pulsed streamer discharge at atmosphere pressure is studied by using trace Ar dispersion fluorescence spectrometry method. According to the elements of fluorescence spectra intensity direct ratio to particle distribution, recuring to the different excited state fluorescence spectra intensity, plasma electron excited temperatures and electron density of pulsed streamer discharge and dielectric barrier discharge are obtained using relative fluorescence intensity ratio method and Boltzmann plot method. This fact shows that the calculated plasma electron excited temperature from Boltzmann plot method are (7474±500)K and (4041±400)K,which are both higher than the electron excited temperature from relative fluorescence intensity ratio method, (6725±1500)K and (3887±1500)K. And the electron density are 15.76175×1015cm-3 and 10.35165×1015cm-3 respectively. The fact also indicate that pulsed streamer discharge plasma and dielectric barrier discharge plasma approximately the state of local thermodynamic equilibrium(LTE).
     Secondly, we study the excited dissociation kinetics of H2O gas in the pulsed streamer discharge plasma at the atmospheric pressure. The main spectrums detected in the experiment are assigned to C3Πu→B3Πg for N2、A2Σ+→X2Πfor OH radical and n=3→n=2 for H atom respectively. The temporal-resolved measurements at 337.2nm,308.4nm、656.5nm show that the occurrences of OH* and H* are later than that of N2* for 7.4ns and 17.6ns respectively. So dissociation process of H2O can be described as H2O is excited to high vibrational level of first excited state by non-elasticity collision with electron, and then dissociates to OH radical at excited state and H atom at ground state. Furthermore, the results of spatial-resolved measurements show that the densities of active particles reach the maximum at 0.5mm away from negative electrode corresponding to the negative glow region of streamer discharge.
     In the end, through analyze the pulsed streamer discharge spectrum of SO2,the spectrums of 237.3nm,330nm、370nm and 430nm detected in the experiment are assigned to A3Π→X3Σfor SO radical、B1B1→X1A1, A1A2、α3B1→X1A1 for SO2,respectively. Under comdition of little O2, SO2 could be removed through oxidation reaction and reduction reaction, and final products are SO3,S, respectively. SO radical is the key middle product in the process of SO2 removal. SO radical could be produced through direct dissociation and dissociation via electronic excited states of SO2 by high energy eletrons.
引文
[1]候栋岐.张溱芳.侯清濯.;烟气中SO2简捷碘量法测试.电站系统工程.;1996.12(6):37
    [2]赵慧富.污染气体NO2的形成和控制.科学出版社,1993.
    [3]Masuda S.,WuY. Removal of Nox by corona discharge induced by sharp rising nanosecond pulse voltage. Proc. Int.Con.f Oxford:Electrostatics,1987.249-254
    [4]MizunoA.,Clements J. S.,Davis R. H.A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization. IEEE Trans. Ind. App.1,1986,1A-22 (3): 516-521
    [5]Yan K., E. J. vanHeesch, A. J. M. Pemen, et a.l Reactions ofNO in a positive streamer corona plasma. Plasma Chem. Plasma Process.,1997,17:371-391
    [6]WangW.,Zhang J.,Liu F.,et a.l Study on density distribution ofhigh-energy electrons in pulsed corona discharge. Vacuum,2004,73:333-339
    [7]何正浩.李劲.杨海燕.;纳秒脉冲电晕放电衰减研究.电工电能新技术.;2002.21:45-48
    [8]Galkimberti I. Impulse corona simulation for flue gas treatment. Pure& App.l Chem.,1988,60(6): 663-674
