基于AFM探针的电晕放电初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息获取技术尤其是获取微纳结构互相套准的物理特性和化学信息对于探索微观世界的奥秘具有十分重要的意义,本文在比较了国内外有关原位准同步检测材料微纳结构物化特性的方法后,介绍了一种基于原子力显微镜和高场不对称波形离子迁移谱联用(即AFM-FAIMS技术)的方案:当AFM扫描到样品表面异常的物理图像后,需要进一步获取该“兴趣点”上的化学信息时,可利用AFM探针产生电晕放电,使该“兴趣点”上的痕量化学物质脱附并离化为带电的解吸附样品离子,这些样品离子再由微型机电接口装置带入FAIMS中进行分离和检测,从而可以获取与样品“兴趣点”上物理特性相对应的化学信息。
     本文针对联用系统中的关键部件—AFM探针,开展了一些有关电晕放电的初步研究,主要工作有:介绍了电晕放电的一般特性,对电晕放电的产生条件、起晕电压和超始场强作了一些讨论,并且进行了3mm间距的针板式电晕放电试验,发现它与理论模型吻合得较好。简单介绍了AFM探针以及有限元方法和ANSYS软件,利用ANSYS有限元软件对AFM探针进行了静力学分析、模态仿真和电场分析,其中电场分析表明当放电间距为100um加1kv的高电压时AFM探针针尖周围的场强分布在0.32v/um至62.4v/um之间,从理论仿真的角度验证了利用其产生电晕放电的可行性。利用AFM导电探针进行了电晕放电试验,观察了实验现象,测得了AFM探针加高压时的伏安特性曲线,总结了试验规律,为下一步利用AFM探针产生电晕放电实现非触式采样奠定了良好的基础,然后还利用MEMS工艺制作可用于放电的硅尖阵列,最后介绍了一种新型的AFM探针结构并利用ANSYS对其电学特性进行了仿真。
Information acquisition of physical and chemical characteristics under the micro and nano scale would be very important for exploring the secret in the micro and nano world. After comparison of some in-situ and quasi-synchronous analysis methods of micro and nano structure material, We reported a scheme which is based on AFM-FAIMS: When interesting patterns were observed during AFM scan, a relatively high voltage was applied to the AFM probe to induce corona discharge at the point of interest. Analytes were ionized by this desorption-ionization method to charged molecules or atoms, and they were extracted to FAIMS chip by radial electric field exerted by a ring electrode at the AFM-FAIMS interface. Then FAIMS would be used to detect the analytes and validate the proposed method of in-situ physical and chemical characterization of micro and nano structure material.
     Some preliminary research on AFM probe based corona discharge for desorption ionization in AFM-FAIMS was put forward in this paper. The characteristics of corona discharge was introduced. The requirement , onset voltage and the onset electric intensity was also discussed. Then We did an tip-plane corona discharge experiment (d=3mm), we found that the result was in accordance with the theory. An simple introduction was given to AFM probe, FEA and ANSYS software. Through finite element analysis, research was done on the mechanical and electrical character of the AFM probe. Electrical analysis showed that the field intensity around the AFM probe tip could achieve 0.32v/um-62.4v/um when the gap distance was 100um and the applied voltage was 1000v, validating the feasibility of the sampling device. The relationship between discharge current I and applied voltage V was studied through corona discharge experiment. These works laid a foundation for developing the corona discharge non-contact sampling device based on AFM probe. Then we used MEMS technology to fabricate Si tips array for corona discharge research. A novel structure of AFM probe was introduced, and research was done on the electrical characteristic of the novel probe through ANSYS software.
引文
[1] FEYNMAN R P. There's plenty of room at the bottom [J]. Engineering and Science, 1960, 23(5): 22-36.
    [2]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用[M].北京;化学工业出版社. 2007: 1,53-69.
    [3]田文超,贾建援.扫描探针显微镜系列及其应用综述[J].西安电子科技大学学报, 2003, 01): 108-112.
    [4]郭云昌,蔡颖谦.扫描探针显微镜的进展[J].现代科学仪器, 2005, 03): 21-23.
    [5]白春礼.纳米科技及其发展前景[J].微纳电子技术, 2002, 01): 2-5.
    [6] BINNIG G, QUATE C F, GERBER C. Atomic force microscope [J]. Physical review letters, 1986, 56(9): 930-933.
    [7] BLANCHARD C R. Atomic force microscopy [J]. The chemical educator, 1996, 1(5): 1-8.
    [8] ITO T, IBRAHIM S, GRABOWSKA I. Chemical-force microscopy for materials characterization [J]. TrAC Trends in Analytical Chemistry, 2010, 29(3): 225-233.
    [9] SUGIMOTO Y, POU P, ABE M, et al. Chemical identification of individual surface atoms by atomic force microscopy [J]. Nature, 2007, 446(7131): 64-67.
    [10]江宁,沈耀根,张寒洁, et al.用XPS和AFM等方法研究氮化钛薄膜的物理化学特性[J].真空科学与技术学报, 2004, 06):459-464
    [11]雷晓春,赵宇. AFM和XPS结合在化学浆和机械浆纤维表面分析中的应用[J].中国造纸学报, 2009, 02): 110-114.
    [12]褚小立,陆婉珍.近红外化学成像的原理、仪器及应用[J].分析仪器, 2008, 04): 1-5.
    [13] SPENCE J, WEIERSTALL U, LO W. Atomic species identification in scanning tunneling microscopy by time‐ of‐ flight spectroscopy [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1996, 14(3): 1587-1590.