    [9]RyoOno, TetsujiOda. Formation and structure ofprimary and secondary streamers in positive pulsed corona discharge-effect of oxygen concentration and applied voltage. J. Phys. D:App.l Phys.,2003,36: 1952-1958
    [10]Lowke J. J. Theoretical analysis of removal of oxides of sulphur and nitrogen in pulsed operation of electrostatic precitators. IEEE Trans. Plasma Sc.i,1995,23:661-671
    [11]Mok Y. S.,In-Sik Nam. Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide. J. Chem. Eng.,2002,85(1):87-97
    [12]Li Jie, SunMing, WuYan,eta.l Experimental investigation on activatingwater vapor and ammonia by DC corona discharge technology to remove SO2from flue gas. J. Adv. Ox.i Techno.1,2004,7:146-153
    [13]Lee Y. H.,Jung W. S.,Choi Y. R. Application of pulsed corona induced plasma chemical process to an industrial incinerator. Environ. Sc.i Techno.1,2003,37(11):2563-2567
    [14]杜伟迪.李传亮.杨晓华.;直流脉冲放电产生SO分子束A3→X3跃迁.华东师范大学学报.;2008.3:115
    [15]王文春.隋淑萍.;正脉冲电晕放电SO2产生SO发射光谱研究.吉林工学院学报.;1997.18(1):1-4
    [16]王鸿梅.李建权.程平.;Ar与SO2混合放电产生SO电子态的光谱研究.光谱学与光谱分析.;2003.23(4):630-633
    [17]Yan keping et al, Removal of NOX and SO2 by bipolar corona, In:Proc of 4th Int Conf on Electrostatic precipitations,1990,Beijing,635-649
    [18]R. Hacham, H.Akiyama, Air pollution control by electrical discharges, IEEE Transactions on Dielectrics and Electrical Insulation,2000,Vol.7,No.5,654-683
    [19]Carlos M. Nunez, Geddes H. Ramsey, Wade H. Poder, James H.Abbott, Larry E. Hammel, Peter H. Kariher, Corona Destruction:An Innovative Control Technology for VOCs and Air Toxics, Air & Waste Management Association,1993,Vol.43,No.2,242-247
    [20]Clements J S, Sato M, Davis R H, Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high voltage discharge in water, IEEE Trans Ind Appl,1987, Vol. IA-23,No.2,224-235
    [21]朱益民.孔祥鹏.张卓然.;针阵列对板电晕放电对副流感病毒灭活的研究,北京理工大学学报,2005,Vol.25,165-168
    [22]高树香.;体导电(上),南京工学院出版社,88,167-191.
    [23]B.Y Man. Particle velocity, electron temperature, and density profiles of pulsed laser-induced plasma in air at different ambient pressure, Appl.Phys.B Vol.67241-245(1998).
    [24]陆同心.逸群.;光光谱技术原理及应用,国科学技术大学出版社,1999.
    [25]G赫兹堡.;分子光谱与分子结构(第一卷),科学出版社,1983.
    [26]赵文华.唐皇哉.沈岩等.;谱线强度法所测得温度的物理意义[J].光谱学与光谱分析,2007,27(11):2145-2149.
    [27]李金平.代斌.范婷等.;脉冲电晕氢等离子体370~1100nm发射光谱分析[J].原子与分子物理学报,2008,25(2):397-401.
    [28]屠昕.陆胜勇.严建华等.;大气压直流氩等离子体光谱诊断研究[J].光谱学与光谱分析,2006,26(10):1785-1789.
    [29]Se Y M, Choe W, Han S U, et al. Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tube[J]. Phys.Plasmas.,2002,9(9):4045
    [30]Yasuyuki N,Akira M,Kiichiro U,et al.Direct mea-surement of electron density and temperature distribu-tions in a micro-discharge plasma for a plasma display panel[J].J.Appl. Phys.,2002,91(2): 613
    [31]Kunze K, Miclea M, Musa G,et al. Diode laser-aided diagnostics of a low-pressure dielectric barrier discharge applied in element-selective detection of molecular species[J].Spectrochimica Acta PartB, 2002,57:137
    [32]Dong L F, Ran J X, Mao Z G. Direct measusement of electron density in microdischarge at atmospheric pressure by Stark broadening [J].Appl. Phys. Lett.,2005,86(16):161501
    [33]宁利新.程平,王鸿梅等.;大气氧谱带的实验研究[J].化学物理学,2001.14(2).141-146.
    [34]赵晓辉.张连水.张贵银等.;氮分子B-3Π_g激发态的光谱研究[J].光谱学与光谱分析,2005,25(3):334-336.
    [35]http://physics.nist.gov/PhysRefData/ASD/lines form.html.
    [36]冉俊霞.董丽芳.张少朋.;仪器展宽对大气压等离子体电子密度测量的影响原子与分子物理学报2008 25(3)651-655
    [37]姜明.程新路.杨向东.;高密度氩等离子体电子密度的计算;原子与分子物理学报;2004 21(3)421-424
    [38]H. R Griem. Plasma spectroscopy, New York:McGraw-Hill,492(1964).
    [39]Hynes A J, Richter R C, Nien C J. Chemical Physics Letters,1996,258:633.
    [40]Srinivasan B,Palanki S, Grymonpre D R, Locke B R. Chemical Engineering Science,2001,56:1035.
    [41]Mok Y S et al. Chemical Engineering Journal,2002,85:87.
    [42]Lozovsky, V.A.;Derzy, I.;Cheskis, S. Chem. Phys.Lett.,1998,284:407
    [43]Joshi, A.A.;Locke, B.R.;Arce, P.;Finney, W. C.J. Hazard. Mater.,1995,41:3
    [44]赵晓辉.张贵银.张连水.;华北电力大学学报,2004,31(5):108-109
    [45]叶齐政.李凌云.张家聪.李劲.;中国电机工程学报,2005,11(25):163-167
    [46]Ershov, A.;Borysow, J. J. Phys. D:Appl.Phys.,1995,28:68
    [47]Falkenstein, Z. J. Appl. Phys.,1997,81:7158
    [48]张琳.;正脉冲电晕放电中OH、H自由基浓度的数值模拟[D].大连理工大学:2006
    [49]Pavlo Maksyutenko,Thomas R. Rizzo, Oleg V.Boyarkin. A direct measurement of the dissociation energy of water [J].The Journal of Chemical Physics,2006,125(18):181101
    [50]Christopher G.Elles, Ilya A.Shkrob, Robert A.Crowell, et al. Excited state dynamics of liquid water: Insight from the dissociation reaction following two-photon excitation [J].The Journal of Chemical Physics,2007,126(16):164503
    [51]V. Engel, V. Staemmler, R.L. Vander Wal, etal.Photodissociation of Water in the First Absorption Band:A Prototype for Dissociation on a Repulsive Potential Energy Surface [J].The Journal of Physical Chemistry,1992,96(8):3201
    [52]K. Weide, R. Schinke. Photodissociation dynamics of water in the second absorption band I.Rotational state distribution of OH(2Σ) and OH(2Π) [J].The Journal of Chemical Physics,1987,87(8):4627
    [53]Teich, T. H.Proc.the NATO Advanced Research Workshop on Non-thermal Plasma Techniques for Pollution Contro.,1993,G34A:674
    [54]Herzberg, G. Molecular spectra and molecular structure.Vol.3.Electronic spectra and electronic structure of polyatomic molecules. Ottawa:Van Nostrand Reinhold Company,1986:342
    [55]C.R. CLaydon, G.A.Segat, H.S.Taylor. Theoretical interpretation of the optical and electron scattering spectra of H2O[J].The Journal of Chemical Physics,1971,54(9):3799
    [56]徐学基.诸定昌.;气体放电物理;上海:复旦大学出版社,1996:3-16
    [57]朱林繁.凤任飞.刘小井.王映雪.徐克尊.杨涛.宁宇进.黄建福.虞孝麒.;核技术,2001,24(8):663-667
    [58]Peng, G. H. Gas discharge-Application of plasma physics.Shanghai:Knowledge Press,1988:24-25
    [59]王宁会.王文春.王荣毅.;酸雨危害与科技治理最新技术;中国环境管理,1995,76(2):47
    [60]H. Katagiri, T. Sako, A.Hishikawa, T. Yazaki, K. Onda, K. Yamananouchi, K. Yoshino, "Experimental and Theoretical Exploration of SO2 Via the C'B2 State:Identification of the Dissociation Pathway",J. Mol. Struct.1997,413/414,589