    [14] WEIERSTALL U, SPENCE J. Atomic species identification in STM using an imaging atom-probe technique [J]. Surface science, 1998, 398(1-2): 267-279.
    [15] SHIMIZU T, KIM J T, TOKUMOTO H. Tungsten silicide formation on an STM tip during atom manipulation [J]. Applied Physics A: Materials Science & Processing, 1998, 66:771-775.
    [16] SHIMIZU T, TOKUMOTO H. Single Silicon Atom Detection on a Tungsten Tip [J]. Jpn J Appl Phys, Part, 1999, 1(38): 3860.
    [17] LEE D W, DESPONT M, DRECHSLER U, et al. Switchable cantilever fabrication for a novel time-of-flight scanning force microscope [J]. Microelectronic engineering, 2003, 67:635-643.
    [18] LEE D W, WETZEL A, BENNEWITZ R, et al. Switchable cantilever for a time-of-flight scanning force microscope [J]. Applied physics letters, 2004, 84(9): 1558-1560.
    [19] WETZEL A, SOCOLIUC A, MEYER E, et al. A versatile instrument for in situ combination of scanning probe microscopy and time-of-flight mass spectrometry [J]. Review of scientific instruments, 2005, 76:103701
    [20] LEE D. Functional microcantilever for a novel scanning force microscope [J]. Journal of the Korean Physical Society, 2008, 52:1496-1500.
    [21]徐学基,诸定昌.气体放电物理[M].上海;复旦大学出版社. 1996: 1,87-105,217-2268.
    [22]王晓臣.电晕放电关键问题研究与新型放电装置研制[D];大连理工大学, 2007. 1-4,10-11,14-17
    [23]刘坤.用于FAIMS系统的微型离子化单元的研究[D];北京交通大学, 2010. 23,26
    [24]刘芳.电晕放电等离子体灭菌的实验研究[D];广东工业大学, 2007. 28-31
    [25]王晓臣.多针对板电晕放电装置优化及甲醛去除研究[D];大连海事大学, 2004. 9-16
    [26]宿鹏浩.针阵列对板电晕放电及其与催化结合脱硝研究[D];大连海事大学, 2008. 1-3,33-35
    [27] CHANG J S, LAWLESS P A, YAMAMOTO T. Corona discharge processes [J]. Plasma Science, IEEE Transactions on, 1991, 19(6): 1152-1166.
    [28]杨树,张零零,宓东, et al.多针对板电晕放电电离区微观特性分析[J].高电压技术, 2011, 01): 203-207.
    [29]唐飞,王晓浩,刘坤, et al.敞开式小型线-筒电极负电晕放电离子源(英文) [J].光学精密工程, 2009, 08): 1953-1957.
    [30]杨津基.气体放电[M].北京;科学出版社. 1983: 87-89.
    [31]李尔宁,刘延冰,李正瀛.气体放电理论几个问题的探讨[J].高电压技术, 1997, 02): 95-96
    [32]梁曦东,陈昌渔,周远翔.高电压工程[M].北京;清华大学出版社. 2003: 8-60.
    [33] HARTMANN G. Theoretical evaluation of Peek's law [J]. Industry Applications, IEEE Transactions on, 1984, 6): 1647-1651.
    [34]朱益民,孔祥鹏.多针对板电晕放电伏安特性研究[J].高电压技术, 2006, 01): 57-8,68.
    [35]陈海丰,朱益民,宿鹏浩, et al.多针电极结构双极电晕放电伏安特性[J].高电压技术, 2007, 10): 92-95.
    [36] ADAMIAK K, ATTEN P. Simulation of corona discharge in point-plane configuration [J]. Journal of electrostatics, 2004, 61(2): 85-98.
    [37] MODI A, KORATKAR N, LASS E, et al. Miniaturized gas ionization sensors using carbon nanotubes [J]. Nature, 2003, 424(6945): 171-174.
    [38] H HNER G. Dynamic spring constants for higher flexural modes of cantilever plates with applications to atomic force microscopy [J]. Ultramicroscopy, 2010, 110(7): 801-806.
    [39] BOISEN A, HANSEN O, BOUWSTRA S. AFM probes with directly fabricated tips [J]. Journal of Micromechanics and Microengineering, 1996, 6:58.
    [40]韩建强.基于掩膜—无掩膜腐蚀技术的AFM探针制作方法研究[D];中国科学院研究生院(上海微系统与信息技术研究所), 2006. 32-36,60
    [41] LEVY R, MAALOUM M. Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods [J]. Nanotechnology, 2002, 13:33.
    [42]杨尊先.硅基集成纳机电探针技术的研究[D];中国科学院研究生院(上海微系统与信息技术研究所), 2004. 23-29,38-41
    [43]张朝晖,李树奎. ANSYS11.0有限元分析理论与工程应用[M].北京;电子工业出版社. 2008: 1-3,38-53,163-6,75-82,281-3.
    [44]张洪信,管殿柱.有限元基础理论与ANSYS11.0应用[M].北京;机械工业出版社. 2009: 1-3,24-46,84-91,185-207,352-68.
    [45]倪庆旭.多层微悬臂梁弹性常数的计算方法的研究[D];天津大学, 2009. 34-44
    [46]孙明礼,胡仁喜,崔海蓉. ANSYS10.0电磁学有限元分析实例指导教程[M].北京;机械工业出版社. 2007: 1-15,294-341.
    [47]石二磊.硅微悬臂梁探针的制备工艺研究[D];大连理工大学, 2008. 24-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700