    [61]R. N.Dixon, M.Halle, "3400 A Band System of Sulfur Dioxicide",Chem. Phys. Lett.1973,22,450
    [62]J.E. Kent, M. F. O'Dwyer, R. J. Shaw,"Single Vibronic Level Fluorescence of SO2",Chem.Phys. Lett.1974,24,221
    [63]R. Kullmer and W. Demtrder,"Sub-Doppler Laser Spectroscopy of SO2 in a supersonic beam", J. Chem.Phys,1984,81,2919
    [64]L. E. Brus, J. R. Mcdonld, "Time-Resolved Fluorescence kinetics and 1B1(Δg) Vibronic Structure in Tunable Ultraviolet Laser Excited SO2 Uapor",J. Chem.Phys.1974,61,97
    [65]Dennis L. Holtermann and Edward K. C. LeeRoger Nanes,"Single ravibronic level lifetimes of the A2 state of SO2 excited in the 3043 A ("E") band:rotationally resolved fluorescence emission spectrum",Chem. Phys. Lett.1980,75,91
    [66]Dennis L. Holtermann and Edward K. C. LeeRoger Nanes, "Collision-induced rotational transitions in electronically excited states:the application of dipole-type selection rules to SO2 (A1A2)", Chem. Phys. Lett.1980,75,249
    [67]S.Kimel, D. Feldmann, J. Laukemper and K. H.Weige, "Changes in Fluorescence Induced by Infrared Multiphoton Excitation of Optically Excited SO2", J.Chem. Phys.1982,76,4893
    [68]R. Kullmer and W. Demtrder, "Zeeman Effects in Excited States of SO2 investigated with Sub-Doppler Resolution",J. Chem. Phys.1985,83,2712
    [69]R. Kullmer and W. Demtrder, "Lifetime Measurements of Selectively Excited Rovibronic Levels of SO2",J. Chem. Phys.1986,84,3672
    [70]R. O. Jones, "Energy surfaces of low-lying states of O3 and SO2",J. Chem. Phys.1985,82,325
    [71]张群.张桦.陈从香.;“266nm激光激励的SO2(X1A1,A1A2,B1B1)体系的态间转移研究”,Chem.J. Chinese Universitys(高等化学学报),1996,17,456
    [72]王储记.陈军章.张立敏.;“超声冷却SO2(A1A2→X1A1)激光诱导荧光激发谱的转动分析”,物理学报,1998,47(8),1258-1264
    [73]王文春.隋淑萍.正脉冲电晕放电S02产生的SO(A3Π→X3Σ)发射光谱研究.吉林工学院学报.1997,18(1):3
    [74]张贵银.靳一东.SO2分子荧光辐射的时间分辨测量.华北电力大学学报.2007,34(3):102
    [75]张群.冉琴.陈从香等.;“电子激发态SO2(A1A2,B1B1)碰撞淬灭动力学研究”,化学学报,1996.56.538
    [76]周鸣飞.王朝辉.余敏.郑企克.;“低温基体隔离SO2a3B1的时间分辨磷光光谱研究”,化学物理学报,1994,7,302
    [77]A Clyne M A A, McDermid J S.J.Chem.Soc. Faraday.1970,75:905 B Clyne M A A, Liddy J P. J.Chem.Soc. Faraday 1982,78:1121
    [78]孙琦.顾月姝.郭敬忠等.;单次碰撞条件下Ar(3P0.2)与SO2,SOCl2的传能反应,物理化学学报,1995 11(1):30-36
    [79]Gerhard Herzberg. Molecular spectra and molecular structure Ⅲ Electronic spectra and electronic structure of polyatomic molecules. New York:Van Nostrand Reinhold Company,1966,511.
    [80]K. L. Knappenberger, A.W.Castleman. The influence of cluster formation on the photodissociation of sulfur dioxide:Excitation to the E state, Jounal of chemical physics,2004,121(8):3540.
    [81]Chang et al.Removal of SO2 from gas streams using a dielectric barrier discharge and combined plasma photolysis, J.Appl. phys,1991,69(8):4409

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700